高中数学人教版必修1专题复习―对数与对数函数(含答案)(优选.)
高中数学人教版必修1专题复习—对数与对数函数(含答案)

必修1专题复习——对数与对数函数1.23log 9log 4⨯=( ) A .14 B .12C .2D .4 2.计算()()516log 4log 25⋅= ( )A .2B .1C .12 D .14 3.已知222125log 5,log 7,log 7a b ===则 ( )A .3a b - B .3a b - C .3a b D .3ab4.552log 10log 0.25+=( ) A .0 B .1 C .2 D .45.已知31ln 4,log ,12===-x y z ,则( ) A.<<x z y B.<<z x y C.<<z y x D.<<y z x6.设3log 2a =,5log 2b =,2log 3c =,则( )(A )a c b >> (B )b c a >> (C )c b a >> (D )c a b >> 7.已知2log 3a =,12log 3b =,123c -=,则A.c b a >> B .c a b >> C.a b c >> D.a c b >> 8.已知a =312,b =l og 1312,c =l og 213,则( )A. a >b >cB.b >c >aC. c>b>acD. b >a >c 9.函数y =A .[1,2]B .[1,2)C .1(,1]2D .1[,1]210.函数)12(log )(21-=x x f 的定义域为( )A .]1,-(∞B .),1[+∞C .]121,(D .),(∞+21 11.已知集合A 是函数)2ln()(2x x x f -=的定义域,集合B={}052>-x x ,则( )A .∅=B A B .R B A =C .A B ⊆D .B A ⊆ 12.不等式1)2(log 22>++-x x 的解集为( )A 、()0,2-B 、()1,1-C 、()1,0D 、()2,113.函数)1,0)(23(log ≠>-=a a x y a 的图过定点A ,则A 点坐标是 ( ) A 、(32,0) B 、(0,32) C 、(1,0) D 、(0,1) 14.已知函数log ()(,a yx c a c =+为常数,其中0,1)a a >≠的图象如右图,则下列结论成立的是( )A.1,1a c >>B.1,01ac ><<C.01,1a c <<>D.01,01a c <<<< 15.函数y =2|log 2x|的图象大致是( )16.若0a >且1a ≠,则函数2(1)y a x x =--与函数log a y x =在同一坐标系内的图像可能是( )17.在同一坐标系中画出函数x y a log =,xa y =,a x y +=的图象,可能正确的是( ).18.将函数2()log (2)f x x =的图象向左平移1个单位长度,那么所得图象的函数解析式为( )(A )2log (21)y x =+ (B )2log (21)y x =- (C )2log (1)1y x =++ (D )2log (1)1y x =-+19.在同一直角坐标系中,函数x x g x x x f a alog )(),0()(=≥=的图像可能是( )20.函数)1ln()(2+=x x f 的图象大致是 ( )A .B .C .D . 21.若当R x ∈时,函数()xa x f =始终满足()10<<x f ,则函数xy a1log =的图象大致为( )22.(本题满分12分)已知定义域为R 的函数12()2x x b f x a+-+=+是奇函数。
2023-2024学年高一上数学必修一:对数函数(附答案解析)

第1页共6页2023-2024学年高中数学必修一:对数函数一、选择题(每小题5分,共40分)1.已知a =log 213,b =5-3,c =212,则a ,b ,c 的大小关系为(A )A .a <b <cB .a <c <bC .c <b <aD .c <a <b解析:∵log 213<log 21=0,0<5-3<50=1,212=2>1,∴a <b <c .故选A.2.若a >b ,则(C )A .ln(a -b )>0B .3a <3bC .a 3-b 3>0D .|a |>|b |解析:法一:不妨设a =-1,b =-2,则a >b ,可验证A ,B ,D 错误,只有C 正确.法二:由a >b ,得a -b >0.但a -b >1不一定成立,则ln(a -b )>0不一定成立,故A 不一定成立.因为y =3x 在R 上是增函数,当a >b 时,3a >3b ,故B 不成立.因为y =x 3在R 上是增函数,当a >b 时,a 3>b 3,即a 3-b 3>0,故C 成立.因为当a =3,b =-6时,a >b ,但|a |<|b |,所以D 不一定成立.故选C.3.若log 34·log 8m =log 416,则m 等于(D )A .3B .9C .18D .27解析:原式可化为log 8m =2log 34,∴13log 2m =2log 43,∴m 13=3,m =27.4.下列函数中,随着x 的不断增大,增长速度最慢的是(B )A .y =5x B .y =log 5x C .y =x 5D .y =5x。
高一 对数与对数函数知识点+例题+练习 含答案

1.对数的概念一般地,如果a (a >0,a ≠1)的b 次幂等于N ,即a b =N ,那么就称b 是以a 为底N 的对数,记作log a N =b ,N 叫做真数. 2.对数的性质与运算法则 (1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R );④log am M n =nm log a M (m ,n ∈R ,且m ≠0).(2)对数的性质①a log a N =__N __;②log a a N =__N __(a >0且a ≠1). (3)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1);②log a b =1log b a,推广log a b ·log b c ·log c d =log a d . 3.对数函数的图象与性质a >10<a <1图象性 质(1)定义域:(0,+∞)(2)值域:R(3)过定点(1,0),即x =1时,y =0当0<x <1时,y <0 (4)当x >1时,y >0 当0<x <1时,y >0 (6)在(0,+∞)上是增函数(7)在(0,+∞)上是减函数4.反函数指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线__y =x __对称. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)若MN >0,则log a (MN )=log a M +log a N .( × ) (2)log a x ·log a y =log a (x +y ).( × )(3)函数y =log 2x 及y =log 133x 都是对数函数.( × )(4)对数函数y =log a x (a >0,且a ≠1)在(0,+∞)上是增函数.( × ) (5)函数y =ln 1+x 1-x与y =ln(1+x )-ln(1-x )的定义域相同.( √ )(6)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a,1),⎝⎛⎭⎫1a ,-1,函数图象只在第一、四象限.( √ )1.(2015·湖南改编)设函数f (x )=ln(1+x )-ln(1-x ),则有关f (x )的性质判断正确的是________(填序号).①奇函数,且在(0,1)上是增函数; ②奇函数,且在(0,1)上是减函数; ③偶函数,且在(0,1)上是增函数; ④偶函数,且在(0,1)上是减函数. 答案 ①解析 易知函数定义域为(-1,1),f (-x )=ln(1-x )-ln(1+x )=-f (x ),故函数f (x )为奇函数,又f (x )=ln 1+x 1-x=ln ⎝ ⎛⎭⎪⎫-1-2x -1,由复合函数单调性判断方法知,f (x )在(0,1)上是增函数.2.设a =log 1312,b =log 1323,c =log 343,则a ,b ,c 的大小关系是________.答案 c <b <a解析 ∵a =log 1312=log 32,b =log 1323=log 332,c =log 343.log 3x 是定义域上的增函数,2>32>43,∴c <b <a .3.函数f (x )=lg(|x |-1)的大致图象是________.(填图象序号)答案 ②解析 由函数f (x )=lg(|x |-1)的定义域为(-∞,-1)∪(1,+∞),值域为R .又当x >1时,函数单调递增,所以只有②正确.4.(2015·浙江)若a =log 43,则2a +2-a =________. 答案4 33解析 2a+2-a =4log 32+4log 32-=3log log 322+=3+33=4 33. 5.(教材改编)若log a 34<1(a >0,且a ≠1),则实数a 的取值范围是________________.答案 ⎝⎛⎭⎫0,34∪(1,+∞) 解析 当0<a <1时,log a 34<log a a =1,∴0<a <34;当a >1时,log a 34<log a a =1,∴a >1.∴实数a 的取值范围是⎝⎛⎭⎫0,34∪(1,+∞).题型一 对数式的运算例1 (1)设2a =5b =m ,且1a +1b =2,则m =________.(2)lg 5+lg 20的值是________. 答案 (1)10 (2)1解析 (1)∵2a =5b =m ,∴a =log 2m ,b =log 5m , ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2. ∴m =10.(2)原式=lg 100=lg 10=1.思维升华 在对数运算中,要熟练掌握对数的定义,灵活使用对数的运算性质、换底公式和对数恒等式对式子进行恒等变形,多个对数式要尽量先化成同底的形式再进行运算.(1)计算:(1-log 63)2+log 62·log 618log 64=________.(2)已知log a 2=m ,log a 3=n ,则a 2m +n =________. 