逆变换与逆矩阵 (3)

合集下载

§3 逆矩阵

§3  逆矩阵

三、解矩阵方程
解矩阵方程 (1) AX = C , ( 2) XA = B , ( 3) AXB = C , 其中 A、B 均为可逆矩阵 .
矩阵方程
AX = B XA = B
AXB = C

X = A−1 B
X = BA−1
X = A−1 C B −1
3 2 1 − 5 例5 解矩阵方程 (1) ; X = 1 4 −1 4
−1 −1 −1
1 − 1 1 1 2 − 3 (2 ) X 1 1 0 = 2 0 4 2 1 1 0 − 1 5
1 −1 1 1 1 0 =1≠ 0 2 1 1
给方程两端右乘矩阵
1 − 1 1 1 1 0 , 2 1 1

d − b A = ad − bc ≠ 0, A = − c a .
*
1 d − b ∴A = . ad − bc − c a
−1
二阶矩阵的逆可以直接“看出来”
1 2 3 例3 (1) 求方阵 A = 2 2 1 的逆矩阵. 3 4 3 1 2 3 −1 ∴ A 存在. 解 A = 2 2 1 = 2 ≠ 0, 3 4 3
−1 T
(5 ) 若A可逆 ,则有 A = A .
−1 −1
另外, 当 A ≠ 0时
定义
A =E
0
A
−k
= ( A ) , k为整数
−1 k
当 A ≠ 0, λ , µ为整数时 , 有 A A =A
λ µ λ +µ
,
(A )
λ µ
= Aλµ .
二、逆矩阵的求法

2016_2017学年高中数学第三讲逆变换与逆矩阵3.2二阶行列式与逆矩阵课件

2016_2017学年高中数学第三讲逆变换与逆矩阵3.2二阶行列式与逆矩阵课件

-3 10
∴det(AB)= -5 12 = (−5) × 10 − (−3) × 12 = −14. ∴
-3 10
(AB)-1=
-
5 7
-
3 14
6
7 5
.
14
答案:
-
5 7
-
3 14
6
7 5
14
1234 5
5.判断所给矩阵是否有逆矩阵,若有,则求出逆矩阵.
31
m2
(1)A=
; (2)B=
.
0 -1
������ ������
≠0
时,A
存在逆矩阵
A-1=
det������ -������
det������
-������
det������ .
������ det������
题型一 题型二 题型三 题型四
题型一
行列式的计算
【例 1】
计算下列行列式:(1)
3 -1
2 5
;
(2) 7 -9 . 84
分析:根据行列式的定义,把对角线上的数相乘再相减即可.
解:(1)
32 -1 5
= 3 × 5 − (−1) × 2 = 17.
(2) 7 -9 = 7 × 4 − (−9) × 8 = 100. 84
题型一 题型二 题型三 题型四
反思二阶行列式 ������ ������
������ ������
的展开式为ad-bc,它是位于两条对角线
上的元素的乘积之差.若行列式的两行或两列元素相同或对应成比
-������ ������-2������
-2
������-2������ .
������ ������-2������

第三节 逆矩阵

第三节 逆矩阵

A21 A22 A2 n

An 1 An 2 * , 称 A 为 A 的伴随矩阵。 Ann
2012-6-16
定理2.3
A 0 A 可逆,且 A
1

A
*
A
其中
A 为 A 的伴随矩阵。
*
2012-6-16
证明
AA
1
A 显然 A 0, 有意义。 A
0 A 0 0 0 I A
AA
1
A 1 1 0 * AA A A 0
2012-6-16
定理2.4 定理2.5 定义2.13
若 若
2012-6-16
A可逆
A 0.
A不可逆 A 0 .
3 0 1 1 2 2 5 3
1
3 A 5
1 2
3 B 0 1
1 2 3
2 5 A A
*
1 ,从而 3
X BA
1
1 1 10 3 13
A 21 A A 22 A A 23 A
A 31 A A 32 A A 33 A
2012-6-16
8 5 1
29 18 3
A11 A 11 A 7 12 A 1 A13 A
* 1
2012-6-16
四、小结与思考
逆矩阵的概念及运算性质.
逆矩阵 A 1 存在 A 0 . 逆矩阵的计算方法

