算法背包问题

合集下载

背包问题的算法研究及应用

背包问题的算法研究及应用

背包问题的算法研究及应用背包问题是一种经典的组合优化问题,常常被用来研究在有限的空间下如何使价值最大化。

背包问题可以分为 01 背包问题、完全背包问题、多重背包问题和混合背包问题等多种类型。

这些问题的求解方法也各有特点,需要根据具体问题进行选择。

本文主要介绍 01 背包问题和完全背包问题的求解算法及应用。

一、01 背包问题01 背包问题指的是在一个容量为 V 的背包中装入物品,每件物品都有自己的体积 vi 和价值 wi,问怎样装能使背包价值最大化,且物品不能重复使用。

01 背包问题可以用贪心算法或动态规划算法进行求解。

贪心算法的思想是每次选择当前最优的物品,直到背包无法继续装下为止。

但是贪心算法不能保证一定能获得最优解。

动态规划算法则是将问题分解为子问题,并通过递推关系式来求解。

具体来说,我们定义一个 dp[i][j] 表示将前 i 件物品放入容量为 j 的背包中所能获得的最大价值,则有:dp[i][j] = max(dp[i-1][j], dp[i-1][j-vi]+wi)其中 max 表示取两者中的最大值,dp[i-1][j] 表示不选择第 i 件物品,dp[i-1][j-vi]+wi 表示选择第 i 件物品放入背包中。

根据递推关系式,我们可以得到目标值为dp[n][V],其中 n 表示物品个数。

二、完全背包问题完全背包问题指的是在一个容量为 V 的背包中装入物品,每件物品都有自己的体积 vi 和价值 wi,问怎样装能使背包价值最大化,且每件物品可以无限使用。

完全背包问题和 01 背包问题类似,也可以用贪心算法或动态规划算法进行求解。

贪心算法的思想是每次选择当前最优的物品,并一直选择直到不能再在背包中装入为止。

但是贪心算法仍然不能保证获得最优解。

动态规划算法则是将问题分解为子问题,并通过递推关系式来求解。

与 01 背包问题相比,完全背包问题的递推关系式与之略有不同,具体来说,我们定义一个 dp[i][j] 表示将前 i 件物品放入容量为 j 的背包中所能获得的最大价值,则有:dp[i][j] = max(dp[i-1][j-k*vi]+k*wi)其中 max 表示取两者中的最大值,k 表示第 i 件物品中的物品数量。

贪心算法-01背包问题

贪心算法-01背包问题

贪⼼算法-01背包问题1、问题描述:给定n种物品和⼀背包。

物品i的重量是wi,其价值为vi,背包的容量为C。

问:应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找⼀n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最⼤.即⼀个特殊的整数规划问题。

2、最优性原理:设(y1,y2,…,yn)是 (3.4.1)的⼀个最优解.则(y2,…,yn)是下⾯相应⼦问题的⼀个最优解:证明:使⽤反证法。

若不然,设(z2,z3,…,zn)是上述⼦问题的⼀个最优解,⽽(y2,y3,…,yn)不是它的最优解。

显然有∑vizi > ∑viyi (i=2,…,n)且 w1y1+ ∑wizi<= c因此 v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n)说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的⼀个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,⽭盾。