答案 (1)1 (2)12 解析 (1)原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+(1-log 63)(1+log 63)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.(2)∵log a 2=m ,log a 3=n ,∴a m =2,a n =3, ∴a 2m +n =(a m )2·a n =22×3=12.题型二 对数函数的图象及应用例2 (1)函数y =2log 4(1-x )的图象大致是________.(填序号)(2)当0<x ≤12时,4x <log a x ,则a 的取值范围是____________.答案 (1)③ (2)(22,1) 解析 (1)函数y =2log 4(1-x )的定义域为(-∞,1),排除①、②; 又函数y =2log 4(1-x )在定义域内单调递减,排除④.故③正确.(2)构造函数f (x )=4x 和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝⎛⎦⎤0,12上的图象, 可知f ⎝⎛⎭⎫12<g ⎝⎛⎭⎫12, 即2<log a 12,则a >22,所以a 的取值范围为⎝⎛⎭⎫22,1. 思维升华 应用对数型函数的图象可求解的问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.(1)已知lg a +lg b =0,则函数f (x )=a x 与函数g (x )=-log b x 的图象可能是________.(2)已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是____________. 答案 (1)② (2)(10,12)解析 (1)∵lg a +lg b =0,∴ab =1,∵g (x )=-log b x 的定义域是(0,+∞),故排除①. 若a >1,则0<b <1,此时f (x )=a x 是增函数,g (x )=-log b x 是增函数,②符合,排除④.若0<a <1,则b >1,g (x )=-log b x 是减函数,排除③,故填②.(2)作出f (x )的大致图象(图略).由图象知,要使f (a )=f (b )=f (c ),不妨设a <b <c ,则-lg a =lg b =-12c +6,∴lg a +lg b =0,∴ab =1,∴abc =c .由图知10<c <12,∴abc ∈(10,12).题型三 对数函数的性质及应用命题点1 比较对数值的大小例3 设a =log 36,b =log 510,c =log 714,则a ,b ,c 的大小关系为__________. 答案 a >b >c解析 由对数运算法则得a =log 36=1+log 32,b =1+log 52,c =1+log 72,由对数函数图象得log 32>log 52>log 72,所以a >b >c . 命题点2 解对数不等式例4 若log a (a 2+1)<log a 2a <0,则a 的取值范围是__________. 答案 (12,1)解析 由题意得a >0,故必有a 2+1>2a , 又log a (a 2+1)<log a 2a <0,所以0<a <1, 同时2a >1,所以a >12.综上,a ∈(12,1).命题点3 和对数函数有关的复合函数 例5 已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由. 解 (1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )的最小值为3-2a , 当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0.∴a <32.又a >0且a ≠1,∴a ∈(0,1)∪⎝⎛⎭⎫1,32. (2)t (x )=3-ax ,∵a >0,∴函数t (x )为减函数. ∵f (x )在区间[1,2]上为减函数,∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ),∴⎩⎪⎨⎪⎧3-2a >0,log a (3-a )=1,即⎩⎨⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1.思维升华 在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a 的取值对函数增减性的影响,及真数必须为正的限制条件.(1)设a =log 32,b =log 52,c =log 23,则a ,b ,c 的大小关系为____________.(2)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为__________. (3)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是__________________.答案 (1)c >a >b (2)[1,2) (3)(-1,0)∪(1,+∞) 解析 (1)∵3<2<3,1<2<5,3>2,∴log 33<log 32<log 33,log 51<log 52<log 55,log 23>log 22, ∴12<a <1,0<b <12,c >1,∴c >a >b . (2)令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧ g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2).(3)由题意可得⎩⎪⎨⎪⎧a >0,log 2a >log 12a或⎩⎪⎨⎪⎧a <0,log 12(-a )>log 2(-a ),解得a >1或-1<a <0.2.比较指数式、对数式的大小典例 (1)设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,b ,c 的大小关系是__________. (2)设a =log 2π,b =log 12π,c =π-2,则a ,b ,c 的大小关系为____________.(3)已知324log 0.3log 3.4log 3.6155()5,=,=,=a b c 则a ,b ,c 大小关系为__________.思维点拨 (1)可根据幂函数y =x 0.5的单调性或比商法确定a ,b 的大小关系,然后利用中间值比较a ,c 大小.(2)a ,b 均为对数式,可化为同底,再利用中间变量和c 比较.(3)化为同底的指数式.解析 (1)根据幂函数y =x 0.5的单调性, 可得0.30.5<0.50.5<10.5=1,即b <a <1;根据对数函数y =log 0.3x 的单调性,可得log 0.30.2>log 0.30.3=1,即c >1.所以b <a <c . (2)∵a =log 2π>log 22=1,b =log 12π=log 21π<log 21=0,0<c =1π2<1,∴b <c <a .(3)c =(15)3log 0.3=53log 0.3-=5310log 3.方法一 在同一坐标系中分别作出函数y =log 2x ,y =log 3x ,y =log 4x 的图象,如图所示.由图象知:log 23.4>log 3103>log 43.6.方法二 ∵log 3103>log 33=1,且103<3.4,∴log 3103<log 33.4<log 23.4.∵log 43.6<log 44=1,log 3103>1,∴log 43.6<log 3103.∴log 23.4>log 3103>log 43.6.由于y =5x 为增函数, ∴52log 3.4>5310log 3>54log 3.6.即52log 3.4>(15)3log 0.3 >54log 3.6,故a >c >b . 答案 (1)b <a <c (2)a >c >b (3)a >c >b温馨提醒 (1)比较指数式和对数式的大小,可以利用函数的单调性,引入中间量;有时也可用数形结合的方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.[方法与技巧]1.对数值取正、负值的规律当a >1且b >1或0<a <1且0<b <1时,log a b >0; 当a >1且0<b <1或0<a <1且b >1时,log a b <0. 2.对数函数的定义域及单调性在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为(0,+∞).对数函数的单调性和a 的值有关,因而,在研究对数函数的单调性时,要按0<a <1和a >1进行分类讨论.3.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性. 4.多个对数函数图象比较底数大小的问题,可通过比较图象与直线y =1交点的横坐标进行判定. [失误与防范]1.在运算性质log a M α=αlog a M 中,要特别注意条件,在无M >0的条件下应为log a M α=αlog a |M |(α∈N *,且α为偶数).2.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.A 组 专项基础训练 (时间:40分钟)1.已知log 7[log 3(log 2x )]=0,那么x 12-=________.答案24解析 由条件知,log 3(log 2x )=1,∴log 2x =3, ∴x =8,∴x12-=24. 2.已知x =ln π,y =log 52,z =e 12-,则x ,y ,z 的大小关系为____________.答案 y <z <x解析 ∵x =ln π>ln e ,∴x >1. ∵y =log 52<log 55,∴0<y <12.∵z =e12-=1e >14=12,∴12<z <1.综上可得,y <z <x .3.已知函数f (x )=⎩⎪⎨⎪⎧3x +1, x ≤0,log 2x , x >0,则使函数f (x )的图象位于直线y =1上方的x 的取值范围是__________.答案 (-1,0]∪(2,+∞)解析 当x ≤0时,3x +1>1⇒x +1>0,∴-1<x ≤0;当x >0时,log 2x >1⇒x >2,综上所述:-1<x ≤0或x >2.4.