数列专题讲义二

数列专题讲义二
数列专题讲义二

第2讲 数列求和及数列的简单应用

典型真题:

1.[2019·浙江卷] 设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列. (1)求数列{a n },{b n }的通项公式; (2)记c n =√

a n 2

b n

,n ∈N *,证明:c 1+c 2+…+c n <2√n ,n ∈N *.

2.[2019·天津卷] 设{a n }是等差数列,{b n }是等比数列,已知

a 1=4,

b 1=6,b 2=2a 2-2,b 3=2a 3+4.

(1)求{a n }和{b n }的通项公式.

(2)设数列{c n }满足c 1=1,c n ={1,2k

b k ,n =2k

,其中k ∈N *. (i)求数列{a 2n (c 2n -1)}的通项公式; (ii)求∑i=12n

a i c i (n ∈N *).

3.[2018·浙江卷] 已知等比数列{a n }的公比q>1,且

a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{

b n }满足b 1=1,数列

{(b n+1-b n )a n }的前n 项和为2n 2+n. (1)求q 的值;

(2)求数列{b n }的通项公式. 策略 解决数列解答题

1.解决已知某几个基本量求等差、等比数列的通项公式和前n 项和的问题:

关键一:通过列方程(组)求关键量a1和d(或q).

关键二:利用通项公式和前n项和公式求解.

2.解决数列的递推问题:

关键一:利用a n={S1,n=1,

得出关于a n与a n+1(或a n-1)的递推式.

S n-S n-1,n≥2,

关键二:观察递推式的形式,采用不同方法求a n.

3.解决数列求和问题

关键一:利用等差数列、等比数列的前n项和公式.

关键二:利用分组求和法、错位相减法、裂项相消法.

4.(1)等差数列的判断方法:定义法、等差中项法、利用通项公式判断、利用前n项和公式判断.

(2)等比数列的判断方法:

=q(q是常数且q≠0),则数列{a n}是等比数列. (a)定义法:若a n+1

a n

(b)等比中项法:若a n+1

2=a n a n+2(n∈N*),则数列{a n}是等比数列. (c)通项公式法:若a n=pq n(p,q为常数且p,q≠0),则数列{a n}是等比数列.

5.解决关于数列的不等式证明问题常用放缩法,解决数列的最值问题常用基本不等式法.

解答1等差、等比数列基本量的计算

1 已知{a n}是递增的等比数列,a5=48,4a2,3a3,2a4成等差数列.

(1)求数列{a n}的通项公式;

(2)设数列{b n}满足b1=a2,b n+1=b n+a n,求数列{b n}的前n项和S n.

【考场点拨】由等差数列、等比数列组成的综合问题,首先要根据两数列的概念,设出相应的基本量,充分使用通项公式、求和公式、数列的性质,确定基本量.解综合题的成败在于审清题目,弄懂来龙去脉,揭示问题的内在联系和隐含条件,形成解题策略. 【自我检测】

设数列{a n }的前n 项和为S n ,已知S n =2a n -1(n ∈N *). (1)求数列{a n }的通项公式; (2)若b n =

a n+1

(a n+1-1)(a n+2-1)

,求数列{b n }的前n 项和T n .

解答2数列的求和问题

2 已知数列{a n }的前n 项和为S n ,且1,a n ,S n 成等差数列. (1)求数列{a n }的通项公式;

(2)数列{b n }满足b n =log 2a 1+log 2a 2+…+log 2a n ,T n =1

b 2

+1

b 3+…+

1b n+1

,

求T n . 【考场点拨】

当数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法.用错位相减法求数列的前n 项和时,应注意:①等比数列的公比为负数的情形;②在写出“S n ”和“qS n ”的表达式时应特别注意将两式“错项对齐”,以便准确写出“S n -qS n ”的表达式. 【自我检测】

已知数列{a n }和{b n }满足a 1=2,b 1=1,a n+1=2a n (n ∈N *),b 1+1

2

b 2+1

3

b 3+…+1

n

b n =b n+1-1(n ∈N *).

(1)求a n 与b n ;

(2)记数列{c n }的前n 项和为T n ,且c n ={

1

b n b n+2,n 为奇数,

-1a n

,n 为偶数,

若对任意n ∈

N *,T 2n ≥T 2k 恒成立,求正整数k 的值. 解答3数列中的证明问题 热点1 数学归纳法

3 在数列{a n }中,a 1=1,a n+1=ca n +c n+1(2n+1)(n ∈N *),其中实数c ≠0,猜想{a n }的通项公式,并用数学归纳法进行证明. 热点2 通项放缩法

4 设数列{a n }的前n 项和为S n ,已知a 1=1,a n =a n -12+a n -1

(n ≥2).

(1)求数列{a n }的通项公式; (2)求证:32-1

2

n ≤S n <11

6

.