1 待定系数法 ;
2 利用公式 A 1

《矩阵与变换》逆变换与逆矩阵、矩阵的特征值与特征向量

《矩阵与变换》逆变换与逆矩阵、矩阵的特征值与特征向量

《矩阵与变换》逆变换与逆矩阵、矩阵的特征值与特征向量 【考情分析】考试要求 1. 二阶逆矩阵,B 级要求;2. 二阶矩阵的特征值与特征向量,B 级要求;3. 二阶矩阵的简单应用,B 级要求.理解逆矩阵的意义并掌握二阶矩阵存在逆矩阵的条件,会利用矩阵求解方程组.掌握矩阵特征值与特征向量的定义,会求二阶矩阵的特征值与特征向量,利用矩阵A 的特征值、特征向量给出A n α的简单表示,并能用它来解决问题.理解矩阵的简单应用. 【知识清单】 1. 逆变换与逆矩阵(1)逆矩阵的有关概念:对于二阶矩阵A ,B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.若二阶矩阵A 存在逆矩阵B ,则逆矩阵是唯一的,通常记A 的逆矩阵为A -1,A -1=B .(2)逆矩阵的求法:一般地,对于二阶可逆矩阵A =⎣⎢⎡⎦⎥⎤a b c d (det A =ad -bc ≠0),它的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc-b ad -bc-c ad -bc a ad -bc . (3)逆矩阵与二元一次方程组:如果关于变量x ,y 的二元一次方程组⎩⎪⎨⎪⎧ax +by =m ,cx +dy =n 的系数矩阵A =⎣⎢⎡⎦⎥⎤a b c d 可逆,那么该方程组有唯一解⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b c d -1⎣⎢⎡⎦⎥⎤m n ,其中A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc-b ad -bc-c ad -bc a ad -bc . 2.二阶矩阵的特征值和特征向量 (1)特征值与特征向量的概念设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得Aα=λα,那么λ称为A 的一个特征值,而α称为A 的一个属于特征值λ的一个特征向量.(2)从几何上看,特征向量的方向经变换矩阵A 的作用后,保持在同一条直线上,这时特征向量或者方向不变(λ>0),或者方向相反(λ<0).特别地,当λ=0时,特征向量就变换成零向量. (3)特征多项式与特征方程设λ是二阶矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的一个特征值,它的一个特征向量为X =⎣⎢⎡⎦⎥⎤x y ,则A ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y , 即⎣⎢⎡⎦⎥⎤x y 满足二元一次方程组⎩⎪⎨⎪⎧ax +by =λx ,cx +dy =λy , 故⎩⎪⎨⎪⎧(λ-a )x -by =0-cx +(λ-d )y =0⇔⎣⎢⎢⎡⎦⎥⎥⎤λ-a -b -c λ-d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤00(*) 则(*)式有非零解的充要条件是它的系数矩阵的行列式⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0.记f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d 为矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的特征多项式;方程⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0,即f (λ)=0称为矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的特征方程. (4)特征值与特征向量的计算如果λ是二阶矩阵A 的特征值,则λ是特征方程f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc =0的一个根.解这个关于λ的二元一次方程,得λ=λ1、λ2,将λ=λ1、λ2分别代入方程组(*),分别求出它们的一个非零解⎩⎪⎨⎪⎧x =x 1,y =y 1,⎩⎪⎨⎪⎧x =x 2,y =y 2,记X 1=⎣⎢⎡⎦⎥⎤x 1y 1,X 2=⎣⎢⎡⎦⎥⎤x 2y 2.则AX 1=λ1X 1、AX 2=λ2X 2,因此λ1、λ2是矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的特征值,X 1=⎣⎢⎡⎦⎥⎤x 1y 1,X 2=⎣⎢⎡⎦⎥⎤x 2y 2为矩阵A 的分别属于特征值λ1、λ2的一个特征向量.【课前预习】1. 求矩阵⎣⎢⎡⎦⎥⎤12-12的特征多项式. 解析:f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-21λ-2=(λ-1)(λ-2)+2=λ2-3λ+4. 2. (选修4-2P 65习题2.4第7题)已知可逆矩阵A =⎣⎢⎡⎦⎥⎤a 273的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤b -2-7a ,求a 、b 的值. 解析:由题意,知AA -1=E ,⎣⎢⎡⎦⎥⎤a 273⎣⎢⎢⎡⎦⎥⎥⎤b -2-7a=⎣⎢⎡⎦⎥⎤1001, 即⎣⎢⎢⎡⎦⎥⎥⎤ab -1407b -213a -14=⎣⎢⎡⎦⎥⎤1001,即⎩⎪⎨⎪⎧ab -14=1,7b -21=0,3a -14=1,解得a =5,b =3. 3.(选修4-2P 54例4改编)已知矩阵A =⎣⎢⎡⎦⎥⎤1 00 2,B =⎣⎢⎡⎦⎥⎤0 -11 0,求(AB )-1.解析:因为 AB =⎣⎢⎡⎦⎥⎤0 -12 0,设(AB )-1=⎣⎢⎡⎦⎥⎤a b c d , 所以 (AB )(AB )-1=⎣⎢⎡⎦⎥⎤1 00 1. 所以 ⎣⎢⎡⎦⎥⎤0 -12 0⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1,即⎣⎢⎡⎦⎥⎤-c -d 2a 2b =⎣⎢⎡⎦⎥⎤1 00 1. 所以 ⎩⎪⎨⎪⎧-c =1,-d =0,2a =0,2b =1,故a =0,b =12,c =-1,d =0.即(AB )-1=⎣⎢⎡⎦⎥⎤ 012-10. 4. (选修4-2P 73习题第1题改编)求矩阵M =⎣⎢⎡⎦⎥⎤16-2 -6 的特征值.解析:矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-62λ+6=(λ+2)(λ+3),令f (λ)=0,得M 的特征值为λ1=-2,λ2=-3.5. 已知二阶矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,矩阵A 属于特征值λ1=-1的一个特征向量为α1=⎣⎢⎡⎦⎥⎤ 1-1,属于特征值λ2=4的一个特征向量为α2=⎣⎢⎡⎦⎥⎤32.,求矩阵A .解析:由特征值、特征向量定义可知,A α1=λ1α1,即⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=-1×⎣⎢⎡⎦⎥⎤ 1-1,得⎩⎪⎨⎪⎧a -b =-1,c -d =1.