设f (x )=lg ⎝⎛⎭⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是__________. 答案 (-1,0)解析 由f (x )是奇函数可得a =-1,∴f (x )=lg 1+x 1-x,定义域为(-1,1). 由f (x )<0,可得0<1+x 1-x<1,∴-1<x <0. 5.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时,f (x )=2x +15,则f (log 220)=________.答案 -1解析 由f (x -2)=f (x +2),得f (x )=f (x +4),因为4<log 220<5,所以f (log 220)=f (log 220-4)=-f (4-log 220)=-f (log 245)=-(224log 5+15)=-1. 6.(2015·安徽)lg 52+2lg 2-⎝⎛⎭⎫12-1=________. 答案 -1解析 lg 52+2lg 2-⎝⎛⎭⎫12-1=lg 52+lg 22-2 =lg ⎝⎛⎭⎫52×4-2=1-2=-1.7.设函数f (x )满足f (x )=1+f (12)log 2x ,则f (2)=_____________________. 答案 32解析 由已知得f (12)=1-f (12)·log 22,则f (12)=12,则f (x )=1+12·log 2x ,故f (2)=1+12·log 22=32.8.(2015·福建)若函数f (x )=⎩⎪⎨⎪⎧ -x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是_____________________________________.答案 (1,2]解析 由题意f (x )的图象如右图,则⎩⎪⎨⎪⎧a >1,3+log a 2≥4,∴1<a ≤2. 9.已知函数y =log 12(x 2-ax +a )在区间(-∞,2)上是增函数,求a 的取值范围.解 函数y =log 12(x 2-ax +a )是由函数y =log 12t 和t =x 2-ax +a 复合而成.因为函数y =log 12t 在区间(0,+∞)上单调递减,而函数t =x 2-ax +a 在区间(-∞,a 2)上单调递减,又因为函数y =log 12(x 2-ax +a )在区间(-∞,2)上是增函数,所以⎩⎪⎨⎪⎧ 2≤a 2,(2)2-2a +a ≥0,解得⎩⎪⎨⎪⎧ a ≥22,a ≤2(2+1),即22≤a ≤2(2+1).10.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域;(2)求f (x )在区间[0,32]上的最大值.解 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧ 1+x >0,3-x >0,得x ∈(-1,3), ∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,故函数f (x )在[0,32]上的最大值是f (1)=log 24=2. B 组 专项能力提升(时间:20分钟)11.(2015·陕西改编)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则p 、q 、r 的大小关系是____________.答案 p =r <q解析 ∵0<a <b ,∴a +b 2>ab , 又∵f (x )=ln x 在(0,+∞)上为增函数,∴f ⎝ ⎛⎭⎪⎫a +b 2>f (ab ),即q >p . 又r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =p , 故p =r <q .12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则f ⎝⎛⎭⎫13,f ⎝⎛⎭⎫12,f (2)的大小关系是______________.答案 f (12)<f (13)<f (2) 解析 由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x 2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|13-1|>|12-1|, ∴f (12)<f (13)<f (2). 13.若函数f (x )=lg(-x 2+8x -7)在区间(m ,m +1)上是增函数,则m 的取值范围是__________. 答案 [1,3]解析 由题意得⎩⎪⎨⎪⎧m +1≤4,-m 2+8m -7≥0,解得1≤m ≤3, 所以答案应填[1,3].14.已知函数f (x )=ln x 1-x,若f (a )+f (b )=0,且0<a <b <1,则ab 的取值范围是________. 答案 ⎝⎛⎭⎫0,14 解析 由题意可知ln a 1-a +ln b 1-b =0, 即ln ⎝ ⎛⎭⎪⎫a 1-a ×b 1-b =0,从而a 1-a ×b 1-b=1,化简得a +b =1,故ab =a (1-a )=-a 2+a =-⎝⎛⎭⎫a -122+14, 又0<a <b <1,∴0<a <12,故0<-⎝⎛⎭⎫a -122+14<14. 15.设x ∈[2,8]时,函数f (x )=12log a (ax )·log a (a 2x )(a >0,且a ≠1)的最大值是1,最小值是-18,求a 的值.解 由题意知f (x )=12(log a x +1)(log a x +2) =12(log 2a x +3log a x +2)=12(log a x +32)2-18. 当f (x )取最小值-18时,log a x =-32. 又∵x ∈[2,8],∴a ∈(0,1).∵f (x )是关于log a x 的二次函数,∴函数f (x )的最大值必在x =2或x =8时取得.若12(log a 2+32)2-18=1,则a =2-13, 此时f (x )取得最小值时,x =1332(2)=--2∉[2,8],舍去.若12(log a 8+32)2-18=1,则a =12,此时f(x)取得最小值时,x=(12)32=22∈[2,8],符合题意,∴a=12.。
高一数学(必修一)《第五章-对数函数的图象和性质》练习题及答案解析-人教版

高一数学(必修一)《第五章 对数函数的图象和性质》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.函数()()2log 1f x x =-的图像为( )A .B .C .D .2.已知对数函数()f x 的图像经过点1,38A ⎛⎫- ⎪⎝⎭与点则( )A .c a b <<B .b a c <<C .a b c <<D .c b a <<3.函数1()ln f x x x x ⎛⎫=-⋅ ⎪⎝⎭的图象可能是( ) A . B .C .D .4.下图中的函数图象所对应的解析式可能是( )A .112x y -=-B .112xy =-- C .12x y -=- D .21xy =--5.函数f (x )=|ax -a |(a >0且a ≠1)的图象可能为( )A. B . C . D .6.下列函数中是减函数的为( ) A .2()log f x x = B .()13x f x =- C .()f x = D .2()1f x x =-+7.设0.30.50.514,log 0.6,16a b c -⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .b c a <<D .c a b <<8.已知函数2(43)3,0()log (1)2,0a x a x a x f x x x ⎧+-+<=⎨++≥⎩ (a >0且a ≠1)是R 上的单调函数,则a 的取值范围是( )A .30,4⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎡⎤⎢⎥⎣⎦D .23,34⎛⎤ ⎥⎝⎦9.已知定义在R 上的函数()f x 满足()11f =,对于1x ∀,2R x ∈当12x x <时,则都有()()()12122f x f x x x -<-则不等式()222log 1log f x x +<的解集为( )A .(),2-∞B .()0,2C .1,2D .()2,+∞10.函数y ) A .1,2⎛⎤-∞ ⎥⎝⎦B .10,2⎛⎤⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .[]1,211.记函数2log 2x y x=-的定义域为集合A ,若“x A ∈”是关于x 的不等式()22200x mx m m +-<>成立”的充分不必要条件,则实数m 的取值范围是( ) A .()2,+∞ B .[)2,+∞ C .()0,2D .(]0,212.下列函数在(),1-∞-上是减函数的为( )A .()ln f x x =-B .()11f x x =-+ C .()234f x x x =--D .()21f x x =13.下列函数是偶函数且值域为[)0,∞+的是( )①y x =;②3y x =;③||2x y =;④2y x x =+ .A .①②B .②③C .①④D .③④14.已知函数22,2()log ,2x a x f x x x ⎧-<=⎨≥⎩,若()f x 存在最小值,则实数a 的取值范围是( )A .(],2-∞B .[)1,-+∞C .(),1-∞-D .(],1-∞-15.已知910,1011,89m m m a b ==-=-,则( ) A .0a b >>B .0a b >>C .0b a >>D .0b a >>16.已知集合{}1,0,1,2A =-和2{|1}B x x =≤,则A B =( ) A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,217.已知22log log 0a b +=(0a >且1a ≠,0b >且1b ≠),则函数()1()xf x a=与()log b g x x =的图像可能是( )A .B .C .D .18.设123a -=,1312b -⎛⎫= ⎪⎝⎭和21log 3c =,则( ) A .a c b << B .c a b << C .b c a << D .a b c <<19.