Genetic Variations and Gene Effect Controlling Grain Yield and Some of Its Components in Maize

合集下载

ngs研发流程

ngs研发流程

ngs研发流程The NGS development process is a critical component of modern research and clinical applications. NGS研发流程是现代研究和临床应用的重要组成部分。

It involves a series of steps and considerations to ensure accurate and reliable results. 它涉及一系列步骤和考虑,以确保准确可靠的结果。

From sample preparation to data analysis, each stage of the process plays a crucial role in determining the outcome. 从样本制备到数据分析,流程的每个阶段在决定结果方面都起着至关重要的作用。

One of the initial stages of the NGS development process is the selection and preparation of the biological samples. NGS研发流程的初始阶段之一是选择和准备生物样本。

This step is essential in ensuring the quality and integrity of the genetic material being studied. 这一步骤对于确保所研究的基因物质的质量和完整性至关重要。

Careful attention must be paid to factors such as sample storage, extraction methods, and handling procedures to avoid contamination or degradation. 必须仔细注意样本存储、提取方法和处理程序等因素,以避免污染或降解。

变异研究报告英文翻译

变异研究报告英文翻译

变异研究报告英文翻译Study on Genetic MutationIntroduction:Genetic mutations are alterations in the DNA sequence that can lead to changes in the structure and function of proteins, thereby affecting the phenotype of an organism. Understanding the nature and consequences of genetic mutations is crucial in various fields, including medicine, evolutionary biology, and genetic engineering. This report aims to provide an overview of the research conducted on genetic mutations, including their causes, types, and implications.Causes of Genetic Mutations:Genetic mutations can occur due to various factors, both internal and external. Internal factors include errors in DNA replication and repair mechanisms, while external factors can encompass exposure to environmental agents such as radiation, certain chemicals, and viruses. Other causes can be stress, certain diseases, and genetic predisposition.Types of Genetic Mutations:Genetic mutations can be categorized into various types based on their effects on the DNA sequence. Point mutations involve the substitution, insertion, or deletion of a single nucleotide, resulting in a single base pair alteration. Frameshift mutations occur when the addition or deletion of nucleotides causes the reading frame ofthe DNA sequence to shift, leading to a completely different amino acid sequence during protein synthesis. Chromosomal mutations involve structural changes in chromosomes, including deletions, duplications, inversions, and translocations.Implications of Genetic Mutations:Genetic mutations can have significant implications for organisms. Some mutations can be neutral, not affecting the phenotype or overall fitness of an individual. However, mutations can also be deleterious, leading to genetic disorders and diseases. Examples include cystic fibrosis, sickle cell anemia, and certain types of cancer. On the other hand, some mutations can be beneficial, providing an advantage to an organism in certain environments. These advantageous mutations can drive evolution and adaptation.Importance of Genetic Mutation Research:Research on genetic mutations is essential for several reasons. First, it enables scientists to understand the fundamental mechanisms of DNA replication, repair, and gene expression. This knowledge contributes to developing diagnostic tools and treatment strategies for genetic disorders. Additionally, studying genetic mutations aids in tracing evolutionary relationships among species, as well as identifying genetic variations associated with disease susceptibility, drug response, and personalized medicine. Furthermore, genetic mutation research is integral to advance genetic engineering techniques, such as gene editing and gene therapy.Conclusion:Genetic mutations are critical components of biological systems, driving evolution, and influencing human health. Understanding the causes, types, and implications of genetic mutations is an ongoing research endeavor that contributes to various scientific disciplines. Continued investigation in this field will provide invaluable insights into genetics and pave the way for innovative solutions in medicine, agriculture, and other areas where genetic manipulation is essential.。

GWAS原理和流程全基因组关联分析Linkagedisequilibrium(LD)连锁不。。。

GWAS原理和流程全基因组关联分析Linkagedisequilibrium(LD)连锁不。。。

GWAS原理和流程全基因组关联分析Linkagedisequilibrium(LD)连锁不。

GWAS⼊门必看教程:名词解释和基本问题:关联分析:就是AS的中⽂,全称是GWAS。

应⽤基因组中数以百万计的单核苷酸多态;SNP为分⼦遗传标记,进⾏全基因组⽔平上的对照分析或相关性分析,通过⽐较发现影响复杂性状的基因变异的⼀种新策略。

在全基因组范围内选择遗传变异进⾏基因分析,⽐较异常和对照组之间每个遗传变异及其频率的差异,统计分析每个变异与⽬标性状之间的关联性⼤⼩,选出最相关的遗传变异进⾏验证,并根据验证结果最终确认其与⽬标性状之间的相关性。

连锁不平衡:LD,P(AB)= P(A)*P(B)。

不连锁就独⽴,如果不存在连锁不平衡——相互独⽴,随机组合,实际观察到的群体中单倍体基因型 A和B 同时出现的概率。

P (AB) = D + P (A) * P (B) 。

D是表⽰两位点间LD程度值。

曼哈顿图:在⽣物和统计学上,做频率统计、突变分布、GWAS关联分析的时候,我们经常会看到⼀些⾮常漂亮的manhattan plot,能够对候选位点的分布和数值⼀⽬了然。

位点坐标和pvalue。

map⽂件⾄少包含三列——染⾊体号,SNP名字,SNP物理位置。

assoc⽂件包含SNP名字和pvalue。

haploview即可画出。

SNP的本质属性是什么?⼴义上讲是变异:most common type of genetic variation,平级的还有indel、CNV、SV。

Each SNP represents a difference in a single DNA building block, called a nucleotide. 狭义上讲是标记:biological markers,因为SNP是单碱基的,所以SNP⼜是⼀个位点,标记了染⾊体上的⼀个位置。