【考场点拨】

数列与不等式的综合问题是数列综合应用的一个难点,解题时常用的方法有放缩法、数学归纳法、构造法等.用放缩法证明与数列有关的不等式,常见的情况有:(1)先将通项公式放缩成常见数列的通项公式,再用裂项相消、错位相减、分组求和等方法进行求和;(2)若数列比较容易求和,也常常先求和,再放缩至要证明的不等式的一边;(3) 若要证明的不等式的一边是一个常数,数列的通项公式又可以放缩为等比数列的通项公式,则常用S n =a 1(1-q n )1-q

11-q

(0

1.已知数列{a n }满足a 1=-1,a n+1=(3n+3)a n +4n+6

n

(n ∈N *).

(1)证明:数列{a n +2n

}是等比数列;

(2)令b n =3n -1

a n +2

,用数学归纳法证明:b n+1+b n+2+…+b 2n <4

5-12n+1

(n ≥2,n

∈N *)

2.设数列{a n }的前n 项和为S n ,对于任意n ∈N *,有a n >0,且a n 是4S n

和3-a n 2

的等差中项.

(1)求a 1的值:

(2)求数列{a n }的通项公式;

(3)证明:对一切正整数n ,都有1

a 1

2+1

a 2

2+…+1

a n

2<1

4

.

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高中数学数列综合专项练习讲义

高中数学数列综合专项 练习讲义 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

专题数 列综合 考点精要 会求简单数列的通项公式和前n 项和. 热点分析 数列的通项和求和,历来是高考命题的常见考查内容.要重点掌握错位相减法,灵活运用裂项相消法,熟练使用等差和等比求和公式,掌握分组求和法. 知识梳理 1.数列的通项求数列通项公式的常用方法: (1)观察与归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变:分析符号、 数字、字母与项数n 在变化过程中的联系,初步归纳公式。 (2)公式法:等差数列与等比数列。 (3)利用n S 与n a 的关系求n a :则???≥-==-2111 n S S n S a n n n (注意:不能忘记讨论1=n ) (4)逐项作差求和法(累加法);已知)2)((1≥=--n n f a a n n ,且{f(n)}的和可求,则求n a 可用累加法 (5)逐项作商求积法(累积法);已知 )2)((1 ≥=-n n f a a n n ,且{f(n)}的和可求,求n a 用累乘法. (6)转化法 2几种特殊的求通项的方法 (一)1n n a ka b +=+型。 (1)当1k =时,{}1n n n a a b a +-=?是等差数列,1()n a bn a b =++ (2)当1k ≠时,设1()n n a m k a m ++=+,则{}n a m +构成等比数列,求出{}n a m +的通项,进一步求出{}n a 的通项。 例:已知{}n a 满足111,23n n a a a +==-,求{}n a 的通项公式。

高考数列专题总结(全是精华)

数列专题复习(0929) 一、证明等差等比数列 1. 等差数列的证明方法: (1)定义法:1n n a a d +-=(常数) (2)等差中项法:112(2)n n n a a a n +-+=≥ 2.等比数列的证明方法: (1)定义法: 1 n n a q a +=(常数) (2)等比中项法:211(2)n n n a a a n +-=≥ 例1.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75, T n 为数列{n S n }的前n 项和,求T n . 解:设等差数列{a n }的公差为d ,则 S n =na 1+21 n (n -1)d .∴S 7=7,S 15=75,∴???=+=+,7510515,721711d a d a 即???=+=+,57,1311d a d a 解得a 1=-2,d =1.∴n S n =a 1+21(n -1)d =-2+21 (n -1). ∵ 2111=-++n S n S n n ,∴数列{n S n }是等差数列,其首项为-2,公差为2 1 , ∴T n = 41n 2-4 9n . 例2.设数列{a n }的首项a 1=1,前n 项和S n 满足关系式: 3tS n -(2t +3)S n -1=3t (t >0,n =2,3,4,…) 求证:数列{a n }是等比数列; 解:(1)由a 1=S 1=1,S 2=1+a 2,得a 2=t t a a t t 323,32312+= + 又3tS n -(2t +3)S n -1=3t ① 3tS n -1-(2t +3)S n -2=3t ② ①-②得3ta n -(2t +3)a n -1=0 ∴t t a a n n 33 21+= -,(n =2,3,…) 所以{a n }是一个首项为1,公比为 t t 33 2+的等比数列. 练习:已知a 1=2,点(a n ,a n+1)在函数f (x )=x 2+2x 的图象上,其中=1,2,3,… (1) 证明数列{lg(1+a n )}是等比数列; (2) 设T n =(1+a 1) (1+a 2) …(1+a n ),求T n 及数列{a n }的通项; 答案 .(2) 21 3 n n T -=,21 3 1n n a -=-; 二.通项的求法 (1)利用等差等比的通项公式 (2)累加法:1()n n a a f n +-= 例3.已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 。 解:由条件知:1 1 1)1(112 1+-=+=+= -+n n n n n n a a n n 分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累加之,即 )()()()(1342312--+??????+-+-+-n n a a a a a a a a )111()4131()3121()211(n n --+??????+-+-+-=所以n a a n 1 11-=- 211=a ,n n a n 1231121-=-+=∴ (3)构造等差或等比 1n n a pa q +=+或1()n n a pa f n +=+ 例4.已知数列{}n a 满足* 111,21().n n a a a n N +==+∈ 求数列{}n a 的通项公式; 解:*121(),n n a a n N +=+∈ 112(1),n n a a +∴+=+ {}1n a ∴+是以112a +=为首项,2为公比的等比数列。 12.n n a ∴+= 即 *21().n n a n N =-∈