已知函数212()log (3)f x x ax a =-+ 在[)2,+∞上单调递减,则a 的取值范围( )A .(,4]-∞B .(4,4]-C .[4,4]-D .(4,)-+∞20.函数22log (2)y x x =-的单调递减区间为( )A .(1,2)B .(]1,2C .(0,1)D .[)0,121.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,则()4322x xf x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为( ) A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞二、解答题22.比较下列各数的大小: (1)12log 3与12log π;(2)4log 3与5log 3; (3)5log 2与2log 5.23.已知函数()()()ln 1ln 1f x ax x =++-的图象经过点()3,3ln 2.(1)求a 的值,及()f x 的定义域; (2)求关于x 的不等式()()ln 2f x x ≤的解集.24.已知函数()()9log 91xf x x =++.(1)若()()20f x x a -+>对于任意x 恒成立,求a 的取值范围; (2)若函数()()9231f x xx g x m -=+⋅+和[]90,log 8x ∈,是否存在实数m ,使得()g x 的最小值为0?若存在,求出m 的值,若不存在,请说明理由.25.已知函数()ln f x x =.(1)在①()21g x x =-,②()21g x x =+这两个条件中任选一个,补充在下面的横线上,并解答.问题:已知函数___________,()()()=h x f g x 求()h x 的值域. 注:如果选择两个条件分别解答,按第一个解答计分.(2)若1x ∀∈R ,()20,x ∈+∞和()1122421ln x xa x x -+<-,求a 的取值范围.26.已知______,且函数()22x bg x x a+=+.①函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数;②函数()()0f x ax b a =+>在[1,2]上的值域为[]2,4.在①,②两个条件中选择一个条件,将上面的题目补充完整,求出a ,b 的值,并解答本题. (1)判断()g x 的奇偶性,并证明你的结论;(2)设()2h x x c =--,对任意的1x ∈R ,总存在[]22,2x ∈-,使得()()12g x h x =成立,求实数c 的取值范围. 27.定义:若函数()y f x =在某一区间D 上任取两个实数12x x 、,且12x x ≠,都有()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭则称函数()y f x =在区间D 上具有性质L .(1)写出一个在其定义域上具有性质L 的对数函数(不要求证明). (2)判断函数1()f x x x=+在区间(0,)+∞上是否具有性质L ?并用所给定义证明你的结论. (3)若函数21()g x ax x=-在区间(0,1)上具有性质L ,求实数a 的取值范围.三、填空题28.函数()ln(4)f x x =+-的定义域是___________. 29.()()log 4a f x ax =-在(]1,3上递减,则a 的范围是_________.30.已知函数211,0()2,0xx f x x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪-+>⎩,则函数12()log g x f x ⎛⎫= ⎪⎝⎭的单调递增区间为__. 31.已知函数2(12)0()log (1)0a x a x f x x x +-<⎧=⎨+≥⎩,,的值域为R ,则实数a 的范围是_________32.已知函数()log (23)1(>0a f x x a =-+且1)a ≠,且的图象恒过定点P ,则点P 的坐标为_________.33.已知函数()2log 081584,,⎧<≤⎪=⎨-+>⎪⎩x x f x x x ,若a b c ,,互不相等,且()()()f a f b f c ==,则abc 的取值范围是____.34.若0x >和0y >,且111x y+=,则22log log x y +的最小值为___________.四、多选题35.已知函数()f x 和()g x 的零点所构成的集合分别为M ,N ,若存在M α∈和N β∈,使得1αβ-≤,则称()f x 与()g x 互为“零点伴侣”.若函数()1e 2xf x x -=+-与()23g x x ax a =--+互为“零点伴侣”,则实数a的取值不能是( ) A .1B .2C .3D .436.已知函数()()2lg 1f x x ax a =+--,下列结论中正确的是( )A .当0a =时,则()f x 的定义域为()(),11,-∞-⋃+∞B .()f x 一定有最小值C .当0a =时,则()f x 的值域为RD .若()f x 在区间[)2,+∞上单调递增,则实数a 的取值范围是{}4a a ≥-参考答案与解析1.A【分析】根据函数的定义域为(),1-∞可排除B 、D.再由单调性即可选出答案.【详解】当0x =时,则()()20log 10=0f =-,故排除B 、D. 当1x =-时,则()()21log 1110f -=+=>,故A 正确. 故选A.【点睛】本题考查函数的图像,属于基础题.解决本类题型的两种思路:①将初等函数的图像通过平移、伸缩、对称变换选出答案,对学生能力要求较高;②根据选项代入具体的x 值,判断y 的正负号. 2.C【分析】根据对数函数可以解得2a =,4t =再结合中间值法比较大小. 【详解】设()()log 0,1a f x x a a =>≠,由题意可得:1log 38a =-,则2a = ∴log 164a t ==0.1log 40a =<,()40.20,1b =∈和0.141c =>∴a b c << 故选:C . 3.A【分析】利用函数的奇偶性排除选项D ,利用当01x <<时,则()0f x >,排除选项B ,C ,即得解. 【详解】解:∵函数()f x 的定义域为{}0x x ≠,关于原点对称,1()ln f x x xx ⎛⎫-=-+⋅- ⎪⎝⎭1ln ()x x f x x ⎛⎫--⋅=- ⎪=⎝⎭ ∴()f x 为奇函数,排除选项D .当01x <<时,则2110x x x x--=<和ln 0x < ∴()0f x >,排除选项B ,C . 故选:A . 4.A【分析】根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.【详解】解:根据图象可知,函数关于1x =对称,且当1x =时,则1y =-,故排除B 、D 两项; 当1x >时,则函数图象单调递增,无限接近于0,对于C 项,当1x >时,则12x y -=-单调递减,故排除C项. 故选:A. 5.C【分析】根据指数函数的单调性分类讨论进行求解即可.【详解】当>1a 时,则,1()=,<1x xa a x f x a a x -≥-⎧⎨⎩显然当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而>1a ,故AB 不符合; 对于CD ,因为渐近线为=2y ,故=2a ,故=0x 时,则=1y 故选项C 符合,D 不符合;当0<<1a 时,则,<1()=,1x xa a x f x a a x --≥⎧⎨⎩当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而0<<1a ,故ABD 不符合; 故选:C 6.B【分析】利用对数函数单调性判断选项A ;利用指数函数单调性判断选项B ;利用幂数函数单调性判断选项C ;利用二次函数单调性判断选项D.【详解】选项A :由21>,可得2()log f x x =为增函数.判断错误; 选项B :由31>,可得3x y =为增函数,则()13x f x =-是减函数.判断正确; 选项C :由12-<,可得12y x -=是减函数,则()f x =为增函数.判断错误;选项D :2()1f x x =-+在(),0∞-上单调递增. 判断错误. 故选:B 7.B【分析】计算可得2a =,再分析()0.5log 0.60,1b =∈,0.3116c a -⎛⎫=> ⎪⎝⎭即可判断【详解】由题意0.542a ==,()()0.50.50.5log 0.6log 1,log 0.50,1b =∈=和0.30.30.2511616216c a -⎛⎫==>== ⎪⎝⎭,故b ac <<故选:B 8.C【分析】根据二次函数和对数函数的单调性,结合分段函数的性质进行求解即可.【详解】二次函数2(43)3y x a x a =+-+的对称轴为:432a x -=-因为二次函数开口向上,所以当0x <时,则该二次函数不可能单调递增 所以函数()f x 是实数集上的减函数则有01432302343log 122a a a a a <<⎧⎪-⎪-≥⇒≤≤⎨⎪≥+=⎪⎩故选:C 9.B【分析】由题设知()()2h x f x x =-在R 上递增,将不等式转化为2(log )(1)h x h <,利用单调性求解集即可. 【详解】由题设12x x <时1122()2()2f x x f x x -<-,即()()2h x f x x =-在R 上递增又(1)(1)21h f =-=-,而()222log 1log f x x +<等价于()22log 2log 1f x x -<-所以2(log )(1)h x h <,即2log 1x <,可得02x <<. 故不等式解集为()0,2. 故选:B 10.C【分析】依题意可得21log 0x +≥,根据对数函数的性质解不等式,即可求出函数的定义域. 【详解】解:依题意可得21log 0x +≥,即221log 1log 2x ≥-=,所以12x ≥ 即函数的定义域为1,2⎡⎫+∞⎪⎢⎣⎭.故选:C 11.B【分析】求出函数2log 2x y x=-的定义域得集合A ,解不等式()22200x mx m m +-<>得m 的范围,根据充分不必要条件的定义可得答案. 