⼤部分⼈的基因组,99%都是⼀模⼀样的,还有些SNP的位点,就是⼀些可变的位点,在⼈群中有差异。

生物英语-

生物英语-

生物英语Biological Science is the study of living organisms and their interactions with each other and the environment. It is a diverse field that encompasses everything from the study of tiny microorganisms to large-scale ecosystems. This article will provide an overview of some of the key areas of Biological Science.1. GeneticsGenetics is the study of genes, how they are inherited, and how they influence the characteristics of organisms. DNA (deoxyribonucleic acid) is the molecule that carries genetic information. Genetic mutations and variations can lead to genetic disorders or differences in physical traits among individuals.2. EvolutionEvolution is the process by which species change over time through natural selection. This happens because some individuals within a species have characteristics that make them better suited to survive and reproduce in their environment than others. Over time, these advantageous characteristics become more common within the population, and new species can emerge.3. EcologyEcology is the study of how organisms interact with their environment, including other organisms, abiotic factors (non-living things like water andtemperature), and biotic factors (living things like predators and prey). Ecologists study how populations of organisms change over time and how they interact with each other and their environment.4. BotanyBotany is the study of plants, including their structure, functions, ecology, and evolution. Botanists study everything from the smallest cells and molecules to entire ecosystems, focusing on both wild and cultivated plants.5. ZoologyZoology is the study of animals, including their behavior, physiology, genetics, and evolution. Zoologists investigate everything from the smallest microorganisms to the largest mammals, covering everything in between.6. MicrobiologyMicrobiology is the study of microorganisms, including bacteria, viruses, fungi, and other microscopic organisms. Microbiologists study everything from the basic biology of these organisms to their roles in human health and disease.7. PhysiologyPhysiology is the study of how organisms function, including everything from the functions of individual cells to the complex systems of the human body. Physiologists investigate how organisms use energy, how they maintainhomeostasis (a steady internal environment), and how different organs and systems work together.8. BiochemistryBiochemistry is the study of the chemical processes that occur within living organisms, including the synthesis and breakdown of molecules like proteins, carbohydrates, and lipids. Biochemists investigate everything from basic metabolic pathways to the molecular mechanisms that control gene expression.9. BiotechnologyBiotechnology is the application of biological knowledge and techniques to the development of useful products and technologies. Biotechnologists use genetic engineering, cell culture, and other techniques to develop new drugs, crops, and other products that benefit society.In conclusion, Biological Science is a diverse and fascinating field that covers everything from the smallest microbes to entire ecosystems. The key areas covered in this article are just a small sample of the many subfields within Biological Science. As our understanding of living organisms and the biological world around us continues to grow, so too will the scope of Biological Science.。

测序 英文医学单词

测序 英文医学单词

测序英文医学单词Title: The Essentials of Sequencing in Medical Sciences.Sequencing, a fundamental component of modern medical research, refers to the determination of the order of nucleotides in a DNA or RNA molecule. This process, often referred to as DNA sequencing, is crucial in various fields of medicine, including genetics, oncology, and infectious disease research. In this article, we delve into the significance of sequencing in medical sciences, its applications, and the latest advancements in this field.The Basics of Sequencing.DNA sequencing involves the analysis of the four nitrogenous bases adenine (A), thymine (T), cytosine (C), and guanine (G) that compose the genetic material of organisms. The order of these bases determines the genetic information encoded within DNA. Sequencing technologieshave evolved significantly over the years, from the earlySanger sequencing method to the modern high-throughput sequencing (HTS) platforms.Applications of Sequencing in Medicine.1. Genetics and Genomics: Sequencing has revolutionized the field of genetics by enabling the identification of genetic variations and diseases caused by mutations. It has been instrumental in the discovery of single-gene disorders, genome-wide association studies (GWAS), and personalized medicine.2. Oncology: Cancer genomics is a rapidly growing field that leverages sequencing technologies to understand the genetic basis of cancer. This information is crucial for developing targeted therapies and personalized treatment plans for cancer patients.3. Infectious Diseases: Sequencing has been key in monitoring the spread and evolution of infectious diseases, such as the COVID-19 pandemic. By analyzing the genomes of pathogens, researchers can track their origin, identifymutations that affect virulence, and develop more effective vaccines and therapeutics.Advancements in Sequencing Technologies.1. Next-Generation Sequencing (NGS): NGS platforms have significantly increased the speed and throughput of sequencing, enabling the analysis of entire genomes in a matter of days or hours. This technology has greatly accelerated research in various medical fields.2. Single-Cell Sequencing: This emerging technology allows researchers to sequence the genomes or transcriptomes of individual cells, providing into insights cellular heterogeneity and complex diseases.3. Long-Read Sequencing: Traditional sequencing methods often produce short reads, limiting the ability to analyze large genomic regions. Long-read sequencing technologies, such as PacBio and Oxford Nanopore, can generate reads several kilobases long, enabling the accurate assembly of complex genomes and the identification of structuralvariations.Challenges and Future Directions.Despite the remarkable progress in sequencing technologies, several challenges remain. Data analysis and interpretation can be complex and require specialized bioinformatics expertise. Additionally, ethical and privacy concerns arise when dealing with personal genetic information.Future directions in sequencing include the further improvement of technology to increase accuracy, reduce costs, and enable sequencing in real-time. There is also a need for more robust data analysis tools and methods to extract meaningful insights from the vast amounts of genetic data generated.In conclusion, sequencing has emerged as a crucial tool in medical sciences, enabling the decoding of life's genetic blueprint. Its applications range from basic research to clinical diagnostics and personalized medicine.With continuous technological advancements, sequencing will play an increasingly important role in medicine, leading to better understanding of human health and disease.。