数列专题复习及答案

数列、数列极限、数学归纳法综合复习 一、填空题 1、已知)(156 2 *∈+= N n n n a n ,则数列{}n a 的最大项是 2、在等差数列{}n a 中,若46101290a a a a +++=,则10 141 3 a a -= 3、已知等比数列{}n a ,若1 5 1,4a a ==,则3 a 的值为 4、数列{}n a 中,23=a ,15 =a ,则数列1{}1 n a +是等差数列,则=11 a 5、在数列{}n a 和{}n b 中,n b 是n a 与1 n a +的等差中项,1 2a =且对任 意n N * ∈都有 031=-+n n a a ,则数列{}n b 的通项公式为 ___ _______ 6、设等差数列{}n a 的公差d 不为0,1 9a d =,k a 是1a 与2k a 的等比 中项,则k = 7、等差数列{}n a 的前n 项和为n S ,若4 510,15S S ≥≤,则4a 的最大值为 8、正数数列{}n a 中,已知1 2a =,且对任意的,s t N * ∈,都有s t s t a a a ++=成立,则 12 23 1 111n n a a a a a a ++++ 9、等差数列{}n a 的前n 项和为n S ,且42358,26 a a a a -=+=,记2 n n S T n = , 如果存在正 整数M ,使得对一切正整数n ,n T M ≤都成立.则M 的最小值 是__________ 10、已知无穷等比数列1 2 {},lim[3()]4,n n n a S a a a S →∞ ++ +-=中,各项的和为且 则实 数1 a 的范围 11、设正数数列{}a 的前n 项和为S ,且存在正数t ,使得对于

(完整版)高考数列专题复习

专题数列知识网络

专题训练 一.选择题 1.设数列{}n a的前n项和 2 n S n =,则 8 a的值为 (A) 15 (B) 16 (C) 49 (D)64 2.设等差数列 {} n a 的前n项和为n S,若111 a=-, 46 6 a a +=-,则当 n S取最小值时,n 等于 A.6 B.7 C.8 D.9 3.如果等差数列 {} n a 中,34512 a a a ++=,那么 127 ... a a a +++= (A)14 (B)21 (C)28 (D)35 4.已知等比数列{m a}中,各项都是正数,且1a,32 1 ,2 2 a a 成等差数列,则 910 78 a a a a + = + A.12 + B. 12 - C. 322 +D322 - 5.在等比数列 {} n a 中,11 a=,公比1 q≠ .若12345 m a a a a a a =,则m= (A)9 (B)10 (C)11 (D)12

6.等比数列 {} n a 中,15252||1,8,, a a a a a ==->则 n a = A .1 (2)n -- B .1 (2)n --- C .(2)n - D .(2)n -- 7.设{n a }是由正数组成的等比数列,n S 为其前n 项和,已知24a a =1, 37 S =, 则 5S = (A )152 (B)314 (C)33 4 (D)172 8.设 n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332 S a =-,则公比q = (A )3 (B )4 (C )5 (D )6 9.(文)设{}n a 是等比数列,则“123a a a <<”是数列{}n a 是递增数列的 (A )充分而不必要条件 (B)必要而不充分条件、 (C )充分必要条件 (D )既不充分也不必要条件 (理)设{}n a 是首项大于零的等比数列,则“12 a a <”是“数列{}n a 是递增数列”的 (A )充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不充分也不必要条件 10.已知{ n a }是首项为1的等比数列,n S 是{n a }的前n 项和,且36 9S S =。则数列 n 1a ?? ?? ??的前5项和为 (A )158或5 (B )3116或5 (C )3116 (D )15 8 11.设n S 为等比数列{}n a 的前n 项和,2580a a +=,则5 2S S = (A )11 (B )5 (C )8- (D )11- 12.设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为,,X Y Z ,则下列等式中恒成立的是