同理可得⎩⎪⎨⎪⎧3a +2b =12,3c +2d =8,解得a =2,b =3,c =2,d =1.因此矩阵A =⎣⎢⎡⎦⎥⎤2 32 1. 【典型例题】目标1 求逆矩阵与逆变换例1求矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤2 35 6的逆矩阵. 解析:(法一)设矩阵A 的逆矩阵A -1=⎣⎢⎡⎦⎥⎤x y z w , 则⎣⎢⎡⎦⎥⎤2 35 6⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎡⎦⎥⎤1 00 1,即⎣⎢⎢⎡⎦⎥⎥⎤2x +3z 2y +3w 5x +6z 5y +6w =⎣⎢⎡⎦⎥⎤1 00 1, 所以⎩⎪⎨⎪⎧2x +3z =1,2y +3w =0,5x +6z =0,5y +6w =1,解得⎩⎪⎨⎪⎧x =-2,y =1,z =53,w =-23.故所求的逆矩阵A -1=⎣⎢⎡⎦⎥⎤-2 153 -23. (法二)注意到2×6-3×5=-3≠0,故A 存在逆矩阵A -1,且A -1=⎣⎢⎢⎡⎦⎥⎥⎤6-3 -3-3-5-3 2-3=⎣⎢⎡⎦⎥⎤-2 153 -23. 【借题发挥】变式1 (2016·江苏卷)已知矩阵A =⎣⎢⎡⎦⎥⎤102-2,矩阵B 的逆矩阵B -1=⎣⎢⎡⎦⎥⎤1 -122,求矩阵AB .解 B =(B -1)-1=⎣⎢⎢⎡⎦⎥⎥⎤22 12202 12=⎣⎢⎢⎡⎦⎥⎥⎤1 14012. ∴AB =⎣⎢⎡⎦⎥⎤120-2·⎣⎢⎢⎡⎦⎥⎥⎤1 14012=⎣⎢⎡⎦⎥⎤1540 -1. 解:设a b B c d ⎡⎤=⎢⎥⎣⎦,则1110120102a b B B c d ⎡⎤-⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 即1110220122a c b d c d ⎡⎤--⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦,故1121022021a c b d c d ⎧-=⎪⎪⎪-=⎨⎪=⎪⎪=⎩,解得114012a b c d ⎧⎪⎪=⎪⎪=⎨⎪=⎪⎪⎪=⎩,所以114102B ⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦. 因此,151121440210102AB ⎡⎤⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦⎢⎥⎣⎦. 变式2 已知关于直线y =2x 的反射变换对应的矩阵为A =⎣⎢⎢⎡⎦⎥⎥⎤-35 45 4535,切变变换对应的矩阵为B =⎣⎢⎡⎦⎥⎤1 0-2 1,试求出(AB )-1. 解析:反射变换和切变变换对应的矩阵都是可逆的,且A -1=⎣⎢⎢⎡⎦⎥⎥⎤-35 45 45 35,B -1=⎣⎢⎡⎦⎥⎤1 02 1,(AB )-1=B -1A -1=⎣⎢⎡⎦⎥⎤1021⎣⎢⎢⎡⎦⎥⎥⎤-35 45 45 35=⎣⎢⎢⎡⎦⎥⎥⎤-35 45-25115. 【规律方法】求一个矩阵A 的逆矩阵或证明一个矩阵不可逆时,常用两种解法.法一:待定矩阵法:先设出其逆矩阵,根据逆矩阵的定义AB =BA =E ,应用矩阵相等的定义列方程组求解,若方程组有解,即可求出其逆矩阵,若方程组无解,则说明此矩阵不可逆,此种方法称为待定矩阵法.法二:利用逆矩阵公式,对矩阵A =⎣⎢⎡⎦⎥⎤a b c d : ①若ad -bc =0,则A 的逆矩阵不存在.②若ad -bc ≠0,则A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc-b ad -bc-c ad -bc a ad -bc . 【同步拓展】(2017·常州期末)已知矩阵,列向量,若AX=B ,直接写出A ﹣1,并求出X .解析:解法一∵矩阵,∴A ﹣1=,∵AX=B ,∴X=A ﹣1B==.解法二:∵矩阵,∴A ﹣1=,∵AX=B , ∴=,∴,解得,∴X=.目标2 特征值与特征向量的计算与应用例2 已知矩阵M =⎣⎢⎡⎦⎥⎤2a21,其中a ∈R ,若点P (1,-2)在矩阵M 的变换下得到点P ′(-4,0).(1) 求实数a 的值;(2) 求矩阵M 的特征值及其对应的特征向量.解析:(1) 由⎣⎢⎡⎦⎥⎤2a 21⎣⎢⎡⎦⎥⎤ 1-2=⎣⎢⎡⎦⎥⎤-4 0,得2-2a =-4⇒a =3. (2) 由(1)知M =⎣⎢⎡⎦⎥⎤2321,则矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4.令f(λ)=0,得矩阵M 的特征值为-1与4.当λ=-1时,⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =0,x +y =0,∴矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1;当λ=4时,⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =02x -3y =0.∴矩阵M 的属于特征值4的一个特征向量为⎣⎢⎡⎦⎥⎤32.【借题发挥】变式1 已知二阶矩阵A 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-3,属于特征值3的一个特征向量为⎣⎢⎡⎦⎥⎤11,求矩阵A .解析:设A =⎣⎢⎡⎦⎥⎤a b c d 由题意知⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-3=⎣⎢⎡⎦⎥⎤-1 3,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤33, 即⎩⎪⎨⎪⎧ a -3b =-1,c -3d =3,a +b =3,c +d =3.解得⎩⎪⎨⎪⎧a =2,b =1,c =3,d =0.∴A =⎣⎢⎡⎦⎥⎤2 13 0. 变式2 (2015·江苏高考)已知R y x ∈,,向量α=⎣⎢⎡⎦⎥⎤ 1-1是矩阵A =⎣⎢⎡⎦⎥⎤x 1y 0的属于特征值2-的一个特征向量,求矩阵A 以及它的另一个特征值.解析:由已知,得Aα=-2α,即⎣⎢⎡⎦⎥⎤x 1y 0⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤x -1 y =⎣⎢⎡⎦⎥⎤-1 2 , 则⎩⎪⎨⎪⎧x -1=-2,y =2,,即⎩⎪⎨⎪⎧x =-1,y =2,,所以矩阵A =⎣⎢⎡⎦⎥⎤-1 1 2 0. 从而矩阵A 的特征多项式()()()21f λλλ=+-,所以矩阵A 的另一个特征值为1.【规律方法】1.求矩阵A 的特征值与特征向量的一般思路为:先确定其特征多项式f (λ),再由f (λ)=0求出该矩阵的特征值,然后把特征值代入矩阵A 所确定的二元一次方程组⎩⎪⎨⎪⎧(λ-a )x -by =0,-cx +(λ-d )y =0,即可求出特征向量.2.根据矩阵A 的特征值与特征向量求矩阵A 的一般思路:设A =⎣⎢⎡⎦⎥⎤a b c d ,根据Aα=λα构建a ,b ,c ,d 的方程求解.