3、递推关系:设所给0-1背包问题的⼦问题的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。

由0-1背包问题的最优⼦结构性质,可以建⽴计算m(i,j)的递归式:注:(3.4.3)式此时背包容量为j,可选择物品为i。

此时在对xi作出决策之后,问题处于两种状态之⼀:(1)背包剩余容量是j,没产⽣任何效益;(2)剩余容量j-wi,效益值增长了vi ;使⽤递归C++代码如下:#include<iostream>using namespace std;const int N=3;const int W=50;int weights[N+1]={0,10,20,30};int values[N+1]={0,60,100,120};int V[N+1][W+1]={0};int knapsack(int i,int j){int value;if(V[i][j]<0){if(j<weights[i]){value=knapsack(i-1,j);}else{value=max(knapsack(i-1,j),values[i]+knapsack(i-1,j-weights[i]));}V[i][j]=value;}return V[i][j];}int main(){int i,j;for(i=1;i<=N;i++)for(j=1;j<=W;j++)V[i][j]=-1;cout<<knapsack(3,50)<<endl;cout<<endl;}不使⽤递归的C++代码:简单⼀点的修改//3d10-1 动态规划背包问题#include <iostream>using namespace std;const int N = 4;void Knapsack(int v[],int w[],int c,int n,int m[][10]);void Traceback(int m[][10],int w[],int c,int n,int x[]);int main(){int c=8;int v[]={0,2,1,4,3},w[]={0,1,4,2,3};//下标从1开始int x[N+1];int m[10][10];cout<<"待装物品重量分别为:"<<endl;for(int i=1; i<=N; i++){cout<<w[i]<<" ";}cout<<endl;cout<<"待装物品价值分别为:"<<endl;for(int i=1; i<=N; i++){cout<<v[i]<<" ";}cout<<endl;Knapsack(v,w,c,N,m);cout<<"背包能装的最⼤价值为:"<<m[1][c]<<endl;Traceback(m,w,c,N,x);cout<<"背包装下的物品编号为:"<<endl;for(int i=1; i<=N; i++){if(x[i]==1){cout<<i<<" ";}}cout<<endl;return 0;}void Knapsack(int v[],int w[],int c,int n,int m[][10]){int jMax = min(w[n]-1,c);//背包剩余容量上限范围[0~w[n]-1] for(int j=0; j<=jMax;j++){m[n][j]=0;}for(int j=w[n]; j<=c; j++)//限制范围[w[n]~c]{m[n][j] = v[n];}for(int i=n-1; i>1; i--){jMax = min(w[i]-1,c);for(int j=0; j<=jMax; j++)//背包不同剩余容量j<=jMax<c{m[i][j] = m[i+1][j];//没产⽣任何效益}for(int j=w[i]; j<=c; j++) //背包不同剩余容量j-wi >c{m[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);//效益值增长vi }}m[1][c] = m[2][c];if(c>=w[1]){m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);}}//x[]数组存储对应物品0-1向量,0不装⼊背包,1表⽰装⼊背包void Traceback(int m[][10],int w[],int c,int n,int x[]){for(int i=1; i<n; i++){if(m[i][c] == m[i+1][c]){x[i]=0;}else{x[i]=1;c-=w[i];}}x[n]=(m[n][c])?1:0;}运⾏结果:算法执⾏过程对m[][]填表及Traceback回溯过程如图所⽰:从m(i,j)的递归式容易看出,算法Knapsack需要O(nc)计算时间; Traceback需O(n)计算时间;算法总体需要O(nc)计算时间。

背包问题解析(一)-贪心算法

背包问题解析(一)-贪心算法

背包问题解析(⼀)-贪⼼算法⼀、题⽬:有N件物品和⼀个容量为V的背包。

第i件物品的重量是w[i],价值是v[i]。

求解将哪些物品装⼊背包可使这些物品的重量总和不超过背包容量,且价值总和最⼤。

⼆、解决思路:本题刚开始的解题的时候,想采取贪⼼算法来解决,也就是将放⼊的物品的性价⽐按照从⾼到低进⾏排序,然后优先放优先级⾼的,其次优先级低的。

三、代码实现(python)1# 重量w=[5,4,3,2]2# 价值v=[6,5,4,3]3 b=[]4 m=int(input("请输⼊背包的最⼤重量:"))5 n=int(input("请输⼊商品的数量:"))6for i in range(n):7 a=input("请分别输⼊重量和价值,以空格隔开:")8 a=a.split("")9for i in range(len(a)):10 a[i]=int(a[i])11 b.append(a)12print("加载初始化:",b)13for i in range(len(b)):14for j in range(i+1,len(b)):15if b[i][1]/b[i][0]<b[j][1]/b[j][0]:16 b[i],b[j]=b[j],b[i]17print("性价⽐排序:",b)18 v=019 c=[]20for i in range(len(b)):21if m-b[i][0]>0:22 m=m-b[i][0]23 c.append(b[i])24 v+=b[i][1]25print("放⼊背包:",c)26print("最⼤价值为:",v)打印结果:四、算法分析:贪⼼选择是指所求问题的整体最优解可以通过⼀系列局部最优的选择,即贪⼼选择来达到。