关于遗传基因检测中基因变异临床意义分级的建议

关于遗传基因检测中基因变异临床意义分级的建议
天津医药 2021 年 6 月第 49 卷第 6 期
561
建议与共识
关于遗传基因检测中基因变异临床意义分级的建议
天津市医学会医学遗传学分会,天津市医学会遗传咨询分会
摘要:目前基因检测报告主要对基因变异的致病性及临床含义进行描述,实验室人员撰写报告时往往把焦点放 在变异本身的性质,而临床医生的关注点主要在案例的临床情况。这种关注点的差异时常造成临床医生对检测报 告的误解。本建议提出基因变异的临床分级方案,即在基因检测报告中不仅应对基因变异的致病性进行分类,还应 增加临床意义的分级。推荐将基因变异的临床指导意义分为 5 个级别:具有明确的临床指导意义、具有潜在的临床 指导意义、临床指导意义不明确、具有意外发现的临床指导意义和没有明显的临床指导意义。本方案强调了临床表 型的准确性、全面性,以及实验室-临床沟通的重要性,并且提倡表型描述的标准化,这将有助于临床医生与实验室 人员之间的相互理解,有利于基因检测报告的解读和遗传咨询。
基金项目:国家重点研发计划项目(2017YFC1001900,2020YFC2008100);国家自然科学基金资助项目(81771589);京津冀专项项目 (19JCZDJC65400);天津市卫生行业重点攻关项目(16KG166);天津市重大疾病防治科技重大专项(18ZXDBSY00170,18ZXDBSY00230);天津 市卫生健康科技项目(ZC20120,KJ20166)
在完成了基因检测之后,还可以根据基因检测 报告所提示的疑似诊断再次进行表型采集,以便发 现较为次要的表型,进一步确认或者排除诊断。尤 其是针对携带可疑基因变异的家庭成员,也应尽量 采集其表型,帮助对基因型-表型之间的相关性进行 评估及确认。 1.2 辅助进行表型描述以及查询的数据库和网站 1.2.1 人 类 表 型 标 准 用 语 联 盟(Human Phenotype Ontology,HPO)和 中 文 人 类 表 型 标 准 用 语 联 盟 (CHPO)表型标准化数据库 随着对人类疾病研究 的逐渐深入,科研工作者们越来越意识到临床表型 数据的重要性,对基因型与表型数据进行联合分析 成为众多疾病研究的一个方向。HPO 旨在提供人类 疾病中用于描述表型异常的标准词汇,目前包含约 11 000 个名词和超过 115 000 条关于遗传性疾病的 注 释 ,还 提 供 了 一 套 针 对 约 4 000 种 疾 病 的 注 释

Genetic Variation in Plant Species

Genetic Variation in Plant Species Genetic variation in plant species is a crucial aspect of their survival and adaptation to changing environments. It refers to the diversity of genes andalleles within a population, which allows plants to respond to environmental changes, resist diseases, and adapt to new conditions. This genetic variation is the result of mutation, genetic recombination, and gene flow, and it plays a significant role in the evolution and conservation of plant species. In this essay, we will explore the importance of genetic variation in plant species from multiple perspectives, including its ecological, agricultural, and conservation implications. From an ecological perspective, genetic variation in plant speciesis essential for their long-term survival and resilience in the face of environmental changes. In a changing climate, plants with a wide range of genetic variation are more likely to have individuals that are better adapted to new conditions. This allows the population to survive and thrive, maintaining the balance of ecosystems. For example, in a population of wildflowers, genetic variation can provide some individuals with traits that make them more resistantto drought, while others may be more resistant to pests or diseases. Thisdiversity ensures that the population as a whole is more likely to survive and reproduce, maintaining the overall health and stability of the ecosystem. Furthermore, genetic variation in plant species is crucial for agricultural practices, as it provides the raw material for breeding programs to develop new crop varieties. Plant breeders rely on genetic variation to introduce new traits into crops, such as disease resistance, improved yield, and tolerance to environmental stresses. Without genetic variation, there would be limitedpotential for breeding programs to develop new varieties that can adapt to changing environmental conditions and meet the needs of a growing global population. For example, the Green Revolution of the 1960s and 1970s, which significantly increased agricultural production worldwide, was largely based onthe development of high-yielding crop varieties through the introduction ofgenetic variation. In addition to its ecological and agricultural significance, genetic variation in plant species is also crucial for the conservation of biodiversity. Many plant species are facing threats such as habitat loss, climatechange, and invasive species, which can lead to a loss of genetic diversity within their populations. This loss of genetic variation reduces the ability of plant species to adapt to changing conditions and increases their vulnerability to extinction. Therefore, maintaining genetic variation within plant populations is essential for the long-term conservation of biodiversity. Conservation efforts often focus on preserving the genetic diversity of plant species through the establishment of seed banks, botanical gardens, and protected areas, which aim to safeguard the genetic resources of plants for future generations. Moreover, genetic variation in plant species also plays a significant role in thefunctioning of ecosystems and the services they provide to humans. For example, plant species with high genetic variation are more likely to be resilient to disturbances, such as disease outbreaks or extreme weather events, which can have cascading effects on the entire ecosystem. In addition, genetic variation within plant populations can influence the interactions with other species, such as pollinators and herbivores, shaping the dynamics of ecological communities. Therefore, the preservation of genetic variation in plant species is essential for maintaining the stability and functioning of ecosystems, as well as the services they provide, such as pollination, soil fertility, and carbon sequestration. In conclusion, genetic variation in plant species is a fundamental aspect of their biology, with far-reaching implications for ecology, agriculture, conservation, and ecosystem functioning. It allows plant populations to adapt to changing environments, provides the raw material for breeding programs, and is essentialfor the long-term conservation of biodiversity. Recognizing the importance of genetic variation in plant species is crucial for informing conservation and management strategies, as well as for understanding the complex interactions between plants and their environments. As such, efforts to preserve and promote genetic variation within plant species are essential for ensuring the resilience and sustainability of ecosystems, as well as the well-being of human societies.。