最新整理初一数学教案七年级数学上规律探究——数列与循环专题复习讲义(浙教版).docx

最新整理初一数学教案七年级数学上规律探究——数列与循环专题复习讲义(浙教版) 专题:规律探究 重难点易错点解析 例题1 (1)已知一列数:1,4,7,10,13,16,…则该列数中第n个数与第n1个数的差是,这列数中第n个数是;(用含有n的代数式表示) (2)古希腊数学家把1,3,6,10,15,…叫做三角形数,则第16个三角形数与第15个三角形数的差是,第n个三角形数与第n1个三角形数的差是; (3)已知一组数:1,2,3,4,5,6,…则这组数中,第n个数是. 数列的规律 例题2 观察下面算式,用你所发现的规律得出32014的末位数字是. ,,,,… 循环中的规律 金题精讲 题一 QQ空间等级是用户资料和身份的象征,按照空间积分划分不同的等级.当用户在10级以上,每个等级与对应的积分有一定的关系.现在知道第10级的积分是90,第11级的积分是160,第12级的积分是250,第13级的积分是360,第14级的积分是490,…若某用户的空间积分为1000,则他的等级是第级,该

用户若要升入下一级,还需积分. 数列的规律 题二 下图是某年11月的日历,并且在日历中用一个长方形方框圈出任意的3×3个数.请根据图示,回答下列问题: (1)如果3×3的方框中,左下角与右上角“对角线”上的3个数字的和为42,这9个数的和为多少?这9个日期中最后一天是几号? (2)在这个月的日历中,能否用方框圈出总和为108的9个数?如果能,请求出这9个日期中的最大值;若不能,请推测下个月的日历中,能否用方框圈出,并推测圈出的9个日期中最后一天是周几. 日历中的数列与循环问题 题三 如图所示,电子跳蚤跳一步,可以从一个圆圈跳到相邻的圆圈,现有一只红跳蚤从标有“0”的圆圈开始按顺时针方向跳2050步,落在一个圆圈内;另一只黑跳蚤也从标有“0”的圆圈开始按逆时针方向跳2000步落在一个圆圈内,则这两个圆圈中两数的乘积是_________. 循环中的规律 题四 定义:a是不为1的有理数,我们把称为a的差倒数,如:2的差倒数是.已知,,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,……以此类推,a2014=. 循环中的规律 思维拓展

专题二数列综合问题

专题二 数列综合问题 一、引言 数列综合问题包括数列章内知识的综合、数列与其他知识的综合两部分. 数列章内知识的综合主要涉及一般数列的通项与前n 项和的关系、等差数列和等比数列综合问题;数列与其他知识的综合主要指数列与函数、不等式等知识的交汇问题.考试大纲对这一部分的考试要求是,能运用数列、等差数列和等比数列的有关知识求解数列章内知识的综合问题,能综合运用数列、函数、方程和不等式的知识灵活地解决数列与其他章节知识的交汇问题. 数列综合问题,历来是高考的重点,两类数列与函数、方程、不等式的交汇问题历来是高考的热点,并且选择题、填空题、解答题三种题型都有可能涉及.这类试题一般较为灵活,尤其是解答题,常常承担把关的任务,因此往往具有一定的难度. 二、典型问题选讲 例1设4710310()22222()n f n n N +=+++++∈,则()f n 等于( ). A.2(81)7 n - B.1 2(81)7 n +- C.3 2(81)7 n +- D.4 2(81)7 n +- 例2已知等比数列{}n a 中21a =,则其前3项的和3S 的取值范围是( ). A .(1]-∞-, B .(0)(1)-∞+∞, , C .[3)+∞, D .(1][3)-∞-+∞, , 例3已知数列{}n a 满足:434121,0,,,n n n n a a a a n *--===∈ N 则2009a =___________;2014a =______________. 例4 已知数列{}n a 满足11a =,1212(1)(2)n n a a a n a n -=++ +-≥,则{}n a 的通项公式 __________________n a =. 分 例5等差数列{}n a 的前n 项和为1319n S a S ==+, (1)求数列{}n a 的通项n a 与前n 项和n S ; (2)设()n n S b n n *= ∈N ,求证:数列{}n b 中任意不同的三项都不可能成为等比数列. 成等比数列. 例6(2006湖北)设数列{}n a 的前n 项和为n S ,点(,)()n S n n N n *∈均在函数32y x =-的图象上. (1)求数列{}n a 的通项公式; (2)设1 3+=n n n a a b ,n T 是数列{}n b 的前n 项和,求使得20n m T <对所有n N * ∈都成立的最小 正整数m .