【同步拓展】已知二阶矩阵M 有特征值λ=3及对应的一个特征向量α1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(9,15),求矩阵M .解析:设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=3⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤33,故⎩⎪⎨⎪⎧a +b =3,c +d =3. ⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤915,故⎩⎪⎨⎪⎧-a +2b =9,-c +2d =15.联立以上两方程组解得a =-1,b =4,c =-3,d =6,故M =⎣⎢⎢⎡⎦⎥⎥⎤-1 4-3 6. 目标3 根据A ,α计算A n α(n ∈N *)例3 给定的矩阵A =⎣⎢⎡⎦⎥⎤ 1 2-1 4,B =⎣⎢⎡⎦⎥⎤32. (1)求A 的特征值λ1,λ2及对应的特征向量α1,α2; (2)求A 4B .解析: (1)设A 的一个特征值为λ,由题意知:⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -2 1 λ-4=0,即(λ-2)(λ-3)=0,∴λ1=2,λ2=3. 当λ1=2时,由⎣⎢⎡⎦⎥⎤ 1 2-1 4⎣⎢⎡⎦⎥⎤x y =2⎣⎢⎡⎦⎥⎤x y ,得A 属于特征值2的特征向量α1=⎣⎢⎡⎦⎥⎤21;当λ2=3时,由⎣⎢⎡⎦⎥⎤ 1 2-1 4⎣⎢⎡⎦⎥⎤x y =3⎣⎢⎡⎦⎥⎤x y ,得A 属于特征值3的特征向量α2=⎣⎢⎡⎦⎥⎤11.(2)由于B =⎣⎢⎡⎦⎥⎤32=⎣⎢⎡⎦⎥⎤21+⎣⎢⎡⎦⎥⎤11=α1+α2,故A 4B =A 4(α1+α2)=24α1+34α2=16α1+81α2=⎣⎢⎡⎦⎥⎤3216+⎣⎢⎡⎦⎥⎤8181=⎣⎢⎡⎦⎥⎤11397. 【规律方法】已知矩阵A 和向量α,求A n α(n ∈N *),其步骤为:(1)求出矩阵A 的特征值λ1,λ2和对应的特征向量α1,α2. (2)把α用特征向量的组合来表示:α=s α1+t α2.(3)应用A n α=sλn 1α1+tλn2α2表示A n α.【同步拓展】已知M =⎣⎢⎡⎦⎥⎤1221,β=⎣⎢⎡⎦⎥⎤17,计算M 5β. 解析:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-2-2λ-1=λ2-2λ-3. 令f(λ)=0,解得λ1=3,λ2=-1,从而求得对应的一个特征向量分别为α1=⎣⎢⎡⎦⎥⎤11,α2=⎣⎢⎡⎦⎥⎤ 1-1.令β=m α1+n α2,则m =4,n =-3.M 5β=M 5(4α1-3α2)=4(M 5α1)-3(M 5α2)=4(λ51α1)-3(λ52α2)=4×35⎣⎢⎡⎦⎥⎤11-3×(-1)5⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤975969.【归纳分析】1.不是每个二阶矩阵都可逆,只有当⎣⎢⎡⎦⎥⎤a b c d 中ad -bc ≠0时,才可逆,如当A =⎣⎢⎡⎦⎥⎤1 00 0,因为1×0-0×0=0,找不到二阶矩阵B ,使得BA =AB =E 成立,故A =⎣⎢⎡⎦⎥⎤1 00 0不可逆. 2.逆矩阵的性质:(1)若二阶矩阵A 存在逆矩阵B ,则逆矩阵是惟一的.(2)若二阶矩阵A ,B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1.(3)已知A ,B ,C 为二阶矩阵,且AB =AC ,若矩阵A 存在逆矩阵,则B =C .3.如果向量α是属于λ的特征向量,将它乘非零实数t 后所得的新向量t α与向量α共线,故t α也是属于λ的特征向量,因此,一个特征值对应多个特征向量,显然,只要有了特征值的一个特征向量,就可以表示出属于这个特征值的共线的所有特征向量了.4. 由于特征向量的存在,求矩阵幂的作用结果,可以转化成求数的幂的运算结果. 【课后作业】 1.已知矩阵1012,0206A B -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,求矩阵B A 1-. 解析:设矩阵A 的逆矩阵为 ⎣⎢⎡⎦⎥⎤a b c d , 则⎣⎢⎡⎦⎥⎤-1 00 2⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1,即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1 00 1, 故a =-1,b =0,c =0,d =21∴矩阵A 的逆矩阵为A -1=⎣⎢⎡⎦⎥⎤-1 00 12. 所以B A1-=⎣⎢⎡⎦⎥⎤-1 00 12⎣⎢⎡⎦⎥⎤1 20 6=⎣⎢⎡⎦⎥⎤-1 -20 3 . 2. 求矩阵M =⎣⎢⎡⎦⎥⎤2 41-1的特征值及对应的特征向量. 解析:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-4-1λ+1=λ2-λ-6=(λ-3)(λ+2),令f(λ)=0,得到M 的特征值λ1=3,λ2=-2.当λ1=3时,矩阵M 的一个特征向量为⎣⎢⎡⎦⎥⎤41;当λ2=-2时,矩阵M 的一个特征向量为⎣⎢⎡⎦⎥⎤1-1.3. 已知矩阵A 的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤-14 34 12 -12,求矩阵A 的特征值. 解析:因为A -1A =E ,所以A =(A -1)-1.因为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1434 12 -12,所以A =(A -1)-1=⎣⎢⎡⎦⎥⎤2 32 1,于是矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=λ2-3λ-4. 令f (λ)=0,解得A 的特征值λ1=-1,λ2=4.4. 已知矩阵M =⎣⎢⎡⎦⎥⎤10012,N =⎣⎢⎡⎦⎥⎤12001,试求曲线y =cos x 在矩阵M-1N 变换下的函数解析式.解析:由M -1=⎣⎢⎡⎦⎥⎤1002,得M -1N =⎣⎢⎡⎦⎥⎤1002⎣⎢⎡⎦⎥⎤1201=⎣⎢⎡⎦⎥⎤12002,即在矩阵M -1N 的变换下有如下过程,⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤12x 2y ,则12y ′=cos2x ′,即曲线y =cos x 在矩阵M -1N 的变换下的解析式为y =2cos2x .5. 已知二阶矩阵A 的属于特征值-2的一个特征向量为⎣⎢⎡⎦⎥⎤1-3,属于特征值2的一个特征向量为⎣⎢⎡⎦⎥⎤11,求矩阵A .解析:设A =⎣⎢⎡⎦⎥⎤a b c d , 由题意知⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-3=⎣⎢⎡⎦⎥⎤-2 6,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤22,即⎩⎪⎨⎪⎧a -3b =-2,c -3d =6,a +b =2,c +d =2,解得⎩⎪⎨⎪⎧a =1,b =1,c =3,d =-1,∴A =⎣⎢⎡⎦⎥⎤1 13 -1. 