遗传育种相关名词中英文对照

中英文对照的分子育种相关名词3'untranslated region (3'UTR) 3'非翻译区5'untranslated region (5; UTR) 5'非翻译区A chromosome A 染色体AATAAA 多腺苷酸化信号aberration 崎变abiogenesis 非生源说accessory chromosome 副染色体accessory nucleus 副核accessory protein 辅助蛋白accident variance 偶然变异Ac-Ds system Ac-Ds 系统acentric chromosome 无着丝粒染色体acentric fragment 无着丝粒片段acentric ring 无着丝粒环achromatin 非染色质acquired character 获得性状acrocentric chromosome 近端着丝粒染色体acrosyndesis 端部联会activating transcription factor 转录激活因子activator 激活剂activator element 激活单元activator protein( AP)激活蛋白activator-dissociation system Ac-Ds 激活解离系统active chromatin 活性染色质active site 活性部位adaptation 适应adaptive peak 适应顶峰adaptive surface 适应面addition 附加物addition haploid 附加单倍体addition line 附加系additive effect 加性效应additive gene 加性基因additive genetic variance 加性遗传方差additive recombination 插人重组additive resistance 累加抗性adenosine 腺昔adenosine diphosphate (ADP )腺昔二鱗酸adenosine triphosphate( ATP)腺昔三憐酸adjacent segregation 相邻分离A-form DNA A 型DNAakinetic chromosome 无着丝粒染色体akinetic fragment 无着丝粒片断alien addition monosomic 外源单体生物alien chromosome substitution 外源染色体代换alien species 外源种alien-addition cell hybrid 异源附加细胞杂种alkylating agent 焼化剂allele 等位基因allele center 等位基因中心allele linkage analysis 等位基因连锁分析allele specific oligonucleotide(ASO)等位基因特异的寡核苷酸allelic complement 等位(基因)互补allelic diversity 等位(基因)多样化allelic exclusion 等位基因排斥allelic inactivation 等位(基因)失活allelic interaction 等位(基因)彼此作用allelic recombination 等位(基因)重组allelic replacement 等位(基因)置换allelic series 等位(基因)系列allelic variation 等位(基因)变异allelism 等位性allelotype 等位(基因)型allohaploid 异源单倍体allopatric speciation 异域种alloploidy 异源倍性allopolyhaploid 异源多倍单倍体allopolyploid 异源多倍体allosyndesis 异源联会allotetraploid 异源四倍体alloheteroploid 异源异倍体alternation of generation 世代交替alternative transcription 可变转录alternative transcription initiation 可变转录起始Alu repetitive sequence, Alu family Alu 重复序列,Alu 家族ambiguous codon 多义密码子ambisense genome 双义基因组ambisense RNA 双义RNAaminoacyl-tRNA binding site氨酰基tRNA接合位点aminoacyl-tRNA synthetase 氨酰基tRNA连接酶amixis 无融合amorph 无效等位基因amphipolyploid 双多倍体amplicon 扩增子amplification 扩增amplification primer 扩增引物analysis of variance 方差分析anaphase (割裂)后期anaphase bridge (割裂)后期桥anchor cell 锚状细胞androgamete 雄配子aneuhaploid 非整倍单倍体aneuploid 非整倍体animal genetics 动物遗传学annealing 复性antibody 抗体anticoding strand 反编码链anticodon 反密码子anticodon arm 反密码子臂anticodon loop 反密码子环antiparallel 反向平行antirepressor 抗阻抑物antisense RNA 反义RNAantisense strand 反义链apogamogony 无融合结实apogamy 无配子生殖apomixis 无融合生殖arm ratio (染色体)臂比artificial gene人工基因artificial selection 人工选择asexual hybridization 无性杂交asexual propagation 无性繁殖asexual reproduction 无性生殖assortative mating 选型交配asynapsis 不联会asynaptic gene 不联会基因atavism 返祖atelocentric chromosome 非端着丝粒染色体attached X chromosome 并连X 染色体attachment site 附着位点attenuation 衰减attenuator 衰减子autarchic gene 自效基因auto-alloploid 同源异源体autoallopolyploid 同源异源多倍体autobivalent 同源二阶染色体auto-diploid 同源二倍体;自体融合二倍体autodiploidization 同源二倍化autoduplication 自体复制autogenesis自然发生autogenomatic 同源染色体组autoheteroploidy 同源异倍性autonomous transposable element 自主转座单元autonomously replicating sequence(ARS)自主复制序列autoparthenogenesis 自发单性生殖autopolyhaploid 同源多倍单倍体autopolyploid 同源多倍体autoradiogram 放射自显影图autosyndetic pairing 同源配对autotetraploid 同源四倍体autozygote 同合子auxotroph 营养缺陷体B chromosome B 染色体B1,first backcross generation 回交第一代B2,second backcross generation 回交第二代back mutation 答复突变backcross 回交backcross hybrid 回交杂种backcross parent 回交亲本backcross ratio 回交比率background genotype 背景基因型bacterial artification chromosome( BAC )细菌人工染色体Bacterial genetics 细菌遗传学Bacteriophage 噬菌体balanced lethal 平衡致死balanced lethal gene 平衡致死基因balanced linkage 平衡连锁balanced load 平稳负荷balanced polymorphism 平衡多态现象balanced rearrangements 平稳重组balanced tertiary trisomic 平稳三级三体balanced translocation 平稳异位balancing selection 平稳选择band analysis 谱带分析banding pattern (染色体)带型basal transcription apparatus 基础转录装置base analog 碱基类似物base analogue 类減基base content 减基含量base exchange 碱基交换base pairing mistake 碱基配对错误base pairing rules 碱基配对法则base substitution 减基置换base transition 减基转换base transversion 减基颠换base-pair region 碱基配对区base-pair substitution 碱基配对替换basic number of chromosome 染色体基数behavioral genetics 行为遗传学behavioral isolation 行为隔离bidirectional replication 双向复制bimodal distribution 双峰散布binary fission 二割裂binding protein 结合蛋白binding site 结合部位binucleate phase 双核期biochemical genetics 生化遗传学biochemical mutant 生化突变体biochemical polymorphism 生化多态性bioethics 生物伦理学biogenesis 生源说bioinformatics 生物信息学biological diversity 生物多样性biometrical genetics 生物统计遗传学(简称生统遗传学) bisexual reproduction 两性生殖bisexuality 两性现象bivalent 二价体blending inheritance 混合遗传blot transfer apparatus 印迹转移装置blotting membrane 印迹膜bottle neck effect 瓶颈效应branch migration 分支迁移breed variety 品种breeding 育种,培育;繁衍,生育breeding by crossing 杂交育种法breeding by separation 分隔育种法breeding coefficient 繁衍率breeding habit 繁殖习性breeding migration 生殖回游,繁衍回游breeding period 生殖期breeding place 繁衍地breeding population 繁殖种群breeding potential繁衍能力,育种潜能breeding range 繁衍幅度breeding season 繁衍季节breeding size 繁衍个体数breeding system 繁衍系统breeding true 纯育breeding value 育种值broad heritability 广义遗传率bulk selection 集团选择C0,acentric 无着丝粒的Cl,monocentric 单着丝粒C2, dicentric双着丝粒的C3,tricentric 三着丝粒的candidate gene 候选基因candidate-gene approach 候选基因法Canpbenmodel坎贝尔模型carytype染色体组型,核型catabolite activator protein 分解活化蛋白catabolite repression 分解代谢产物阻遏catastrophism 灾变说cell clone 细胞克隆cell cycle 细胞周期cell determination 细胞决定cell division 细胞割裂cell division cycle gene(CDC gene) 细胞割裂周期基因ceU division lag细胞割裂延迟cell fate 细胞命运cell fusion 细胞融合cell genetics 细胞的遗传学cell hybridization 细胞杂交cell sorter细胞分类器cell strain 细胞株cell-cell communication 细胞间通信center of variation 变异中心centimorgan(cM) 