高考数列专题总结(全是精华)

数列专题复习(0929) 一、证明等差等比数列 1. 等差数列的证明方法: (1)定义法:1n n a a d +-=(常数) (2)等差中项法:112(2)n n n a a a n +-+=≥ 2.等比数列的证明方法: (1)定义法: 1 n n a q a +=(常数) (2)等比中项法:211(2)n n n a a a n +-=≥ 例1.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75, T n 为数列{ n S n }的前n 项和,求T n . 解:设等差数列{a n }的公差为d ,则 S n =na 1+21 n (n -1)d .∴S 7=7,S 15=75,∴???=+=+,7510515,721711d a d a 即???=+=+,57,131 1d a d a 解得a 1=-2,d =1.∴ n S n =a 1+21(n -1)d =-2+21 (n -1). ∵ 2111=-++n S n S n n ,∴数列{n S n }是等差数列,其首项为-2,公差为21 , ∴T n = 41n 2-4 9 n . 例2.设数列{a n }的首项a 1=1,前n 项和S n 满足关系式: 3tS n -(2t +3)S n -1=3t (t >0,n =2,3,4,…) 求证:数列{a n }是等比数列; 解:(1)由a 1=S 1=1,S 2=1+a 2,得a 2=t t a a t t 323,32312+= + 又3tS n -(2t +3)S n -1=3t ① 3tS n -1-(2t +3)S n -2=3t ② ①-②得3ta n -(2t +3)a n -1=0 ∴ t t a a n n 33 21+= -,(n =2,3,…) 所以{a n }是一个首项为1,公比为t t 33 2+的等比数列. 练习:已知a 1=2,点(a n ,a n+1)在函数f (x )=x 2+2x 的图象上,其中=1,2,3,… (1) 证明数列{lg(1+a n )}是等比数列; (2) 设T n =(1+a 1) (1+a 2) …(1+a n ),求T n 及数列{a n }的通项; 答案 .(2) 2 1 3n n T -=,2 1 31n n a -=-; 二.通项的求法 (1)利用等差等比的通项公式 (2)累加法:1()n n a a f n +-= 例3.已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 。 解:由条件知:1 1 1)1(112 1+-=+=+= -+n n n n n n a a n n 分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累加之,即 )()()()(1342312--+??????+-+-+-n n a a a a a a a a )111()4131()3121()211(n n --+??????+-+-+-=所以n a a n 1 11-=- 211=a ,n n a n 1231121-=-+=∴ (3)构造等差或等比 1n n a pa q +=+或1()n n a pa f n +=+ 例4.已知数列{}n a 满足*111,21().n n a a a n N +==+∈ 求数列{}n a 的通项公式; 解:* 121(),n n a a n N +=+∈ 112(1),n n a a +∴+=+ {}1n a ∴+是以112a +=为首项,2为公比的等比数列。 12.n n a ∴+= 即 *21().n n a n N =-∈ 例5.已知数列{}n a 中,11a =,1111 ()22 n n n a a ++=+,求n a . 解:在1111 ()22 n n n a a ++= +两边乘以12+n 得:112(2)1n n n n a a ++?=?+ 令2n n n b a =?,则11n n b b +-=,解之得:111n b b n n =+-=-,所以1 22 n n n n b n a -= =.

数列专题复习教案设计

年级 数学 科辅导讲义(第 讲) 学生 授课教师: 授课时间: 数列专题复习 题型一:等差、等比数列的基本运算 例1、已知数列}{n a 是等比数列,且4622a a a =,则=53a a ( ) A .1 B .2 C .4 D .8 例2、在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11= ( ) A.58 B.88 C.143 D.176 变式 1、等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为 ( ) A.1 B.2 C.3 D.4

2、若等比数列{}n a 满足2412 a a = ,则2 135a a a = . 3、已知{}n a 为等差数列,且13248,12,a a a a +=+=(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)记{}n a 的前n 项和为n S ,若12,,k k a a S +成等比数列,求正整数k 的值。 题型二:求数列的通项公式 ⑴.已知关系式)(1n f a a n n +=+,可利用迭加法(累加法) 例1:已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式; 变式 已知数列{}n a 满足122a =,12n n a a n +-=,求数列{}n a 的通项公式. (2).已知关系式)(1n f a a n n ?=+,可利用迭乘法(累积法) 例2、已知数列{}n a 满足:111 (2),21 n n a n n a a n --=≥=+,求求数列{}n a 的通项公式; 变式 已知数列{}n a 满足n n a n a 2 1=+,11=a ,求数列{}n a 的通项公式。

数学专题讲义---数列(完整资料)

一. 等差、等比数列的基本理论 ⑴等差、等比数列: ⑵判定一个数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数). ⑶判定一个数列是不是等比数列有以下三种方法: ①1(2,)n n a a q n q -=≥为非零常数 ②112-+?=n n n a a a (2≥n ,011≠-+n n n a a a ) ③n n cq a =(q c ,为非零常数). ⑷数列{n a }的前n 项和n S 与其通项n a 之间的关系:???≥-===-)2()1(111n s s n a s a n n n 例1. 在等差数列{}n a 中,972S =。求249?a a a ++= 解:法一:因为9119(91)9936722 S a d a d -=+=+=