【详解】函数2log 2xy x =-有意义的条件为02x x>-,解得02x << 所以{}02A x x =<<,不等式()22200x mx m m +-<>,即()()20x m x m +-<因为0m >,所以2m x m -<<,记不等式()22200x mx m m +-<>的解集为集合B所以A B ⊆,所以220≥⎧⎨-≤⎩m m ,得2m ≥.故选:B . 12.C【分析】根据熟知函数的图象与性质判断函数的单调性.【详解】对于选项A ,()ln f x x =-在(),1-∞-上无意义,不符合题意; 对于选项B ,()11f x x =-+在(),1-∞-上是增函数,不符合题意; 对于选项C ,2234,? 4134,? 14x x x x x x x ⎧--≥≤-⎨-++-<<⎩或的大致图象如图所示中由图可知()f x 在(),1-∞-上是减函数,符合题意;对于选项D ,()21f x x =在(),1-∞-上是增函数,不符合题意. 故选:C. 13.C【分析】根据奇偶性的定义依次判断,并求函数的值域即可得答案. 【详解】对于①,y x =是偶函数,且值域为[)0,∞+; 对于②,3y x =是奇函数,值域为R ; 对于③,2xy =是偶函数,值域为[)1,+∞;对于④,2y x x=+是偶函数,且值域为[)0,∞+所以符合题意的有①④ 故选:C. 14.D【分析】根据函数的单调性可知,若函数存在最小值,则最小值是()21f =,则根据指数函数的性质,列式求实数a 的取值范围.【详解】2x <时,则()2,4xa a a -∈--,2x ≥时,则2log 1x ≥若要使得()f x 存在最小值,只需要2log 2a -≥,即1a ≤-. 故选:D. 15.A【分析】法一:根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出. 【详解】[方法一]:(指对数函数性质)由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m > 所以8log 989890m b =-<-=.综上,0a b >>. [方法二]:【最优解】(构造函数) 由910m =,可得9log 10(1,1.5)m =∈.根据,a b 的形式构造函数()1(1)m f x x x x =--> ,则1()1m f x mx -'=- 令()0f x '=,解得110m x m -= ,由9log 10(1,1.5)m =∈ 知0(0,1)x ∈ .()f x 在 (1,)+∞ 上单调递增,所以(10)(8)f f > ,即 a b >又因为9log 10(9)9100f =-= ,所以0a b >> .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用,a b 的形式构造函数()1(1)mf x x x x =-->,根据函数的单调性得出大小关系,简单明了,是该题的最优解.16.A【分析】根据一元二次不等式的求解得{}11B x x =-≤≤,根据集合的交运算即可求解. 【详解】因为{}1,0,1,2A =-和{}11B x x =-≤≤,所以{}1,0,1A B =-故选:A . 17.B【分析】由对数的运算性质可得ab =1,讨论a ,b 的范围,结合指数函数和对数函数的图像的单调性,即可得到答案.【详解】22log log 0a b +=,即为2log 0ab =,即有ab =1. 当a >1时,则0<b <1函数()1()xf x a=与()log b g x x =均为减函数,四个图像均不满足当0<a <1时,则b >1函数数()1()xf x a=与()log b g x x =均为增函数,排除ACD在同一坐标系中的图像可能是B 故选:B . 18.B【分析】结合指数函数,对数函数的单调性,以及临界值0和1,判断即可 【详解】由题意201313a -<==,故(0,1)a ∈ 1130312212b -⎛⎫==>= ⎪⎝⎭2231log log 10c =<= 故c a b << 故选:B 19.B【分析】转化为函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立,再根据二次函数的单调性以及不等式恒成立列式可求出结果. 【详解】因为函数212()log (3)f x x ax a =-+在[)2,+∞上单调递减所以函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立 所以2222230a a a ⎧≤⎪⎨⎪-+>⎩,解得44a -<≤.故选:B 20.A【分析】先求出函定义域,再通过换元法利用复合函数“同增异减”的性质得到结果【详解】由220x x ->,得02x <<令22t x x =-,则2log y t=22t x x =-在(0,1)上递增,在(1,2)上递减因为2log y t=在定义域内为增函数所以22log (2)y x x =-的单调递减区间为(1,2)故选:A 21.A【分析】由()f x 是R 上的奇函数求出a 值,并求出0x <时,则函数()f x 的解析式,再分段讨论解不等式作答.【详解】因函数()f x 是定义在R 上的奇函数,且当0x ≥时,则()4322x xf x a =-⨯+则()0004322220f a a =-⨯+=-=,解得1a =,即当0x ≥时,则()4322x xf x =-⨯+当0x <时,则0x ->,则()()(4322)x x f x f x --=--=--⨯+而当0x ≥时,则()2311(2)244xf x =--≥-,则当()6f x ≤-时,则0(4322)6x xx --<⎧⎨--⨯+≤-⎩,即0(24)(21)0x xx --<⎧⎨-+≥⎩变形得024x x -<⎧⎨≥⎩,解得2x -≤所以不等式()6f x ≤-的解集为(,2]-∞-. 故选:A22.(1)1122log 3log π>.(2)45log 3log 3>.(3)52log 2log 5<. 【分析】(1)根据12()log f x x=,在定义域内是减函数,即可比较二者大小;(2)根据3log y x =,在定义域内是增函数,可得330log 4log 5<<,故3311log 4log 5>,即可比较二者大小; (3)根据5log 21<,2log 51>即可比较二者大小. 【详解】(1)设12()log f x x =.3π<且()f x 是减函数 ∴(3)()f f π>即1122log 3log π>.(2)3log y x =是增函数∴330log 4log 5<<. ∴3311log 4log 5> 即45log 3log 3>. (3)55log 2log 51<=且22log 5log 21>=∴52log 2log 5<.【点睛】本题主要考查了比较对数的大小,解题关键是掌握对数的单调性和对数的运算性质,考查了分析能力和计算能力,属于基础题. 23.(1)1a =,定义域为()1,+∞ (2){112}x x <+∣【分析】(1)直接将()3,3ln 2代入函数解析式,即可求出参数a 的值,从而求出函数解析式,再根据对数的真数大于零得到不等式组,解得即可;(2)依题意可得()()2ln 1ln 2x x -,再根据对数函数的单调性,将函数不等式转化为自变量的不等式,解得即可; (1)解:由题意可得()()ln 31ln 313ln2a ++-=,即()ln 312ln2a +=,所以314a += 解得1a =则()()()ln 1ln 1f x x x =++-.由1010x x +>⎧⎨->⎩,解得1x >.所以()f x 的定义域为()1,+∞. (2)解:由(1)可得()()()()2ln 1ln 1ln 1,1f x x x x x =++-=->不等式()()ln 2f x x 可化为()()2ln 1ln 2x x -因为ln y x =在()0,+∞上是增函数所以20121x xx ⎧<-⎨>⎩ 解得112x <+.故不等式()()ln 2f x x 的解集为{}|112x x <+. 24.(1)(],0-∞(2)存在 m =【分析】(1)利用分离参数法得到()9log 91x a x <+-对于任意x 恒成立,令()()9log 91xh x x =+-,利用对数的图像与性质即可求得;(2)先整理得到()9232x xg x m =+⋅+令3x t =, t ⎡∈⎣研究函数()()222222p t t mt t m m =++=++-,t ⎡∈⎣根据二次函数的单调性对m 进行分类讨论,即可求出m . (1)由题意可知,()()20f x x a -+>对于任意x 恒成立代入可得()9log 910x x a +-->所以()9log 91xa x <+-对于任意x 恒成立令()()()99999911log 91log 91log 9log log 199x xxxx xh x x +⎛⎫=+-=+-==+ ⎪⎝⎭因为1119x +>,所以由对数的图像与性质可得:91log 109x⎛⎫+> ⎪⎝⎭,所以0a ≤. 即实数a 的范围为(],0-∞. (2) 由()()9231f x xx g x m -=+⋅+,[]90,log 8x ∈且()()9log 91x f x x =++代入化简可得()9232x xg x m =+⋅+.令3x t =,因为[]90,log 8x ∈,所以t ⎡∈⎣则()()222222p t t mt t m m =++=++- t ⎡∈⎣①当1m -≤,即1m ≥-时,则()p t 在⎡⎣上为增函数所以()()min 1230p t p m ==+=,解得32m =-,不合题意,舍去②当1m <-<1m -<-时,则()p t 在[]1,m -上为减函数,()p t 在m ⎡-⎣上为增函数所以()()2min 20p t p m m =-=-=,解得m =m =③当m ≤-,即m ≤-()p t 在⎡⎣上为减函数所以()(min 100p t p ==+=解得m =综上可知m =【点睛】二次函数中“轴动区间定”或“轴定区间动”类问题,分类讨论的标准是函数在区间里的单调性. 25.(1)答案见解析 (2)1,4⎛⎫-∞- ⎪⎝⎭【分析】(1)根据复合函数的性质即可得到()h x 的值域;(2)令()()1ln F x x x =-,求出其最小值,则问题转化为1142x x a <-恒成立,进而求1142x xy =-最小值即可.(1)选择①,()()2ln 1h x x =-令21t x =-,则()0,t ∈+∞,故函数ln y t =的值域为R ,即()h x 的值域为R .