厘摩central dogma 中心法则central tendency 集中趋势centromere DNA 着丝粒DNAcentromere interference 着丝粒干扰centromere 着丝粒centromeric exchange ( CME)着丝粒互换centromeric inactivation 着丝粒失活centromeric sequence( CEN sequence)中心粒序列character divergence 性状趋异chemical genetics 化学遗传学chemigenomics 化学基因组学chiasma centralization 交叉中化chiasma terminalization 交叉端化chimera异源嵌合体Chi-square (x2) test 卡方检验chondriogene 线粒体基因chorionic villus sampling 绒毛膜取样chromatid abemition染色单体畸变chromatid break染色单体断裂chromatid bridge 染色单体桥chromatid interchange 染色单体互换chromatid interference 染色单体干涉chromatid segregation 染色单体分离chromatid tetrad 四分染色单体chromatid translocation 染色单体异位chromatin agglutination 染色质凝聚chromosomal aberration 染色体崎变chromosomal assignment 染色体定位chromosomal banding 染色体显带chromosomal disorder 染色体病chromosomal elimination 染色体消减chromosomal inheritance 染色体遗传chromosomal interference 染色体干扰chromosomal location 染色体定位chromosomal locus 染色体位点chromosomal mutation 染色体突变chromosomal pattern 染色体型chromosomal polymorphism 染色体多态性chromosomal rearrangement 染色体质量排chromosomal reproduction 染色体增殖chromosomal RNA 染色体RNA chromosomal shift 染色体变迁,染色体移位chromosome aberration 染色体畸变chromosome arm 染色体臂chromosome association 染色体联合chromosome banding pattern 染色体带型chromosome behavior 染色体动态chromosome blotting 染色体印迹chromosome breakage 染色体断裂chromosome bridge 染色体桥chromosome coiling 染色体螺旋chromosome condensation 染色体浓缩chromosome constriction 染色体缢痕chromosome cycle 染色体周期chromosome damage 染色体损伤chromosome deletion 染色体缺失chromosome disjunction 染色体分离chromosome doubling 染色体加倍chromosome duplication 染色体复制chromosome elimination染色体丢失chromosome engineering 染色体工程chromosome evolution 染色体进化chromosome exchange 染色体互换chromosome fusion 染色体融合chromosome gap 染色体间隙chromosome hopping 染色体跳移chromosome interchange 染色体互换chromosome interference 染色体干与chromosome jumping 染色体跳查chromosome knob 染色体结chromosome loop 染色体环chromosome lose染色体丢失chromosome map 染色体图chromosome mapping 染色体作图chromosome matrix 染色体基质chromosome mutation染色体突变chromosome non-disjunction染色体不分离chromosome paring染色体配对chromosome polymorphism 染色体多态性chromosome puff染色体疏松chromosome rearrangement染色体质量排chromosome reduplication 染色体再加倍chromosome repeat染色体质量叠chromosome scaffold 染色体支架chromosome segregation 染色体分离chromosome set 染色体组chromosome stickiness染色体粘性chromosome theory of heredity 染色体遗传学说chromosome theory of inheritance 染色体遗传学说chromosome thread 染色体丝chromosome walking 染色体步查chromosome-mediated gene transfer 染色体中介基因转移chromosomology 染色体学CIB method CIB法;性连锁致死突变显现频率检测法circular DNA 环林DNAcis conformation 顺式构象cis dominance 顺式显性cis-heterogenote顺式杂基因子cis-regulatory element 顺式调剂兀件cis-trans test 顺反考试cladogram 进化树cloning vector 克隆载体C-meiosis C减数割裂C-metaphase C 中期C-mitosis C有丝割裂code degeneracy 密码简并coding capacity编码容量coding ratio 密码比coding recognition site 密码识别位置coding region 编码区coding sequence 编码序列coding site 编码位置coding strand 密码链coding triplet 编码三联体codominance 共显性codon bias 密码子偏倚codon type 密码子型coefficient of consanguinity 近亲系数coefficient of genetic determination 遗传决定系数coefficient of hybridity 杂种系数coefficient of inbreeding 近交系数coefficient of migration 迁移系数coefficient of relationship 亲缘系数coefficient of variability 变异系数coevolution 协同进化coinducer 协诱导物cold sensitive mutant 冷灵敏突变体colineartiy 共线性combining ability 配合力comparative genomics 比较基因组学competence 感受态competent cell感受态细胞competing groups 竞争类群competition advantage 竞争优势competitive exclusion principle 竞争排斥原理complementary DNA (cDNA)互补DNA complementary gene 互补基因complementation test 互补考试complete linkage 完全连锁complete selection 完全选择complotype 补体单元型composite transposon 复合转座子conditional gene 条件基因conditional lethal 条件致死conditional mutation 条件突变consanguinity 近亲consensus sequence 共有序列conservative transposition 保守转座constitutive heterochromatin 组成型染色质continuous variation 持续变异convergent evolution 趋同进化cooperativity 协同性coordinately controlled genes 协同操纵基因core promoter element 核心启动子core sequence 核心序列co-repressor协阻抑物correlation coefficient相关系数cosegregation 共分离cosuppression 共抑制cotranfection 共转染cotranscript共转录物cotranscriptional processing共转录进程cotransduction 共转导cotransformation 共转化cotranslational secrection 共翻译分泌counterselection 反选择coupling phase 互引相covalently closed circular DNA(cccDNA)共价闭合环状DNA covariation 相关变异criss-cross inheritance 交叉遗传cross 杂交crossability 杂交性crossbred 杂种cross-campatibility 杂交亲和性cioss-infertility 杂交不育性crossing over 互换crossing-over map 互换图crossing-over value 互换值crossover products 互换产物crossover rates 互换率crossover reducer 互换抑制因子crossover suppressor 互换抑制因子crossover unit 互换单位crossover value 值crossover-type gamete 互换型配子C-value paradox C 值悖论cybrid 胞质杂种cyclin 细胞周期蛋白cytidme 胞苷cytochimera 细胞嵌合体cytogenetics 细胞遗传学cytohet 胞质杂合子cytologic 细胞学的cytological map 细胞学图cytoplasm细胞质cytoplasmic genome 胞质基因组cytoplasmic heredity 细胞质遗传cytqplasmic incompatibility 细胞质不亲和性cytoplasmic inheritance 细胞质遗传cytoplasmic male sterility 细胞质雄性不育cytoplasmic mutation 细胞质突变cytofdasmic segregation 细胞质分离cytoskeleton 细胞骨架Darwin 达尔文Darwinian fitness 达尔文适合度Darwinism 达尔文学说daughter cell 子细胞daughter chromatid 子染色体daughter chromosome 子染色体deformylase 去甲酰酶degenerate code 简并密码degenerate primer 简并引物degenerate sequence 简并序列degenerated codon 简并密码子degeneration 退化degree of dominance 显性度delayed inheritance 延迟遗传deletant 缺失体deletion 缺失deletion loop 缺失环deletion mapping 缺失作图deletion mutation 缺失突变denatured DNA 变性DNA denatured protein 变性蛋白denaturing gel 变性胶denaturing gel electrophoresis 变性凝胶电泳denaturing gradient polyacrylamide gel 变性聚丙稀酰胺凝胶density gradient centrifugation 密度梯度离心density gradient separation 密度梯度分离deoxyribonucleic acid-dependent DNA polymerase 依托于DNA的DNA聚合酶derived line 衍生系derived type 衍生类型developmental genetics 发育遗传学developmental pathway 