6. 已知α是矩阵M 的属于特征值λ=3的一个特征向量,其中M =⎣⎢⎡⎦⎥⎤a m 2b ,α=⎣⎢⎡⎦⎥⎤-1 5,且a +b +m =3,求a ,b ,m 的值. 解析:因为α是矩阵M 的属于特征值λ=3的一个特征向量,所以Mα=λα,即⎣⎢⎡⎦⎥⎤a m 2 b ⎣⎢⎡⎦⎥⎤-1 5=3⎣⎢⎡⎦⎥⎤-1 5,所以⎩⎪⎨⎪⎧-a +5m =-3,-2+5b =15,由a +b +m =3,解得a =16,b =175,m =-1730.7. (2016·泰州期末)已知矩阵A =⎣⎢⎡⎦⎥⎤2 n m 1的一个特征值为λ=2,它对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤12.(1) 求m 与n 的值; (2) 求A -1.解析:(1) 由题意得:Aα=λα⎣⎢⎡⎦⎥⎤2 n m 1⎣⎢⎡⎦⎥⎤12=λ⎣⎢⎡⎦⎥⎤12=2⎣⎢⎡⎦⎥⎤12⎩⎪⎨⎪⎧2+2n =2,m +2=4,解得⎩⎪⎨⎪⎧n =0,m =2.(2) 设A -1=⎣⎢⎡⎦⎥⎤a b c d ,⎣⎢⎡⎦⎥⎤2 02 1⎣⎢⎡⎦⎥⎤a b c d =E =⎣⎢⎡⎦⎥⎤1 00 1, 所以 ⎩⎪⎨⎪⎧2a =1,2b =0,2a +c =0,2b +d =1,解得⎩⎪⎨⎪⎧a =12,b =0,c =-1,d =1,所以 A-1=⎣⎢⎡⎦⎥⎤120-11. 8. 已知矩阵M =⎣⎢⎡⎦⎥⎤200-1有特征向量e 1=⎣⎢⎡⎦⎥⎤10,e 2=⎣⎢⎡⎦⎥⎤01,相应的特征值为λ1,λ2.(1) 求矩阵M 的逆矩阵M -1及λ1,λ2;(2) 对任意向量α=⎣⎢⎡⎦⎥⎤x y ,求M 100α.解析:(1) 由矩阵M =⎣⎢⎡⎦⎥⎤2 00-1变换的意义知 M-1=⎣⎢⎡⎦⎥⎤12 0-1, 又Me 1=λ1e 1,即⎣⎢⎡⎦⎥⎤2 00-1⎣⎢⎡⎦⎥⎤10=λ1⎣⎢⎡⎦⎥⎤10,故λ1=2, 同理Me 2=λ2e 2,即⎣⎢⎡⎦⎥⎤2 00-1⎣⎢⎡⎦⎥⎤01=λ2⎣⎢⎡⎦⎥⎤01,故λ2=-1. (2) 因为α=⎣⎢⎡⎦⎥⎤x y =x e 1+y e 2,所以M 100α=M 100(x e 1+y ·e 2)=x M 100e 1+y M 100e 2=x λ1001e 1+y λ2100e 2=⎣⎢⎡⎦⎥⎤2100x y.9. 已知矩阵M =⎣⎢⎡⎦⎥⎤2 13 4. (1)求矩阵M 的逆矩阵;(2)求矩阵M 的特征值及特征向量. 解析:(1)因为2×4-1×3=5≠0,所以M 存在逆矩阵M -1,所以M -1=⎣⎢⎢⎡⎦⎥⎥⎤ 45 -15-35 25. (2)矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2 -1-3 λ-4=(λ-2)(λ-4)-3=λ2-6λ+5, 令f (λ)=0,得矩阵M 的特征值为1或5,当λ=1时,由二元一次方程⎩⎪⎨⎪⎧-x -y =0,-3x -3y =0,得x +y =0,令x=1,则y =-1,所以特征值λ=1对应的特征向量为α1=⎣⎢⎡⎦⎥⎤1-1.当λ=5时,由二元一次方程⎩⎪⎨⎪⎧3x -y =0,-3x +y =0,得3x -y =0, 令x =1,则y =3,所以特征值λ=5对应的特征向量为α2=⎣⎢⎡⎦⎥⎤13.10.二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).(1)求矩阵M 的逆矩阵M -1;(2)设直线l 在变换M 作用下得到了直线m :2x -y =4,求l 的方程.解析:(1)设M =⎣⎢⎡⎦⎥⎤a b c d ,则有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎢⎡⎦⎥⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤ 0-2, 所以⎩⎪⎨⎪⎧ a -b =-1,c -d =-1,且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4.所以M =⎣⎢⎡⎦⎥⎤1 23 4,从而M -1=⎣⎢⎡⎦⎥⎤-2 132-12. (2)设直线l 上任意一点(x ,y ),在变换M 作用下对应直线m 上任意一点(x ′,y ′),因为⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x +2y 3x +4y ,且m :2x ′-y ′=4, 所以2(x +2y )-(3x +4y )=4,即直线l 的方程为x +4=0.11. 已知二阶矩阵M 有特征值λ=8及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(-2,4). 求:(1) 矩阵M;(2) 矩阵M 的另一个特征值,及对应的一个特征向量e 2的坐标之间的关系;(3) 直线l :x -y +1=0在矩阵M 的作用下的直线l ′的方程.解析:(1) 设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=8⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤88,故⎩⎪⎨⎪⎧a +b =8,c +d =8.⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-12=⎣⎢⎡⎦⎥⎤-24,故⎩⎪⎨⎪⎧-a +2b =-2,-c +2d =4. 联立以上两方程组解得a =6,b =2,c =4,d =4,故M =⎣⎢⎡⎦⎥⎤6244. (2) 由(1)知,矩阵M 的特征多项式为f(λ)=(λ-6)(λ-4)-8=λ2-10λ+16,故其另一个特征值为λ=2.设矩阵M 的另一个特征向量是e 2=⎣⎢⎡⎦⎥⎤x y ,则Me 2=⎣⎢⎢⎡⎦⎥⎥⎤6x +2y 4x +4y =2⎣⎢⎡⎦⎥⎤x y ,解得2x +y =0. (3) 设点(x ,y )是直线l 上的任一点,其在矩阵M 的变换下对应的点的坐标为(x ′,y ′),则⎣⎢⎡⎦⎥⎤6244⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,即x =14x ′-18y ′,y =-14x ′+38y ′,代入直线l 的方程后并化简,得x ′-y ′+2=0,即x -y +2=0. 【提优训练】1.利用逆矩阵的知识解方程MX =N ,其中M =⎣⎢⎡⎦⎥⎤5241,N =⎣⎢⎡⎦⎥⎤ 5-8. 解析:设M-1=⎣⎢⎡⎦⎥⎤x yz w,⎣⎢⎡⎦⎥⎤5241⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎢⎡⎦⎥⎥⎤5x +2z 5y +2w 4x +z 4y +w=⎣⎢⎡⎦⎥⎤1001,⎩⎪⎨⎪⎧5x +2z =1,5y +2w =0,4x +z =0,4y +w =1,解之得⎩⎪⎪⎨⎪⎪⎧x =-13,y =23,z =43,w =-53.所以M -1=⎣⎢⎢⎡⎦⎥⎥⎤-132343-53.。