遗传算法求解背包问题

遗传算法求解背包问题

遗传算法的过程:初始化:将计划装入背包的每个物品看成一个二进制串的一位,为1表示放入该物品,为0表示不放入该物品。

初始种群的产生:初始化前对放入背包物品数的一个预测(背包容积/物品最大体积),接下来只要在种群每条染色体中保证有(背包容积/物品最大体积)个为1的位初始化就完成了。

选择:选择进行杂交的父代染色体,被选中的父代染色体总是若干个染色体中最优(适应度最高)的,来保证向优化的方向发展。

详细的选择方法:随机产生2个数:Chrom_Cross_From, Chrom_Cross_To,当然得采用一定的手段来保证前者比后者小。

从Chrom_Cross_From到Chrom_Cross_To这Chrom_Cross_To-Chrom_Cross_From+1条染色体中选择最优(适应度最大)的染色体作为父代之一。

需要进行两次选择得到杂交的两条父代染色体。

这样做可以保证算法不会过早收敛。

函数实现:Individual Select(int ChromSize,Individual Pop[]){int Num_Selected,i,j,Chrom_Selected_From,Chrom_Selected_To,temp;Individual *Chrom_Selected;do{Chrom_Selected_From=rand()%PopSize;Chrom_Selected_To=rand()%PopSize;if(Chrom_Selected_From>Chrom_Selected_To){temp=Chrom_Selected_From;Chrom_Selected_From=Chrom_Selected_To;Chrom_Selected_To=temp;}Num_Selected=Chrom_Selected_To-Chrom_Selected_From+1;}while(Num_Selected<=0);Chrom_Selected=new Individual[Num_Selected];for(i=0;i<Num_Selected;i++)Chrom_Selected[i].chrom=new int[ChromSize];for(i=0,j=Chrom_Selected_From;i<Num_Selected,j<Chrom_Selected_To+1;i++,j++){Chrom_Selected[i]=Pop[j];}Order_Best_First(ChromSize,Num_Selected,Chrom_Selected);Chrom_Selected[0].fitness=Fitness(Chrom_Selected[0].chrom,ChromSize);return Chrom_Selected[0];}杂交:将两次选择得到的父代染色体进行杂交得到一条新的染色体,作为较新种群(并非新的种群)的一条染色体,杂交直到较新种群的染色体数等于原种群的染色体数。

背包问题

背包问题

完全背包问题也是一个相当基础的背包问题,它有两个状态转移方程,分别在“基本思路”以及“O(VN) 的算法“的小节中给出。希望你能够对这两个状态转移方程都仔细地体会,不仅记住,也要弄明白它们是怎么得 出来的,最好能够自己想一种得到这些方程的方法。事实上,对每一道动态规划题目都思考其方程的意义以及如 何得来,是加深对动态规划的理解、提高动态规划功力的好方法。
这个问题非常类似于01背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关 的策略已并非取或不取两种,而是有取0件、取1件、取2件……等很多种。如果仍然按照解01背包时的思路,令 f[i,v]表示前i种物品恰放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程, 像这样:f[i,v]=max{f[i,v-vi]+wi,f[i-1,v]}。这跟01背包问题一样有O(N*V)个状态需要求解,但求解每个状态的 时间则不是常数了,求解状态f[v]的时间是O(v/c),总的复杂度是超过O(VN)的。
背包问题已经研究了一个多世纪,早期的作品可追溯到1897年 数学家托比亚斯·丹齐格(Tobias Dantzig, 1884-1956)的早期作品 ,并指的是包装你最有价值或有用的物品而不会超载你的行李的常见问题。
应用
1998年的石溪布鲁克大学算法库的研究表明,在75个算法问题中,背包问题是第18个最受欢迎,第4个最需 要解决的问题(前三为后kd树,后缀树和bin包装问题)。
基础背包
题目 基本思路
空间复杂 示例程序
递归实现 程序
测试数据 总结
有N件物品和一个容量为V的背包。第i件物品的重量是w[i],价值是v[i]。求解将哪些物品装入背包可使这些 物品的重量总和不超过背包容量,且价值总和最大。

c语言算法--贪婪算法---01背包问题

c语言算法--贪婪算法---01背包问题

c语言算法--贪婪算法---0/1背包问题在0 / 1背包问题中,需对容量为c 的背包进行装载。

从n 个物品中选取装入背包的物品,每件物品i 的重量为wi ,价值为pi 。

对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳装载是指所装入的物品价值最高,即n ?i=1pi xi 取得最大值。