发育途径dicentric bridge 双粒染色体桥dicentric chromosome 双着丝粒染色体differential staining technique 显带技术differentiation center 分化中心dihaploid 双单倍体,dihybrid 双因子杂种dihybrid cross 双因子杂交dimorphism 二态性diploidization 二倍化diploidize 二倍化diploidized haploid 二倍化的单倍体direct cross 正交direct repeat 同向重复(序列)direct selection 正选择directed mutagenesis 正向突变discontinuous variation 不持续变异distant hybrid 远缘杂种distant hybridization 远缘杂交diversity center 多样性中心diversity curve 多样性曲线diversity gene ( D gene) D 基因diversity indices 多样性指数diversity of species 种的多样性diversity region ( D region) D 区;多变区DNA alkylation DNA 烧化DNA amplification DNA 扩增DNA amplification in vitro DNA 体外扩增DNA amplification polymorphism DNA 扩增多态性DNA breakage DNA 断裂DNA database DNA 数据库DNA degradation DNA 降解DNA denaturation DNA 变性DNA detection DNA 检测DNA distortion DNA 变形DNA duplex DNA 双链体DNA duplicase DNA 复合酶DNA element DNA 单元DNA evolution DNA 进化DNA fingerprint DNA 指纹DNA fingerprinting DNA 指纹分析DNA homology DNA 同源性DNA hybridization DNA 杂交DNA jumping technique DNA 跳查技术DNA melting DNA 解链DNA methylation DNA 甲基化DNA modification DNA 修饰DNA modification restriction system DNA 修饰限制系统DNA nicking DNA 切口形成DNA oxidation DNA 氧化DNA packaging DNA 包装DNA pairing DNA 配对DNA pitch DNA 螺距DNA polymorphism DNA 多态性DNA probe DNA 探针DNA puff DNA 泡DNA purification DNA 纯化DNA recombination DNA 重组DNA redundant 多余DNADNA repair DNA 修复DNA replication DNA 复制DNA replication enhancer DNA 复制增强子DNA replication origin DNA 复制起点DNA replication site DNA 复制点DNA sealase DNA 连接酶DNA sequence analysis DNA 序列分析DNA sizing gene DNA大小决定基因DNA strand exchange DNA 链互换DNA strand separation DNA 链分离DNA strand transfer protein DNA 链转移蛋白DNA template DNA 模板DNA thermal cycler DNA 热循环仪DNA topoisomerase DNA 拓扑异构酶DNA transcript DNA 转录物DNA transposon DNA 转座子DNA twist DNA 扭曲DNA typing DNA 分型DNA untwisting DNA 解旋DNA unwinding enzyme DNA 解旋酶DNA unwinding protein DNA 解旋蛋白DNA-agar technique DNA 琼脂技术DNAase I footprinting DNA 酶I 足迹法DNAase-free reagent 无DNA 酶试剂DNA-binding domain DNA 结合域DNA-binding motif DNA 结合基序DNA-binding protein DNA 结合蛋白DNA-polymerase DNA 聚合酶DNA-protein complex DNA -蛋白质复合体DNA-protein interaction DNA _ 蛋白质彼此作用DNA-restriction enzyme DNA 限制酶DNA-RNA hybrid DNA-RNA 杂交体DNase-free 不含DNA 酶的dominance 显性dominance type 优势型dominance variance 显性方差dominant allele 显性等位基因dominant effect 显性效应dominant gene 显性基因dominant gene mutation 显'性基因突变dominant lethal 显性致死dominant phenotype 显性表型donor DNA 供体DNAdonor organism 供体生物dosage compensation 剂量补偿作用dotting blotting 点溃法double crossing over 双互换double fertilization 汉受精duplicate genes 重复基因duplication 重复duplicon 重复子dyad 二分体dynamic selection 动态选择ecological genetics 生态遗传学ecological isolation 生态隔离ecological niche 生态小境ectopic expression 异位表达ectopic integration 异位整合effective population size 有效群体大小embryoid 胚状体embryonic stem cells( ES cells)胚胎干细胞endocrine signal 内分泌信号endogamy 近亲繁殖endomitosis 核内有丝割裂endonuclease 内切核酸酶endopolyploidy 核内多倍体environment 环境environmental variance 环境方差environmental variation 环境变异epigenesis 后成说epigenetic inheritance 后生遗传epigenetically silenced 后生沉默episome 附加体epistasis 上位性epistatic dominance 超显性epistatic gene 上位基因equal segregation 均等分离equational division 均等割裂equilibrium population 平衡群体Expressed Sequence T ag(EST)表达序列标签euchromatin 常染色质euchromatin常染色质eugenics 优生学euhaploid 整单倍体eukaryote 真核生物eukaryotic chromosome 真核染色体eukaryotic cell 真核细胞eukaryotic organism 真核生物eukaryotic vector 真核载体euphenics 优型学euploid 整倍体evolutional load 进化负荷evolutionary divergence 进化趋异evolutionary genetics 进化遗传学evolutionaiy rate 进化速率excision repair 切除修复exconjugant 接合后体excretion vector 分泌型载体exit site 萌生点exogenote 外基因子exogenous gene 外源基因exonuclease 外切核酸酶expression cloning 表达克隆expression library 表达文库expression mutation 表达突变expression plasmid 表达质粒expression product 表达产物expression screening 表达挑选extinguisher loci 消失基因座,灭绝基因座extirpated species 绝迹种extrachromosomal inheritance 染色体外遗传extra-chromosome 超数染色体,额外染色体extranuclear inheritance 核外遗传F1 generation F1代,子一代F2 generation F2 代,子二代facultative heterochromatin 兼性异染色质familial trait 家族性状family selection 家系选择feedback suppression 反馈抑制female gamete 雌配子fertility factor 致育因子filial generation 子代fingerprint 指纹finite population 有限群体first division segregation 第一次分裂分离first division segregation pattern 第一次割裂分离模式flanking sequence 侧翼序列flow cytometry 流式细胞仪fluorescence in situ hybridization ( FISH )荧光原位杂交fluorescent primer 荧光引物fluorescent probe 荧光探针formyl methionine (fMet)甲酰甲硫氨酸foot printing 足迹法foreign DNA 外源DNAforward genetics 正向遗传学forward mutation 正向突变forward primer 正向引物founder effect 成立者效应four strand double crossing over 四线双交换full-sib 全同胞functional genomics 功能基因组学functional RNA 功能RNAgain-of-function mutation 功能获得性突变gamete 配子gametic 配子的gametic incompatibility 配子不亲和性gametic lethal 配子致死gametic linkage 配子连锁gametic meiosis 配子减数分裂gametic ratio 配子分离比gametoclonal variation 配子无性系变异gametophyte 配子体G-band G带;中期染色体带GC box GC 框GC tailing GC 加尾gel electrophoresis 凝胶电泳gemetic sterility 配子不育gene activation 基因激活gene activity 基因活性gene amplification 基因扩增gene analysis 基因分析gene arrangement 基因排列gene balance 基因平稳gene basis 基因基础gene batteries 基因群gene block 基因区段gene carrier 基因携带者gene center theory 基因中心学说gene cluster 基因簇gene combination 基因重组gene complex 基因复合体gene content 基因含量gene conversion 基因转换gene distribution 基因散布gene diversity 基因多样性gene dosage 基因剂量gene dosage compensation 基因剂量补偿gene dosage effect 基因剂量效应gene duplication 基因重复gene element 基因元件gene exchange 基因交流gene expression 基因表达gene expression system 基因表达系统gene family 基因家族gene fixation 基因固定gene flow 基因流gene frequency 基因频率gene fusion 基因融合gene inactivation 基因失活gene inoculation 基因接种gene interaction 基因相互作用gene isolation 基因分离gene