2016_2017学年高中数学第三讲逆变换与逆矩阵3.3逆矩阵与二元一次方程组课件

2016_2017学年高中数学第三讲逆变换与逆矩阵3.3逆矩阵与二元一次方程组课件

-2
x =
-4
y
y 分析:先将方程组改写为齐次方程组的形式,再判断.
题型一
题型二
题型三
3 解:二元一次方程组 1 3x-2y 即为 x-4y = my mx
-2
x = ������
x , y
-4
y
3������-2������ = ������������, ,∴ ������-4������ = ������������, 3-m -2 x = 1 -(4 + m) y 0 0 .
1
2
3
2.定理 如果关于变量 x,y 的二元一次方程组(线性方程组) a b ������������ + ������������ = ������, 的系数矩阵A= 可逆, ������������ + ������������ = ������ c d x a b -1 e 那么该方程组有唯一解, y = .

逆矩阵与二元一次方程组
1.能用变换与映射的观点认识解线性方程组的意义. 2.会用系数矩阵的逆矩阵解方程组. 3.会通过具体的系数矩阵,从几何上说明线性方程组解的存在性 和唯一性.
1
2
3
1.二元一次方程组的矩阵形式 一般地,关于变量 x,y 的二元一次方程组 ������������ + ������������ = ������, 其中������, ������, ������, ������均为常数 的矩阵形式为 ������������ + ������������ = ������ x e a b a b = , 其中矩阵������ =
名师点拨常数项都为零的线性方程组为齐次线性方程组,显然 ������0 0 是其一个解,称为零解; 0 的一个非零解. ������0 (������0, ������0 不全为零)称为该方程组

线性代数-逆矩阵

线性代数-逆矩阵

=
6
2 0 0
0 4 0
0 1 0 −0 7 0
0 1 0
0 0 1
−1
=
6
1 0 0
0 3 0
0 −1
0 6
1 0 0−1 1 0 = 6 0 3 0 = 6 0 1 3
0 6 0 0 0 = 0 2 0.
0 0 6 0 0 1 6 0 0 1
1 0 0 0 0
0 2 0 0 0
证明 由A2 − A − 2E = 0,
A−1
得A(A − E ) = 2E ⇒ A A − E = E
2 ⇒ A A − E = 1 ⇒ A ≠ 0, 故A可逆.
2
∴ A−1 = 1 (A − E ).
2
又由A2 − A − 2E = 0
⇒ (A + 2E )(A − 3E ) + 4E = 0
1 5 − 11
123 1 2 3

A = 2 1 2= 0 −3 −4
133 0 1 0
12 3 = 0 − 3 − 4 = − 3 − 4 = 4≠ 0, 所以A可逆.
01 0 1 0
A11
=
1 3
2 = −3, 3
A12
=