约束条件为n ?i =1wi xi≤c 和xi?[ 0 , 1 ] ( 1≤i≤n)。

在这个表达式中,需求出xt 的值。

xi = 1表示物品i 装入背包中,xi =0 表示物品i 不装入背包。

0 / 1背包问题是一个一般化的货箱装载问题,即每个货箱所获得的价值不同。

货箱装载问题转化为背包问题的形式为:船作为背包,货箱作为可装入背包的物品。

例1-8 在杂货店比赛中你获得了第一名,奖品是一车免费杂货。

店中有n 种不同的货物。

规则规定从每种货物中最多只能拿一件,车子的容量为c,物品i 需占用wi 的空间,价值为pi 。

你的目标是使车中装载的物品价值最大。

当然,所装货物不能超过车的容量,且同一种物品不得拿走多件。

这个问题可仿照0 / 1背包问题进行建模,其中车对应于背包,货物对应于物品。

0 / 1背包问题有好几种贪婪策略,每个贪婪策略都采用多步过程来完成背包的装入。

在每一步过程中利用贪婪准则选择一个物品装入背包。

一种贪婪准则为:从剩余的物品中,选出可以装入背包的价值最大的物品,利用这种规则,价值最大的物品首先被装入(假设有足够容量),然后是下一个价值最大的物品,如此继续下去。

这种策略不能保证得到最优解。

例如,考虑n=2, w=[100,10,10], p =[20,15,15], c = 1 0 5。

当利用价值贪婪准则时,获得的解为x= [ 1 , 0 , 0 ],这种方案的总价值为2 0。

而最优解为[ 0 , 1 , 1 ],其总价值为3 0。

另一种方案是重量贪婪准则是:从剩下的物品中选择可装入背包的重量最小的物品。

背包问题的算法

背包问题的算法

背包问题是一种经典的优化问题,通常用于解决在给定一组物品和它们的重量、价值等信息的情况下,如何选择一些物品放入一个容量有限的背包中,使得背包中物品的总价值最大或总重量最小等问题。

以下是背包问题的一种经典算法——动态规划法:
1. 定义状态:设f[i][j]表示前i个物品中选择若干个物品放入容量为j的背包中所能获得的最大价值或最小重量。

2. 状态转移方程:对于第i个物品,有两种情况:
- 不放入背包中,此时f[i][j]=f[i-1][j];
- 放入背包中,此时f[i][j]=max(f[i-1][j], f[i-1][j-w[i]]+v[i]),其中w[i]和v[i]分别表示第i 个物品的重量和价值。