选择②,()()2ln 1h x x =+,令21t x =+,则[)1,t ∈+∞因为函数ln y t =单调递增,所以0y ≥,即()h x 的值域为[)0,∞+. (2)令()()1ln F x x x =-.令12x m =,则()0,m ∈+∞,所以112211142244x x m m m ⎛⎫-=-=--≥- ⎪⎝⎭故14a <-,即a 的取值范围为1,4⎛⎫-∞- ⎪⎝⎭.26.(1)选择条件见解析,a =2,b =0;()g x 为奇函数,证明见解析; (2)77,88⎡-⎤⎢⎥⎣⎦.【分析】(1)若选择①,利用偶函数的性质求出参数,a b ; 若选择②,利用单调性得到关于,a b 的方程,求解即可;将,a b 的值代入到()g x 的解析式中再根据定义判断函数的奇偶性; (2)将题中条件转化为“()g x 的值域是()f x 的值域的子集”即可求解. (1) 选择①.由()()224f x x a x =+-+在[]1,1b b -+上是偶函数得20a -=,且()()110b b -++=,所以a =2,b =0. 所以()222xg x x =+.选择②.当0a >时,则()f x ax b =+在[]1,2上单调递增,则224a b a b +=⎧⎨+=⎩,解得20a b =⎧⎨=⎩ 所以()222xg x x =+.()g x 为奇函数.证明如下:()g x 的定义域为R . 因为()()222xg x g x x --==-+,所以()g x 为奇函数.(2) 当0x >时,则()122g x x x=+,因为224x x +≥,当且仅当22x x =,即x =1时等号成立,所以()104g x <≤; 当0x <时,则因为()g x 为奇函数,所以()104g x -≤<;当x =0时,则()00g =,所以()g x 的值域为11,44⎡⎤-⎢⎥⎣⎦.因为()2h x x c =--在[]22-,上单调递减,所以函数()h x 的值域是[]22,22c c ---. 因为对任意的1x R ∈,总存在[]22,2x ∈-,使得()()12g x h x =成立 所以[]11,22,2244c c ⎡⎤-⊆---⎢⎥⎣⎦,所以12241224c c ⎧--≤-⎪⎪⎨⎪-≥⎪⎩,解得7788c -≤≤. 所以实数c 的取值范围是77,88⎡-⎤⎢⎥⎣⎦.27.(1)12log y x =;(2)函数1()f x x x =+在区间(0,)+∞上具有性质L ;答案见解析;(3)(,1]-∞.【分析】(1)由于底数在(0,1)上的对数函数满足题意,故可得答案; (2)任取12,(0,)x x ∈+∞,且12x x ≠,对()()122f x f x +与122x x f +⎛⎫ ⎪⎝⎭作差化简为因式乘积形式,判断出与零的大小,可得结论; (3)函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离求出最值,可得参数的范围. 【详解】(1)如12log y x=(或底在(0,1)上的对数函数);(2)函数1()f x x x=+在区间(0,)+∞上具有性质L .证明:任取12,(0,)x x ∈+∞,且12x x ≠()()12121212121211122222f x f x x x x x f x x x x x x +⎛⎫⎛⎫++⎛⎫-=+++-+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭()()()()2212121212121212121241112222x x x x x x x x x x x x x x x x x x +--⎛⎫=+-== ⎪+++⎝⎭ 因为12,(0,)x x ∈+∞且12x x ≠所以()()21212120,20x x x x x x ->⋅+>,即()()1212022f x f x x x f ++⎛⎫-> ⎪⎝⎭. 所以函数1()f x x x=+在区间(0,)+∞上具有性质L . (3)任取12,(0,1)x x ∈,且12x x ≠,则()()21222121212121211122222g x g x x x x x g ax ax a x x x x ⎡⎤+⎛⎫++⎛⎫⎛⎫-=-+---⎢⎥ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()()()()()2221212121212121212122244ax x x x x x x x a x x x x x x x x x x -+⎡⎤--⎣⎦=-⋅=-++ 因为12,(0,1)x x ∈且12x x ≠,所以()()21212120,40x x x x x x ->⋅+> 要使上式大于零,必须()121220a x x x x -⋅⋅+>在12,(0,1)x x ∈上恒成立 即()12122a x x x x <+()212124x x x x +< ()()()()231212*********8x x x x x x x x x x +∴++>=+ 令()()3120,8x x t +=∈,则38y t =在()0,1上单调递减,即()()()()2331212121212228148x x x x t x x x x x x ∴>=++=>++ 所以1a ≤,即实数a 的取值范围为(,1]-∞.【点睛】关键点点睛:本题考查函数新概念,考查不等式的恒成立问题,解决本题的关键点是将函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离后转化为求最值问题,并借助于基本不等式和幂函数的单调性得出参数的范围,考查学生逻辑思维能力和计算能力,属于中档题. 28.(3,4)【分析】由对数的真数大于零,同时二次根式在分母,则其被开方数大于零,从而可求出定义域【详解】由题意可得260,40,x x ->⎧⎨->⎩解得34x <<,即()f x 的定义域是(3,4).故答案为:(3,4) 29.413a <<【分析】使复合函数()()log 4a f x ax =-在(]1,3上递减,需内增外减或外增内减,讨论a 求解即可 【详解】由题可得,根据对数的定义,0a >且1a ≠,所以4y ax =-是减函数,根据复合函数单调性的“同增异减”特点,得到1430a a >⎧⎨->⎩,所以413a <<.故答案为:413a <<30.2⎛ ⎝⎭[1,)+∞ 【分析】先根据题意求出()g x 的解析式,然后在每一段上求出函数的增区间即可 【详解】由12log 0x ≤,得1≥x ,由12log 0x >,得01x <<所以当1≥x 时,则12log 1()112xg x x ⎛⎫=-=- ⎪⎝⎭,则()g x 在[1,)+∞上递增当01x <<时,则21122()loglog g x x x =-+则121212log 11()2log 111lnlnln222x g x x x x x -'=-⋅+=由()0g x '>,得1212log 0x -<,解得0x <<所以()g x在⎛ ⎝⎭上递增 综上得函数()g x的单调递增区间为⎛ ⎝⎭ [1,)+∞故答案为:⎛ ⎝⎭,[1,)+∞ 31.1(,0]2-【分析】先求出分段函数中确定的一段的值域,然后分析另一段的值域应该有哪些元素.【详解】当0x ≥时,则2()log 0f x x =≥,因此当0x <时,则()(12)f x a x a =+-的取值范围应包含(,0)-∞ ∴1200a a +>⎧⎨-≥⎩,解得102-<≤a . 故答案为1(,0]2-. 【点睛】本题考查分段函数的值域问题,解题时注意分段讨论.32.()2,1【解析】根据对数函数的性质求解.【详解】令231x -=,则2x =,(2)1f =即()f x 图象过定点(2,1).故答案为:(2,1)33.()820,【分析】利用函数图像,数形结合进行分析.【详解】不妨设a b c <<,画出函数()f x 图像:()()()f a f b f c ==221log log 54a b c ∴==-+- ()2log 0ab ∴= 10534c <-+< 解得1ab = 820c <<820abc ∴<<.故答案为:()820,34.2【分析】由均值不等式求出xy 的最小值,再由对数的运算及性质即可求解.【详解】因为0x >,0y >且111x y+=所以111x y ≥+=4xy ≥,当且仅当11x y =,即2x y ==时等号成立 即xy 的最小值为4所以2222log log log log 42x y xy +=≥=故答案为:235.AD【分析】首先确定函数()f x 的零点,然后结合新定义的知识得到关于a 的等式,分离参数,结合函数的单调性确定实数a 的取值范围即可.【详解】因为函数()1e 2x f x x -=+-是R 上的增函数,且()10f =,所以1α=,结合“零点伴侣”的定义得11β-≤,则02β≤≤又函数()23g x x ax a =--+在区间[]0,2上存在零点,即方程230x ax a --+=在区间[]0,2上存在实数根 整理得2232122411x x x x a x x +++--+==++()4121x x =++-+ 令()()4121h x x x =++-+,[]0,2x ∈所以()h x 在区间[]0,1上单调递减,在[]1,2上单调递增 又()03h =,()723h =和()12h =,所以函数()h x 的值域为[]2,3 所以实数a 的取值范围是[]2,3.故选:AD .36.AC【分析】A 项代入参数,根据对数型函数定义域求法进行求解;B 项为最值问题,问一定举出反例即可;C 项代入参数值即可求出函数的值域;D 项为已知单调性求参数范围,根据二次函数单调性结合对数函数定义域求解即可.【详解】对于A ,当0a =时,则()()2lg 1f x x =-,令210x ->,解得1x <-或1x >,则()f x 的定义域为()(),11,-∞-⋃+∞,故A 正确;对于B 、C ,当0a =时,则()()2lg 1f x x =-的值域为R ,无最小值,故B 错误,C 正确;对于D ,若()f x 在区间[)2,+∞上单调递增,则21y x ax a =+--在[)2,+∞上单调递增,且当2x =时,则0y >则224210aa a⎧-≤⎪⎨⎪+-->⎩,解得3a>-,故D错误.故选:AC.。