所以148a d += 249113123(4)3824a a a a d a d ∴++=+=+=?= 法二:因为91289...72S a a a a =++++= 而19285...2a a a a a +=+== 所以 5972a = 58a ∴= 249533824a a a a ∴++==?= 例2. 在等比数列{}n a 中,11a =,634S S =。求4?a = 解:因为634S S = 所以公比1q ≠(事实上,若1q =,则6166S a ==,3133S a ==此时显然不满足题设条件634S S =) 于是有 6311(1)(1)411a q a q q q --=-- 6314(1)q q ?-=- 又6331(1)(1)q q q -=+- 314q ∴+= 33q ∴= 341133a a q ∴==?= 例3. 在等差数列{}n a 中,535a a =。求95 ?S S = 解:法一:19551513319(91)999(4)992595(51)5(2)555 52a d S a a a d S a d a a a d -+ +====?=?=-++ 法二:因为95539,5S a S a == 所以95553399959555 S a a S a a ==?=?= 例4. 设数列{}n a 满足11a =,12n n a a +=, n *∈N 。求5?a =,8?S = 解:因为12n n a a +=

高二数学数列专题练习题含答案)

高中数学《数列》专题练习 1.n S 与n a 的关系:1 1(1)(1) n n n S n a S S n -=??=? ->?? ,已知n S 求n a ,应分1=n 时1a =1S ; 2≥n 时,n a =1--n n S S 两步,最后考虑1a 是否满足后面的n a . 2.等差等比数列

3.数列通项公式求法:(1)定义法(利用等差、等比数列的定义);(2)累加法;(3)累乘法( n n n c a a =+1 型);(4)利用公式1 1(1)(1) n n n S n a S S n -=??=?->??;(5)构造法(b ka a n n +=+1型);(6)倒数法等 4.数列求和 (1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。 5. n S 的最值问题:在等差数列{}n a 中,有关n S 的最值问题——常用邻项变号法求解: (1)当0,01<>d a 时,满足?? ?≤≥+001 m m a a 的项数m 使得m S 取最大值. (2)当 0,01>

(完整版)高中数学数列专题练习(精编版)

高中数学数列专题练习(精编版) 1. 已知数列{}()n a n N * ∈是等比数列,且1 3 0,2,8.n a a a >== (1)求数列{}n a 的通项公式; (2)求证: 11111321<++++n a a a a Λ; (3)设1log 22+=n n a b ,求数列{}n b 的前100项和. 2.数列(1)(2)设 (3) n T 3. ? 4 .已知数列{}n a 的相邻两项1,+n n a a 是关于x 的方程022=+-n n b x x ∈n (N )*的两根,且

11=a . (1) 求证: 数列? ?? ????-n n a 231是等比数列; (2) 求数列{}n b 的前n 项和n S . 5. 6. 划,万元,(1)b n 的表达式; (2) 7. 在等比数列{a n }(n ∈N*)中,已知a 1>1,q >0.设b n =log 2a n ,且b 1+b 3+b 5=6,b 1b 3b 5=0. (1)求数列{a n }、{b n }的通项公式a n 、b n ; (2)若数列{b n }的前n 项和为S n ,试比较S n 与a n 的大小.

8. 已知数列{a n }的前n 项和为S n ,且a n 是S n 与2的等差中项,数列{b n }中,b 1=1, 点P (b n ,b n+1)在直线x -y +2=0上。 (1)求a 1和a 2的值; (2)求数列{a n },{b n }的通项a n 和b n ; (3)设c n =a n ·b n ,求数列{c n }的前n 项和T n 。 9. 已知119 4-且 13n n b b -- 10. 已知等差数列{}a n 的前9项和为153. (1)求5a ; (2)若,82=a ,从数列{}a n 中,依次取出第二项、第四项、第八项,……,第2n 项,按原来的顺序组成一个新的数列{}c n ,求数列{}c n 的前n 项和S n .

高中数学讲义微专题55 数列中的不等关系

第55炼 数列中的不等关系 一、基础知识: 1、在数列中涉及到的不等关系通常与数列的最值有关,而要求的数列中的最值项,要依靠数列的单调性,所以判断数列的单调性往往是此类问题的入手点 2、如何判断数列的单调性: (1)函数角度:从通项公式入手,将其视为关于n 的函数,然后通过函数的单调性来判断数列的单调性。由于n N * ∈ ,所以如果需要用到导数,首先要构造一个与通项公式形式相同,但定义域为()0,+∞ 的函数,得到函数的单调性后再结合n N * ∈得到数列的单调性 (2)相邻项比较:在通项公式不便于直接分析单调性时,可考虑进行相邻项的比较得出数列的单调性,通常的手段就是作差(与0比较,从而转化为判断符号问题)或作商(与1比较,但要求是正项数列) 3、用数列的眼光去看待有特征的一列数:在解数列题目时,不要狭隘的认为只有题目中的 {}{},n n a b 是数列,实质上只要是有规律的一排数,都可以视为数列,都可以运用数列的知识 来进行处理。比如:含n 的表达式就可以看作是一个数列的通项公式;某数列的前n 项和n S 也可看做数列{}12:,,,n n S S S S L 等等。 4、对于某数列的前n 项和{}12:,,,n n S S S S L ,在判断其单调性时可以考虑从解析式出发,用函数的观点解决。也可以考虑相邻项比较。在相邻项比较的过程中可发现:1n n n a S S -=-,所以{}n S 的增减由所加项n a 的符号确定。进而把问题转化成为判断n a 的符号问题 二、典型例题 例1:已知数列{}1,1n a a =,前n 项和n S 满足()130n n nS n S +-+= (1)求{}n a 的通项公式 (2)设2n n n n c a λ?? =- ??? ,若数列{}n c 是单调递减数列,求实数λ的取值范围 解:(1)()113 30n n n n S n nS n S S n +++-+=? =