knockout 基因敲除gene knock-out 基因失效法gene linkage 基因连锁gene localization 基因定位gene location 基因位置gene locus 基因位点gene magnification 基因扩增gene manipulation 基因操作gene map 基因图谱gene mapping 基因作图gene multiplication 基因重复gene mutation 基因突变gene mutation rate 基因突变频率gene order 基因顺序gene organization 基因组构gene pool 基因库gene position effect 基因位置效应gene probe 基因探针gene product 基因产物gene rearrangement 某因重排gene reassortment 基因从头配对gene replication 基因复制gene repression 基因抑制gene resortment 基因重配gene silencing 基因沉默gene splicing 基因剪接gene string 基因线gene structure 基因结构gene substitute 基因置换gene substitution 基因置换gene suppression 基因抑制gene synthesis 基因合成gene tagged 基因标签gene tagging 基因标签gene targeting 基因导向,基因寻靶gene transfer 基因转移gene transfer agent 基因传递因子gene transfer vector 基因转移载体gene transposition 基因转座genealogical classification 系谱分类genera 属general transcription factor ( GTF )通用转录因子generalized transduction 普遍性转导generation 世代generative cell 生殖细胞generative reproduction 有性繁衍generic coefficient 种属系数generic cross 属间杂交generic name 属名genes in common 一起基因gene-specific transcription factor 基因特异性转录因子genetic ablation 基因缺损genetic advance 遗传进度genetic algebra 遗传代数genetic analysis 遗传分析genetic background 遗传背景genetic balance 遗传平稳genetic block 遗传性阻碍genetic compensation 遗传补偿genetic complementation 遗传互补genetic composition 遗传组成genetic continuity 遗传连续性genetic control 遗传控制genetic covariance 遗传协方差genetic cross 杂交genetic database 遗传数据库genetic death 遗传性死亡genetic deficiency 遗传缺损genetic deformity 基因变型genetic determinant 遗传决定因子genetic dimorphism 遗传二型现象genetic distance 遗传距离genetic divergence 遗传趋异genetic diversity 遗传多样性genetic dominance 遗传优势genetic donor 基因供体genetic drift 遗传漂变genetic element遗传因子,遗传成份genetic engineering 遗传工程genetic equilibrium 遗传平衡genetic erosion 遗传冲洗,遗传蚀变genetic expression 遗传表达genetic extinction 遗传灭绝genetic facilitation 遗传增进作用genetic factor 遗传因子genetic feedback 遗传反馈genetic fingerprint 遗传指纹genetic fingerprinting 遗传指纹分析genetic fitness 遗传适合度genetic flexibility 遗传可塑性genetic gain 遗传获得量genetic heterogeneity 遗传异质性genetic homology 遗传同源genetic immunity 遗传免疫genetic imprinting 遗传印记genetic inertia 遗传惰性genetic information 遗传信息genetic inoculation 基因接种genetic instability 遗传不稳定性genetic continuity 遗传连续性genetic control 遗传控制genetic covariance 遗传协方差genetic cross 杂交genetic database 遗传数据库genetic death 遗传性死亡genetic deficiency 遗传缺损genetic deformity 基因变型genetic determinant 遗传决定因子genetic dimorphism 遗传二型现象genetic distance 遗传距离genetic divergence 遗传趋异genetic diversity 遗传多样性genetic dominance 遗传优势genetic donor 基因供体genetic drift 遗传漂变genetic element遗传因子,遗传成份genetic engineering 遗传工程genetic equilibrium 遗传平衡genetic erosion 遗传冲洗,遗传蚀变genetic expression 遗传表达genetic extinction 遗传灭绝genetic facilitation 遗传增进作用genetic factor 遗传因子genetic feedback 遗传反馈genetic fingerprint 遗传指纹genetic fingerprinting 遗传指纹分析genetic fitness 遗传适合度genetic flexibility 遗传可塑性genetic gain 遗传获得量genetic heterogeneity 遗传异质性genetic homology 遗传同源genetic immunity 遗传免疫genetic imprinting 遗传印记genetic inertia 遗传惰性genetic information 遗传信息genetic inoculation 基因接种genetic instability 遗传不稳定性genetic interaction 遗传彼此作用genetic isolating factor 遗传隔离因子genetic isolation 遗传隔离genetic knock-out experiment 基因失效试验genetic linkage 遗传连锁genetic linkage map 遗传连锁图谱genetic load 遗传负荷genetic manipulation 遗传操作genetic map 遗传图谱genetic mapping 遗传作图genetic marker 遗传标记genetic masking 基因组掩饰genetic material 遗传物质genetic mobilization 遗传转移genetic modification 遗传修饰genetic module 遗传组件genetic nomenclature 遗传命名法genetic parameter 遗传参数genetic polarity 遗传极性genetic polymorphism 遗传多样性genetic population 遗传群体genetic potential 遗传潜力genetic process 遗传进程genetic property 遗传特'性genetic ratio 遗传比genetic reactivation 遗传复活genetic reassortment 遗传重排genetic recipient 基因受体genetic recombination 遗传重组genetic regulation 遗传调剂genetic relationship 亲缘关系genetic repair mechanism 遗传修复机制genetic replication 遗传复制genetic risk 遗传危险性genetic screening 遗传筛查genetic segregation 遗传分离genetic selection 遗传选择genetic sex 遗传性别genetic shift 遗传漂移genetic stability 遗传稳定性genetic sterility 遗传性不育genetic strain 遗传品系genetic suppression 遗传抑制genetic switch 遗传开关genetic system 遗传体系genetic transcription 遗传转录genetic transformation 遗传转换genetic translation 遗传翻译genetic transmission 遗传传递genetic typing 遗传分型genetic unit 遗传单位genetic value 遗传值genetic variability 遗传变异性genetic variance 遗传方差genetic vulnerability 遗传易损性genetic“hot spot” 遗传“热点”genetical marker 遗传标记genetical non-disjunction 遗传不分离genetical population 遗传群体genetically heterogeneous 遗传异质的genetically modified organism 基因修饰生物genetics correction 遗传修正genetics of resistance 抗性遗传genetype 基因型genic balance 基因平稳genome allopolyploid基因组异质多倍体genome amplification 基因组扩增genome evolution 基因组进化genome mapping 基因组作图genome project 基因组计划genome rearrangement 基因组重排genome sequencing 基因组测序genomic exclusion 基因组排斥genomic fingerprinting 基因组指纹分析genomic footprinting 基因组足迹分析genomic imprinting 基因组印记genomic instability 基因组不稳固性genomic library 基因组文库genomic walking 基因组步查genotypic frequency 基因型频率genotypic ratio 基因型比值genotypic value 基因型值genotypic variance 基因型方差geographic speciation 地理型新种形成geographical isolation 地理隔离geographical polymorphism 地理多态现象germ layer 胚层germ line 种系germ nucleus 生殖核germ plasm 种质germinal mutation 生殖细胞突变germ-line gene therapy 种系基因医治giant chromosome 巨型染色体global homology 整体同源性global region 全局调剂子globular protein 球蛋白group selection 集团选择growth factor 生长因子GT-AG rule mRNA剪接识别信号规那么gynandromorphy 雌雄嵌合体hairpin loop 发夹环hairpin structure 发夹结构half life 半寿期half sib mating 半同胞交配haplogenotypic 单倍基因型的haploid 单倍体haploidization 单倍体化haplotype 单元型hapostatic gene 下位基因Hardy-Weinberg equilibrium 哈迪-温伯格平稳heat shock gene 热激基因heat sock protein 热激蛋白heavy chain 重链helical structure 螺旋结构。