2 1
2 = −4, 3
A13
=
2 1
1 = 5, 3
同理可求得 A21 = 3, A22 = 0, A23 = −1, A31 = 1, A32 = 4, A33 = −3.
1 1
−1 1
1 1 0X1
−1 1
1 4 0 = 0
2 −1
3 5
2 1 1 3 2 1 2 1 1

人教版高中数学选修 4-2矩阵变换 第三章 第一节 逆变换与逆矩阵

人教版高中数学选修 4-2矩阵变换 第三章 第一节 逆变换与逆矩阵

导入新课除了我们已学过的一些矩阵的性质之外还有其他性质么?知识回顾矩阵乘法的运算性质结合律(ab)c=a(bc)交换律ab=ba消去律设a≠0,若ab=a,则b=c;若ba=ca,则b=c.类比实数的乘法运算中有一条重要的运算性质:.aa a a ,a 1=1•=•10则如果 ≠把恒等变换I 和单位矩阵E 作为数1的类比对象知识与能力掌握逆矩阵的概念和简单性质过程与方法●通过线性变换理解逆矩阵的性质情感态度与价值观●培养学生提出问题,解决问题的能力重点:●逆矩阵的概念与简单性质.●逆矩阵的概念;●用线性变换的角度理解逆矩阵的简单性质.难点:探究1对于一个线性变换ρ,是否存在一个线性变换σ,使得σ·ρ=ρ·σ= I ?对于一个二阶矩阵A,是否存在一个二阶矩阵B,使得AB=BA=E?Oyx30°R -30°R 30°αα′例1 旋转变换R 30°:.y x y ,y x x 23+21=′2123=′-R -30°:.y x y ,y x x 23+21=′21+23=′-对于直角坐标系xOy 内的任意一个向量α由图可得:α′ αα有:(R 30°· R -30°)= R 30°(R -30°)= α α α同理可得:R -30°· R 30°=I∴R 30°· R -30°= I23212123-23212123-对于二阶矩阵,存在二阶矩阵,使得23212123-23212123-23212123-23212123-==E 2思考一般的旋转变换Rψ,也有相似的结论么?探究2对于切变变换、伸缩变换、反射变换等线性变换,能否找到一个线性变换,使得它们的复合变换是恒等变换I?同学们:我会了哦!你们会了么?类比书本看看答对了么?定义设ρ是一个线性变换,若存在线性变换σ,使得σρ=ρσ= I,则称变换ρ可逆,并称σ是ρ的逆矩阵.用矩阵的语言表述:设A是一个二阶矩阵,若存在二阶矩阵B,使得AB=BA=E2,则称矩阵A可逆,或A是可逆矩阵,并称B是A的逆矩阵.设A是一个二阶可逆矩阵,对于对应的线性变换为ρ,由矩阵和变换的对应关系,得到A的逆矩阵就是ρ逆变换对应的矩阵.思考是否每一个二阶矩阵都可逆?若能,请说明理由;若不能,请举例说明.答案:不是.如A =0012探究31.若一个线性变换是可逆的,则它的逆变换是唯一的么?2.若一个二阶矩阵是可逆的,则它的逆矩阵是唯一的么?以例1中的两个旋转变换为例反证法证明:假设不唯一,则存在变换R 30°的任意一个逆变换σ,使得σ R 30°= R 30°σ= I .∴对平面上任意一个向量有,α()()()()()().R I R R R R R R R I α=α=ασ•=ασ=ασ=ασ=ασ°30°30°30°30°30°30°30°30 -----)(.=σ°30假设不成立-,R ∴∴逆变换是唯一的.性质1设A是一个二阶矩阵,若A是可逆的,则A的逆矩阵是唯一的.证明:设B,B2都是A的逆矩阵,则1B1A=AB1=E2,B2A=AB2=E2.∴B=E2B1=(B2A)B1=B2(AB1)1=B2E2=B2.即:B=B2.1探究4两个可逆变换的复合变换仍可逆么?yy ,x x 2=′=′伸缩变换ρ:yx y ,y x x 23+21=′2123=′-旋转变换R 30°:它们的逆矩阵分别为:y y ,x x 21=′=′:-ρ1yx y ,y x x 23+21=′21+23=′-R -30°:任意一个平面向量: = .αy x 先经ρ·R 30°的复合变换,再经R -30°·ρ-1,最终仍得到α如图:ρOyxαR °30-R °30ρ1-()()().RR R R .I R R I R R 1°301°3011°30°30°301°30°30°301ρ=ρ=ρ•,ρ•=ρ•ρ•=ρ••ρ---------且可逆即:变换)(类似:;)(∴性质2设A , B是二阶矩阵,若A,B都可逆,则AB 也可逆,且(AB)-1=B-1A-1.证明:∵(AB)(B-1A-1)=A(BB-1)A-1=AE2A-1=AA-1=E2,(B-1A-1) (AB)= B-1( AA-1)B= B-1E2B= B-1B=E2,即:(AB)(B-1A-1)=(B-1A-1)(AB)=E2∴AB可逆,且(AB)-1 = B-1A-1.课堂小结1. A是一个二阶矩阵,若存在二阶矩阵B,使,则称矩阵A可逆.得AB=BA=E22.A是一个二阶矩阵,若A是可逆的,则A的逆矩阵是唯一的.3.A, B是二阶矩阵,若A,B都可逆,则AB也可逆,且(AB)-1=B-1A-1.教材习题答案:)伸缩变换(ρ11.:其逆变换为可逆σ,kyy ,x x =′=′yky ,x x 1=′=′:轴的反射变换)关于(ρ2x 可逆,yy ,x x -=′=′.y y ,x x -=′=′:其逆变换为ρ1201-1201)(12.其逆矩阵为可逆,10021021)(2其逆矩阵为可逆,1000)(3不可逆θθθθcos sin sin cos -θθθθcos sin sin cos -)(4其逆矩阵为可逆,()()..I I .I ,I ,.逆变换是唯一的则矩阵都是它的逆,是可逆的,设线性变换∴∴σ=σ•=σ•ρ•σ=σ•ρ•σ=•σ=σ=ρ•σ=σ•ρ=ρ•σ=σ•ρσσρ322212*********().A AA .E A A A A ,E A A A A ,A .=====41111111-------可逆且即:则可逆设二阶矩阵∴()()()()()().A A A .E A A EA A A A A A A A ,E A A A AE A AAA A A .E A A A A ,A .211221111221111121211===========5--------------也可逆且则可逆设二阶矩阵∴∴∴。