数列专题讲义二

第2讲 数列求和及数列的简单应用 典型真题: 1.[2019·浙江卷] 设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列. (1)求数列{a n },{b n }的通项公式; (2)记c n =√ a n 2 b n ,n ∈N *,证明:c 1+c 2+…+c n <2√n ,n ∈N *. 2.[2019·天津卷] 设{a n }是等差数列,{b n }是等比数列,已知 a 1=4, b 1=6,b 2=2a 2-2,b 3=2a 3+4. (1)求{a n }和{b n }的通项公式. (2)设数列{c n }满足c 1=1,c n ={1,2k 1,且 a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{ b n }满足b 1=1,数列 {(b n+1-b n )a n }的前n 项和为2n 2+n. (1)求q 的值; (2)求数列{b n }的通项公式. 策略 解决数列解答题 1.解决已知某几个基本量求等差、等比数列的通项公式和前n 项和的问题:

关键一:通过列方程(组)求关键量a1和d(或q). 关键二:利用通项公式和前n项和公式求解. 2.解决数列的递推问题: 关键一:利用a n={S1,n=1, 得出关于a n与a n+1(或a n-1)的递推式. S n-S n-1,n≥2, 关键二:观察递推式的形式,采用不同方法求a n. 3.解决数列求和问题 关键一:利用等差数列、等比数列的前n项和公式. 关键二:利用分组求和法、错位相减法、裂项相消法. 4.(1)等差数列的判断方法:定义法、等差中项法、利用通项公式判断、利用前n项和公式判断. (2)等比数列的判断方法: =q(q是常数且q≠0),则数列{a n}是等比数列. (a)定义法:若a n+1 a n (b)等比中项法:若a n+1 2=a n a n+2(n∈N*),则数列{a n}是等比数列. (c)通项公式法:若a n=pq n(p,q为常数且p,q≠0),则数列{a n}是等比数列. 5.解决关于数列的不等式证明问题常用放缩法,解决数列的最值问题常用基本不等式法. 解答1等差、等比数列基本量的计算 1 已知{a n}是递增的等比数列,a5=48,4a2,3a3,2a4成等差数列. (1)求数列{a n}的通项公式; (2)设数列{b n}满足b1=a2,b n+1=b n+a n,求数列{b n}的前n项和S n.

(完整word版)高三专题数列试题及答案,推荐文档

数列小测 一、选择题 1、已知等比数列{}n a 的各项均为正数,前n 项之积为n T ,若5T =1,则必有( ) A .1a =1 B .3a =1 C .4a =1 D .5a =1 2、已知数列{}n a 的前n 项和22+?=n n p S ,{}n a 是等比数列的充要条件是( ) A.1=p B 2=p C.1-=p D.2-=p 3、已知等差数列{}n a 的公差为2-,且245,,a a a 成等比数列,则2a 等于( ) A 、-4 B 、-6 C 、-8 D 、8 4、记等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则10 5 S S 等于( ) A. - 3 B ·5 C 一31 D. 33 5、在等差数列}{n a 中,69327a a a -=+,n S 表示数列}{n a 的前n 项和,则=11S A .18 B .99 C .198 D .297 二、填空题 6、已知数列{a n }的前n 项和为S n ,对任意n ∈N*都有n n 21 S =a 33 -,且1