高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析1.已知函数,且,则使成立的的取值范围是().A.B.C.D.【答案】C【解析】,且,,即,,则,即.【考点】对数不等式.2.定义在上的函数满足,则的值为_____.【答案】.【解析】由题意,得,,,,;即是周期函数,且,所以.【考点】函数的周期性.3.已知()A.B.C.D.【答案】【解析】根据对数的运算法则,有.【考点】对数的运算法则.4.函数在区间上恒为正值,则实数的取值范围是()A.B.C.D.【答案】B【解析】解:由题意,且在区间上恒成立.即恒成立,其中当时,,所以在区间单调递增,所以,即适合题意.当时,,与矛盾,不合题意.综上可知:故选B.【考点】1、对数函数的性质;2:二次函数的性质.5.函数的零点所在区间是()A.B.C.D.【答案】C【解析】解:根据函数的零点存在性定理可以判断,函数在区间内存在零点.【考点】1、对数的运算性质;2、函数的零点存在性定理.6.函数的定义域为A.B.C.D.【答案】A【解析】要使函数有意义,必须:解得:所以函数的定义域是所以,应选A.【考点】1、函数定义域的求法;2、对数函数.7.函数的定义域为___________.【答案】【解析】因为依题意可得,解得.所以填.本小题的关键是考察了两个知识点.一是偶次方根的被开方数要大于或等于零,另一个就是对数函数的真数要大于零.取这两个的解集的公共部分即可得结论.【考点】1.对数知识.2.根式的知识.8.函数y =2+(x-1)的图象必过定点, 点的坐标为_________.【答案】【解析】令,则,此时,故原函数过定点.【考点】对数函数的图像性质,对数函数横过定点(1,0).9.若函数是幂函数,且满足,则的值等于 .【答案】【解析】可设,则有,即,解得,所以函数的解析式为,故,所以所求的值为.【考点】1.幂函数;2.对数的运算.10.已知函数若函数有3个零点,则实数的取值范围是_______________.【解析】将函数的图像向左移动一个单位,可得函数在区间上为单调递增函数且,因为二次函数在上单调递增且,在上单调递减且,故若函数有3个零点,即函数与函数的图像有3个交点,所以所求的取值范围为.【考点】1.对数函数;2.二次函数;3.分段函数;4.函数的零点.11.设,用二分法求方程在,内近似解的过程中得则方程的根落在区间()A.B.C.D.不能确定【答案】C.【解析】由题意得,因为f(1.25)<0.f(1.5)>0.所以f(1.25)f(1.5)<0,即有零点定理得在的落在.故选B.【考点】1.函数的零点的判定.2.指数函数值的计算.3.估算的思想.12.已知函数,则函数定义域是()A.B.C.D.【答案】C【解析】要使函数有意义需满足条件:,所以原函数的定义域为,答案选.【考点】1.根式有意义的条件以及对数函数有意义的条件;2.对数不等式.13.对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:①f(x1+x2)=f(x1)f(x2),②f(x1x2)=f(x1)+f(x2),③,④,当f(x)=lnx时,上述结论中正确结论的序号是_____________.【答案】②④.【解析】把函数代入结论①②:,,结合对数的运算法则,知②正确,①错误;③说明时,,从而为减函数,但函数是增函数,故③错误;④等价于,当且时,上式显然成立.故④也是正确的.【考点】1、对数的运算法则;2、对数函数的性质;3、基本不等式.14.计算:= .【答案】【解析】解.【考点】对数的运算.15.如果,那么的最小值是()A.4B.C.9D.18【解析】∵,∴mn=81,∴,当且仅当m=n=9时“=”成立,故选D【考点】本题考查了对数的运算及基本不等式的运用点评:熟练掌握对数的运算法则及基本不等式的运用是解决此类问题的关键,属基础题16.求(lg2)2+lg2·lg50+lg25的值.【答案】2【解析】原式=(lg2)2+lg2·(lg2+2lg5)+2lg5 2分=2(lg2)2+2lg2·lg5+2lg5 4分=2lg2(lg2+lg5)+2lg5 6分=2lg2+2lg5 8分=2(lg2+lg5) 10分=2. 12分【考点】本题考查了对数的运算点评:熟练掌握对数的运算法则是解决此类问题的关键,属基础题17.(本小题满分12分)设关于x的方程=0.(Ⅰ) 如果b=1,求实数x的值;(Ⅱ) 如果且,求实数b的取值范围.【答案】(Ⅰ) . (Ⅱ) 。
高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析1.下列区间中,函数在其上为减函数的是().A.(-∞,1]B.C.D.【答案】D【解析】当时,,在区间上为减函数,当时,在区间上是增函数.【考点】函数的单调性.2.函数=的值域为.【答案】【解析】由于,因此,因此的值域为【考点】与对数函数有关的值域.3.函数的单调减区间为 .【答案】【解析】由题意可得函数的定义域为,又在其定义域上为增函数,的减区间即为的减区间,故的减区间为.故答案为.【考点】复合函数的单调性.4.已知函数.(1)求函数的定义域;(2)若不等式有解,求实数的取值范围.【答案】(1);(2).【解析】解题思路:(1)利用对数式的真数为正数,列出不等式组,求不等式的解集即可;(2)不等式有解,即,先求出的最大值,再求的范围即可.规律总结:1.求函数的定义域时要注意以下几点:①分式中分母不为零;②偶次方根被开方数非负;③对数式中,真数大于零,底数为大于零且不等于1的实数;④中,底数不为零;要注意区别以下两条:;.试题解析:(1)须满足,∴,∴所求函数的定义域为.说明:如果直接由,得到定义域,不得分.但不再影响后面的得分. (2)∵不等式有解,∴令,由于,∴∴的最大值为∴实数的取值范围为 .说明:也可以结合的是偶函数和单调性,求得的最大值,参照给分.【考点】1.函数的定义域;2.解不等式.5.函数的零点所在区间是()A.B.C.D.【答案】C【解析】解:根据函数的零点存在性定理可以判断,函数在区间内存在零点.【考点】1、对数的运算性质;2、函数的零点存在性定理.6.已知函数(1)求函数的定义域;(2)求函数的零点;(3)若函数的最小值为-4,求a的值.【答案】(1)函数的定义域为;(2的零点是;(3).【解析】(1)函数的定义域是使函数有意义的取值范围,而对数有意义则真数大于0,即;(2)函数的零点等价于方程的根,可先利用对数运算性质进行化简,即,要注意定义域的范围,检验解得的根是否在定义域内;(3)可利用函数的单调性求最值来解参数,由(2)可知,令,在单调递减,则在取最大值时函数的最小值取-4,而,当时,则,.试题解析:21.(普通班)(1)要使函数有意义,则有解之得,所以函数的定义域为.(2)函数可化为由,得,即,,,的零点是.21.(联办班)(1)要使函数有意义:则有,解之得:,所以函数的定义域为:.(2)函数可化为由,得,即,,,的零点是.(3).,,.由,得,.【考点】1、对数函数的定义域;2对数的运算性质;3、函数的零点;4、对数方程的解法;5、复合函数的最值问题;6、二次函数的最值.7.设,用二分法求方程在,内近似解的过程中得则方程的根落在区间()A.B.C.D.不能确定【答案】C.【解析】由题意得,因为f(1.25)<0.f(1.5)>0.所以f(1.25)f(1.5)<0,即有零点定理得在的落在.故选B.【考点】1.函数的零点的判定.2.指数函数值的计算.3.估算的思想.8.设a>0,则()A.1B.2C.3D.4【答案】D【解析】。
人教A版高中数学必修第一册《第四章指数函数与对数函数》复习参考题及答案

(第3 (1)题)
4.观察图象可知,当 时,1个实数解;当 时,2个实数解;当 时,3个实数解.
(第4题)
5. (1) A.(2) D.(3) .
6. (1)因为 ,
所以 .
(2)因为 ,
所以 .
(3)因为 ,
所以
(1)写出函数 的一个解析式;
(2)提出一个能满足函数 图象变化规律的实际问题.
答案:
1. (1) C.(2) .(3) .
2. (1) . (2) . (3) . (4) . (5) . (6) .
3. (1)令 ,由函数图象可知,它分别在 和(2,3)内与 轴有交点,所以方程 的最大的根应该在(2,3)内.用二分法可得原方程的最大根约为2.515625 .
7.函数 ,其图象顶点的横坐标为 .
由已知图象可知, ,则 .
8.设核电站爆炸时锶90最初的量为 .依题意,经 年后,锶90的量变为 ,即 .因为 ,所以,800年后原有的锶90还剩0.000000204%.
9. (1)由 可知,当 时, ;当 5时, ,于是有 ,解得 ,那么 .所以,当 时, ,即 后还剩下 的污染物.
(2)因为函数 的定义域为(-1,1),且 ,所以函数 是偶函数.
12. (1)因为函数 分别在 和 上是减函数,则函数 分别在 和 上是增函数,函数 也分别在 和 上是增函数;又因为函数 在 上是增函数,则函数 在 上也是增函数,值域为 .所以,函数 在 上是增函数.证明如下:
在 上任取 ,且 ,则 ,由 可知 ,则 ,所以 ,即 .所以, 都是 上的增函数.
8. 1986年4月26日,乌克兰境内的切尔诺贝利核电站爆炸,核泄漏导致事故所在地波严重污染.主要的核污染物是锶90 ,它每年的衰减率为 .专家估计,要完全消除这次核事故对自然环境的影响至少需要800年,到那时原有的锶90还剩百分之几?
【优质文档】人教版高一数学对数运算及对数习题课附答案

答案 : C.
3.函数 f x log 2 2x 的图象可由 y log 2 x 的图象经下列哪种变换而得到 ( )
A.向左平移 1 个单位
B.向右平移 1 个单位
C.向上平移 1 个单位
D.向下平移 1 个单位
解析 :∵f x log 2 2x log2 2 log 2 x 1 log 2 x ,
x
时 ,f(1)= lg 1 = 0,排除 C,故选 D.
1
答案 :D
3 a x 4a, x 1
3.若函数 f x
在(-∞,+∞)内为增函数 ,则 a 的取值范围是 ( )
log a x, x 1
第4 页 共 7 页
6.函数 y log 2 x 1 1 的值域为 ( )
A.R
B.(0,+ ∞)
C.(-∞,0)∪(0,+ ∞)
D.(-∞,1)∪ (0,+ ∞)
1
解析 :∵ x 1
1 1 1 ,∴ y
x
log 2 x 1 1
log 2 1 0 ,∴所求值域为
,0 0,
.
答案 :C
7.函数 f x ln x 的单调递减区间是
对数运算及对数函数习题课 基础巩固
1. log 2 3 log 2 6 的值为 ( 3
A.1
B. 1
2
) C. 1
2
6 解析 :原式 = log 2 3
3
1 log 2 2 .