逆矩阵的计算方法

逆矩阵的计算方法

逆矩阵的计算方法逆矩阵在线性代数中扮演着重要的角色,它在解线性方程组、求解线性变换的逆变换等方面具有重要的应用价值。

本文将介绍逆矩阵的计算方法,希望能够帮助读者更好地理解和掌握这一概念。

首先,我们需要明确什么是逆矩阵。

对于一个n阶方阵A,如果存在另一个n 阶方阵B,使得AB=BA=In(其中In为n阶单位矩阵),那么我们称B是A的逆矩阵,记作A^-1。

逆矩阵的存在与否对于方阵的可逆性有着重要的意义。

接下来,我们将介绍逆矩阵的计算方法。

在实际应用中,我们通常采用以下两种方法来计算逆矩阵。

一、初等行变换法。

初等行变换法是一种常用的计算逆矩阵的方法。

我们可以通过对原矩阵进行一系列的初等行变换,将原矩阵变换成单位矩阵,此时原矩阵经过的一系列变换即为逆矩阵。

具体步骤如下:1. 将原矩阵A与单位矩阵In拼接在一起,即构成一个2n阶的矩阵[A | In]。

2. 通过一系列的初等行变换,将矩阵[A | In]变换成[In | B],此时B即为原矩阵A的逆矩阵。

需要注意的是,初等行变换包括三种操作,互换两行、某一行乘以一个非零常数、某一行加上另一行的若干倍。

在进行初等行变换的过程中,需要保证每一步的变换都是可逆的,以确保得到的逆矩阵是正确的。

二、伴随矩阵法。

另一种常用的计算逆矩阵的方法是伴随矩阵法。

对于一个n阶方阵A,其逆矩阵可以通过以下公式计算得到:A^-1 = (1/|A|)·adj(A)。

其中|A|为A的行列式,adj(A)为A的伴随矩阵。

伴随矩阵的计算过程较为复杂,需要先求出原矩阵A的代数余子式矩阵,然后将其转置得到伴随矩阵。

需要注意的是,以上两种方法都要求原矩阵是可逆的,即其行列式不为0。

如果原矩阵不可逆,则不存在逆矩阵。

在实际应用中,我们可以根据具体问题的特点选择合适的计算方法。

初等行变换法适用于一般的矩阵求逆问题,而伴随矩阵法则在理论推导和证明中有着重要的作用。

总之,逆矩阵的计算方法是线性代数中的重要内容,它在解决线性方程组、求解线性变换的逆变换等问题中具有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学业分层测评(六)
[学业达标]
1.已知直角坐标平面xOy上的一个变换是先绕原点逆时针旋转,再作关于x轴反射变换,求这个变换的逆变换的矩阵.
【解】 这个变换的逆变换是作关于x轴反射变换,再作绕原点顺时针旋转变换,其矩阵
=.
2.求矩阵的逆矩阵.
【导学号:30650038】【解】 法一 待定矩阵法:设矩阵的逆矩阵为,则=,
即=,所以
解得
故所求逆矩阵为.
法二 A=中,0×1-1×1=-1≠0,
∴A-1==.
3.已知A=,B=,求证B是A的逆矩阵.
【证明】 因为A=,B=,
所以AB==,
BA==,
所以B是A的逆矩阵.
4.已知M=,N=,求矩阵MN的逆矩阵.
【解】 因为M=,N=,
所以MN==.
设矩阵MN的逆矩阵为,则
=,即=,所以
解得故所求的逆矩阵为.
5.已知变换矩阵A把平面上的点P(2,-1),Q(-1,2)分别变换成点P1(3,-4),Q1(0,5).
(1)求变换矩阵A;
(2)判断变换矩阵A是否可逆,如果可逆,求矩阵A的逆矩阵A-1;如不可逆,请说明理由.
【解】 (1)设A=,依题意,得=,=,即解得所以A=.
(2)变换矩阵A是可逆的.
设矩阵A的逆矩阵为,
则由=,

解得故矩阵A的逆矩阵为A-1=.
6.已知矩阵A=,B=,求矩阵A-1B.
【导学号:30650039】【解】 设矩阵A的逆矩阵为,
则·=,
即=,
故a=-1,b=0,c=0,d=,
从而A的逆矩阵为A-1=,
所以A-1B==.
7.已知矩阵A=,B=,求满足AX=B的二阶矩阵X.
【解】 因为A=,
所以A-1=.因为AX=B,所以A-1(AX)=A-1B.又因为(A-1A)X=A-1(AX),所以(A-1A)X=A-1B,
所以X=A-1B==.
[能力提升]
8.二阶矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)
与(0,-2).
(1)求矩阵M的逆矩阵M-1;
(2)设直线l在变换M作用下得到了直线m:2x-y=4,求l的方程.
【解】 (1)设M=,则有=,=,
所以且解得
所以M=,从而M-1=.
(2)设直线l上任意一点(x,y),在变换M作用下对应直线m上任意一
点(x 2,y 2),因为==
且m:2x 2-y 2=4,
所以2(x+2y)-(3x+4y)=4,即直线l的方程为x+4=0.。

相关文档
最新文档