2021 年 6 月英语六级阅读真题(第一套) 基因选择与智力之间的关系到底大不大呢?

2021 年 6 ⽉(第⼀套) Genetic Selection and Intelligence 基因选择与智⼒之间的关系到底⼤不⼤呢?Humans are fascinated by the source of their failings and virtues.This preoccupation inevitably leads to an old debate: whether molds us more.A revolution in genetics has poised this as a modern political question about the character of our society: if personalities are hard-wired into our genes, what can governments do to help us?It feels morally questionable, yet claims of genetic selection by intelligence are making headlines.This is down to "hereditarian" science and a recent paper claimed, "differences in exam performance between pupils attending schools mirror the genetic differences between them."With such an assertion, the work was predictably greeted by a lot of absurd claims about "genetics determining academic success."What the research revealed was the rather less surprising result: the educational benefits of selective schools largely disappear once pupils' ⼈类着迷于探究他们的失败和美德的根源。

高通量测序操作流程

高通量测序操作流程High-throughput sequencing, also known as next-generation sequencing, has revolutionized the field of genomics by enabling researchers to rapidly sequence and analyze large amounts of DNA. 高通量测序操作流程在基因组学领域起着至关重要的作用,它使研究人员能够快速测序和分析大量的DNA。

This technology has paved the way for a deeper understanding of genetic variation, gene expression, and the underlying mechanisms of diseases. 这项技术为更深入地了解遗传变异、基因表达以及疾病的潜在机制铺平了道路。

One of the key steps in high-throughput sequencing is library preparation, where DNA samples are fragmented, adapters are ligated to the ends of the fragments, and the libraries are amplified to create enough material for sequencing. 在高通量测序中的一个关键步骤是文库构建,其中DNA样本被片段化,接头被连接到片段的末端,并且文库被扩增以创建足够的材料进行测序。

This step is crucial for ensuring that the DNA fragments are properly tagged and amplified before sequencing. 这一步骤对确保DNA片段在测序之前被正确标记和扩增至关重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档