2
答案 :B. 2.函数 y lg x 1 的图象大致是 ( )
D.-1
解析 :函数 y lg x 1 的图象可看作是 y lg x 的图象向左平移 1 个单位长度得到的 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 赠人玫瑰,手留余香。
必修1专题复习——对数与对数函数1.23log 9log 4⨯=( )A .14 B .12C .2D .4 2.计算()()516log 4log 25⋅= ( )A .2B .1C .12 D .143.已知222125log 5,log 7,log 7a b ===则 ( ) A .3a b - B .3a b - C .3a b D .3ab4.552log 10log 0.25+=( )A .0B .1C .2D .45.已知31ln 4,log ,12===-x y z ,则( ) A.<<x z y B.<<z x y C.<<z y x D.<<y z x 6.设3log 2a =,5log 2b =,2log 3c =,则( )(A )a c b >> (B )b c a >> (C )c b a >> (D )c a b >>7.已知2log 3a =,12log 3b =,123c -=,则A.c b a >> B .c a b >> C.a b c >> D.a c b >>8.已知a =312,b =l og 1312,c =l og 213,则( )A. a >b >cB.b >c >aC. c>b>acD. b >a >c 9.函数23log (21)y x =-的定义域是A .[1,2]B .[1,2)C .1(,1]2D .1[,1]210.函数)12(log )(21-=x x f 的定义域为( )A .]1,-(∞B .),1[+∞C .]121,(D .),(∞+21 11.已知集合A 是函数)2ln()(2x x x f -=的定义域,集合B={}052>-x x ,则( )A .∅=B A B .R B A =C .A B ⊆D .B A ⊆12.不等式1)2(log 22>++-x x 的解集为( )A 、()0,2-B 、()1,1-C 、()1,0D 、()2,113.函数)1,0)(23(log ≠>-=a a x y a 的图过定点A ,则A 点坐标是 ( )A 、(32,0) B 、(0,32) C 、(1,0) D 、(0,1) 14.已知函数log ()(,a y x c a c =+为常数,其中0,1)a a >≠的图象如右图,则下列结论成立的是( )A.1,1a c >>B.1,01ac ><<C.01,1a c <<>D.01,01a c <<<<15.函数y =2|log 2x|的图象大致是( )16.若0a >且1a ≠,则函数2(1)y a x x =--与函数log a y x =在同一坐标系内的图像可能是( )17.在同一坐标系中画出函数x y a log =,x a y =,a x y +=的图象,可能正确的是( ).18.将函数2()log (2)f x x =的图象向左平移1个单位长度,那么所得图象的函数解析式为( )(A )2log (21)y x =+ (B )2log (21)y x =- (C )2log (1)1y x =++ (D )2log (1)1y x =-+19.在同一直角坐标系中,函数x x g x x x f a alog )(),0()(=≥=的图像可能是( )20.函数)1ln()(2+=x x f 的图象大致是 ( )A .B .C .D .21.若当R x ∈时,函数()xa x f =始终满足()10<<x f ,则函数xy a1log =的图象大致为( )22.(本题满分12分)已知定义域为R 的函数12()2x x b f x a+-+=+是奇函数。
(Ⅰ)求,a b 的值;(Ⅱ)解不等式0)13()25(<++-x f x f23.函数2()a f x x x=+。
(1) 判断并证明函数的奇偶性;(2) 若2a =,证明函数在(2,+∞)单调增;(3) 对任意的(1,2)x ∈,()3f x >恒成立,求a 的范围。
24.(本题满分16分)已知函数23()2px f x x +=+(其中p 为常数,[2,2]x ∈-)为偶函数.(1) 求p 的值;(2) 用定义证明函数()f x 在(0,2)上是单调减函数;(3) 如果(1)(2)f m f m -<,求实数m 的取值范围.25.已知函数)1,0(11log )(≠>--=a a x mxx f a的图象关于原点对称。
(1)求m 的值;(2)判断)(x f 在),1(+∞上的单调性,并根据定义证明。
26.(本小题满分12分)设函数()log (1),a af x x=-其中01a <<.(Ⅰ)证明:()f x 是(,)a +∞上的减函数;(Ⅱ)若()1f x >,求x 的取值范围.27.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数)(x f =21log 1x x +-. (1)判断函数)(x f 的奇偶性,并证明;(2)求)(x f 的反函数)(1x f -,并求使得函数12()()log g x f x k -=-有零点的实数k 的取值范围.28. (本题满分14分)已知函数()log ()log ()f x x x 22=1--1+.(1)求函数()f x 的定义域; (2)判断()f x 的奇偶性;(3)方程()f x x =+1是否有根?如果有根x 0,请求出一个长度为14的区间(),a b ,使x 0∈(),a b ;如果没有,请说明理由?(注:区间的长度为b a -).参考答案1.D 【解析】试题分析:42log 3log 42log 23log 22log 3log 4log 9log 3232232232=⨯=⨯=⨯=⨯,答案选D.考点:对数的运算性质 2.B 【解析】试题分析:由换底公式得,()()14lg 25lg 25lg 4lg 25log 4log 165=⋅=⋅. 考点:换底公式的应用. 3.B 【解析】 试题分析:根据对数的运算法则,有b a -=-=-=-=37log 5log 37log 5log 7log 125log 7125log 22232222. 考点:对数的运算法则. 4.C 【解析】 试题分析:2255555552log 10log 0.25log 10log 0.25log (1000.25)log 25log 52+=+=⨯===,故选C.考点:对数的运算. 5.C 【解析】试题分析:0131log 21log 33<-=<=y ,又01ln 4ln >=>=e x ,所以有<<z y x ; 考点:对数比较大小 6.D 【解析】 试题分析:因为12log 3log ,15log 2log 0,13log 2log 0225533=>==<=<=<=<c b a ,所以c 最大,排除A ,B ;再注意到:b a ba >∴<⇒<⇒<<,112log 12log 15log 3log 05322,排除C ,故选D . 考点:对数函数. 7.D 【解析】试题分析:由对数函数的性质知1a >,0b <,由幂函数的性质知01c <<,故有a cb >>.考点:对数、幂的比较大小 8.A【解析】因为312>1,o<l og 1312<1,c =l og 213<0,所以a >b >c ,故选A考点:指数函数和对数函数的性质. 9.C 【解析】 试题分析:根据函数定义域的要求得:23log (21)01021212(21)0x x x x -≥⎧⎪⇒-≤⇒-≤⎨⎪-⎩<1<1>. 考点:(1)函数的定义域;(1)对数函数的性质.10.C 【解析】试题分析:()12log 2101021112210x x x x ⎧-≥⎪⇒<-≤⇒<≤⎨⎪->⎩,则此函数定义域为1,12⎛⎤⎥⎝⎦。
故C 正确。
考点:1函数的定义域;2对数函数的单调性。
11.C 【解析】试题分析:由220x x ->可得0x <或2x >.又由250,x x ->∴<或x >所以A B ⊆.故选C.考点:1.对数函数.2.二次不等式的解法.3.集合间的关系. 12.C【解析】要使原式有意义需满足:220x x -++>,解得12x -<<原式可化为222log (2)log 2x x -++>函数2log y x =在[0,)+∞是单调递增函数∴222x x -++>01x ∴<<12x -<<∴不等式22log (2)1x x -++>的解集为(0,1)故选C【考点】对数不等式的解法;对数函数的单调性. 13.C 【解析】试题分析:由对数函数x y a log =过定点(1,0),可知令1123=⇒=-x x ,故函数)1,0)(23(log ≠>-=a a x y a 的图过定点A 的从标为(1,0).考点:对数函数. 14.D【解析】由图可知,log ()a y x c =+的图象是由log a y x =的图象向左平移c 个单位而得到的,其中01c <<,再根据单调性易知01a <<,故选D. 考点:对数函数的图象和性质. 15.C【解析】当log 2x≥0,即x≥1时,f(x)=2log 2x =x ; 当log 2x<0,即0<x<1时,f(x)=2-log 2x =1x. 所以函数图象在0<x<1时为反比例函数y =1x的图象, 在x≥1时为一次函数y =x 的图象. 16.A 【解析】试题分析:当1a >时,抛物线开口向上,对数函数单调递增,又抛物线对称轴102(1)x a =>-,故选A.考点:函数图象. 17.D 【解析】试题分析:分10<<a 和1>a 两种情形,易知ABC 均错,选D. 考点:基本初等函数的图像 18.C 【解析】试题分析:因为2222()log (2)log 2log 1log f x x x x ==+=+,所以将其图象向左平移1个单位长度所得函数解析式为()21log 1y x =++.故C 正确.考点:1对数函数的运算;2函数图像的平移.19.D【解析】试题分析:对于A ,()ax x f =是幂函数,因此图象不对;对于B ,由对数函数的图象值10<<a ,因此幂函数()a x x f =为增函数且上升越来越平缓不对;C 中幂函数应为增函数且比较陡峭;D 中对数函数10<<a ,幂函数上升比较平缓,正确.考点:对数函数和幂函数的图象.20.A【解析】试题分析:因为f(-x)=f(x),可知函数图象关于y 轴对称,且f(0)=0,可知选A 考点:对数的性质,函数的图象21.B【解析】试题分析:由于当R x ∈时,函数()xa x f =始终满足()10<<x f ,得1<<a o ,当0>x 时,x x x y a a a1log 1log 1log ===在()+∞,0为增函数,由于x y a 1log =为偶函数,因此xy a 1log =在()0,∞-为减函数,因此选B . 考点:函数图象.22.(Ⅰ)2a =,1b =(Ⅱ){}|6x x >-【解析】试题分析:(Ⅰ)因为()f x 是奇函数,所以(0)f =0,即111201()22xx b b f x a a +--=⇒=∴=++又由f (1)= -f (-1)知11122 2.41a a a --=-⇒=++ ……6分 (Ⅱ)由(Ⅰ)知11211()22221x x x f x +-==-+++,易知()f x 在(,)-∞+∞上 为减函数。