2017高考模拟卷----数列专题一

2017全国模拟卷解析(数列汇总) 一、选择题 1、(徽.文)《九章算术》有这样一个问题:今有织女善织,日増等尺。七日织二十一尺,第二日、第五日、第八日所织之和为一十五尺,问第十日所织尺数为(D ) A 、6 B 、9 C 、12 D 、15 2、(广东.理)等比数列 {}n a 的前n 项和为n s ,若032=+s a ,则公比q=(A ) A 、-1 B 、1 C 、-2 D 、2 3、已知数列 {}n a 满足01 =a ,且1121+++=+n n n a a a ,则13a =(C ) A 、142 B 、156 C 、168 D 、195 (贵州.理) 解 析 : 由 1 121+++=+n n n a a a 可得 2 1)11(1++=++n n a a , 1111++=++n n a a ,且01=a 。 {}1+n a 是以1为首项公差为1的等差数列,求 得12-=n a n ,16813=a 4、在正项等比数列 {}n a 中,存在两项m a 、n a 使得 14a a a n m =,且 4562a a a +=,则 n m 4 1+的最小值是(A ) (贵州.文) A 、3/2 B 、2 C 、7/3 D 、25/6 解析:由4562a a a +=得44242a q a q a +=,解得q=2或q=-1(舍去),14a a a n m = 得4222=-+n m ,即m+n=6, 16 6=+n m 成立;所以 2 366426566465664141=?+≥++=??? ??+??? ??+=+m n n m m n n m n m n m n m 5、(河北.文)已知等差数列{}n a 的前n 项和为n s ,且201 -=a 。在区间(3,5) 内任取一个数作为数列 {}n a 的公差,则n s 的最小值为6s 的概率为( D )

第二章 数列 专题突破二 数列的单调性和最大(小)项

专题突破二 数列的单调性和最大(小)项 一、数列的单调性 (1)定义:若数列{a n }满足:对一切正整数n ,都有a n +1>a n (或a n +1<a n ),则称数列{a n }为递增数列(或递减数列). (2)判断单调性的方法 ①转化为函数,借助函数的单调性,如基本初等函数的单调性等,研究数列的单调性. ②利用定义判断:作差比较法,即作差比较a n +1与a n 的大小;作商比较法,即作商比较a n +1与a n 的大小,从而判断出数列{a n }的单调性. 例1 已知函数f (x )=1-2x x +1(x ≥1),构造数列a n =f (n )(n ∈N *).试判断数列的单调性. 解 f (x )=1-2x x +1=-2+3 x +1. 方法一 ∵a n =-2+ 3 n +1(n ∈N *),a n +1=-2+3 n +2, ∴a n +1-a n =3n +2-3 n +1=3(n +1-n -2)(n +1)(n +2) = -3 (n +1)(n +2) <0. ∴a n +1<a n . ∴数列{a n }是递减数列. 方法二 设x 1>x 2≥1,则 f (x 1)-f (x 2)=? ????-2+3x 1+1-? ?? ?? -2+3x 2+1 = 3 x 1+1-3 x 2+1 = 3(x 2-x 1)(x 1+1)(x 2+1), ∵x 1>x 2≥1,∴x 1+1>0,x 2+1>0,x 2-x 1<0, ∴f (x 1)-f (x 2)<0,

即f (x 1)<f (x 2), ∴f (x )在[1,+∞)上为减函数, ∴a n =f (n )为递减数列. 反思感悟 研究数列的单调性和最大(小)项,首选作差,其次可以考虑借助函数单调性.之所以首选作差,是因为研究数列的单调性和研究函数单调性不一样,函数单调性要设任意x 1

高中数学讲义微专题52 证明等差等比数列

微专题52 等差等比数列的证明 在数列的解答题中,有时第一问会要求证明某个数列是等差等比数列,既考察了学生证明数列的能力,同时也为后面的问题做好铺垫。 一、基础知识: 1、如何判断一个数列是等差(或等比)数列 (1)定义法(递推公式):1n n a a d +-=(等差), 1 n n a q a +=(等比) (2)通项公式:n a kn m =+(等差),()0n n a k q q =?≠(等比) (3)前n 项和:2n S An Bn =+(等差),n n S kq k =-(等比) (4)等差(等比)中项:数列从第二项开始,每一项均为前后两项的等差(等比)中项 2、如何证明一个数列是等差等比数列: (1)通常利用定义法,寻找到公差(公比) (2)也可利用等差等比中项来进行证明,即n N * ?∈,均有: 122n n n a a a ++=+ (等差) 2 12n n n a a a ++=? (等比) 二、典型例题: 例1:已知数列{}n a 的首项1133,,521 n n n a a a n N a *+= =∈+. 求证:数列11n a ?? -? ??? 为等比数列 思路一:构造法,按照所给的形式对已知递推公式进行构造,观察发现所证的数列存在 1n a 这样的倒数,所以考虑递推公式两边同取倒数:113121 213n n n n n n a a a a a a +++= ?=+ 即 112133n n a a +=+,在考虑构造“1-”:112111 111333n n n a a a +??-=+-=- ??? 即数列11n a ??-? ??? 是公比为1 3的等比数列 思路二:代入法:将所证数列视为一个整体,用n b 表示:1 1n n b a = -,则只需证明{}n b 是等比数列即可,那么需要关于n b 的条件(首项,递推公式),所以用n b 将n a 表示出来,并代换

相关文档
最新文档