3. 初始化:f[0][0]=0。

4. 计算最优解:根据状态转移方程,从上到下依次计算每个物品的状态值,最终得到f[n][m]即为所求的最优解。

时间复杂度:O(n*m),其中n为物品数量,m为背包容量。

空间复杂度:O(n*m)。

动态规划方案解决算法背包问题实验报告含源代码

动态规划方案解决算法背包问题实验报告含源代码

动态规划方案解决算法背包问题实验报告含嘿,大家好!今天我来给大家分享一个相当有趣的编程问题——背包问题。

这可是算法领域里的经典难题,也是体现动态规划思想的好例子。

我会用我10年的方案写作经验,给大家带来一份详细的实验报告,附带哦!让我简单介绍一下背包问题。

假设你是一个盗贼,要盗取一个博物馆里的宝贝。

博物馆里有n个宝贝,每个宝贝都有它的价值v和重量w。

你有一个承重为W的背包,你希望放入背包的宝贝总价值最大,但总重量不能超过背包的承重。

这个问题,就是我们要解决的背包问题。

一、算法思路1.创建一个二维数组dp,dp[i][j]表示前i个宝贝放入一个承重为j的背包中,能达到的最大价值。

2.初始化dp数组,dp[0][j]=0,因为如果没有宝贝,那么无论背包承重多少,价值都是0。

3.遍历每个宝贝,对于每个宝贝,我们有两种选择:放入背包或者不放入背包。

4.如果不放入背包,那么dp[i][j]=dp[i-1][j],即前i-1个宝贝放入一个承重为j的背包中,能达到的最大价值。

5.如果放入背包,那么dp[i][j]=dp[i-1][j-w[i]]+v[i],即前i-1个宝贝放入一个承重为j-w[i]的背包中,加上当前宝贝的价值。

6.dp[i][j]取两种情况的最大值。

二、defknapsack(W,weights,values,n):dp=[[0for_inrange(W+1)]for_inrange(n+1)]foriinrange(1,n+1):forjinrange(1,W+1):ifj>=weights[i-1]:dp[i][j]=max(dp[i-1][j],dp[i-1][j-weights[i-1]]+values[i -1])else:dp[i][j]=dp[i-1][j]returndp[n][W]测试数据W=10weights=[2,3,4,5]values=[3,4,5,6]n=len(values)输出结果max_value=knapsack(W,weights,values,n)print("最大价值为:",max_value)三、实验结果分析通过上面的代码,我们可以得到最大价值为15。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验题目:背包问题
实验目的:掌握动态规划、贪心算法的原理,并能够按其原理编程实现解决背包问题,以加深对上述方法的理解。

实验内容:一个旅行者准备随身携带一个背包. 可以放入背包的物品有n 种, 每种物品的重量和价值分别为 wj , vj . 如果背包的最大重量限制是 b, 怎样选择放入背包的物品以使得背包
的价值最大?
目标函数:
约束条件:
线性规划问题 由线性条件约束的线性函数取最大或最小的问题整数规划问题 线性规划问题的变量 xj 都是非负整数
Fk(y):装前 k 种物品, 总重不超过 y, 背包的最大价值
i(k,y):装前 k 种物品, 总重不超过 y, 背包达最大价值时装入物品的最大标号 递推方程、边界条件、标记函数
实例计算:v1 = 1, v2 = 3, v3 = 5, v4 = 9,
w1 = 2, w2 = 3, w3 = 4, w4 = 7,
b = 10
Fk(y) 的计算表如下:
K/y 1 2 3 4 5 6 7 8 9 10N
,max 11
∈≤∑∑==j n j j j n
j j j x b x w x v 0
)()(0,0)0(,0,0)(}
)(),(max{)(11101<-∞=⎥⎦
⎥⎢⎣⎢=≤≤=≤≤=+-=-y y F v w y y F n k F b y y F v w y F y F y F k k k k k k k
1 0 1 1
2 2
3 3
4 4 5
2 0 1
3 3
4 6 6 7 9 9
3 0 1 3 5 5 6 8 10 10 11
4 0 1 3
5 5
6 9 10 10 12
实验步骤:1、分析题目;
2、打开NetBeans软件,新建一个名叫Knapsackdxj的项目,并对其进行保存;
3在新建的项目下对我们所分析的题目进行编写;
4、调试所编写的程序;
5、运行文件,并对其进行测试,看是否正确。

实验结果:
实验小结:
在做本次实验之前,自己对动态规划、贪心算法的原理不是非常的理解,花了很多时间看了课本上的相关内容。

当你懂得算法的基本原理后,再参考老师所提供的代码进行完善补充,必须结合算法的实际情况对代码中的相关变量进行修改,这样才能充分利用课本所提供的代码完成本次实验。

通过本次试验,自己基本上掌握上述算法解背包问题的原理,达到实验的目的。

实验代码:
Knapsack.Java
package chap4;
import java.util.Scanner;
/**
*
* @author Jinyu
*/
public class Knapsack {
//***********************常量定义*****************************
static final int MAX_NUM = 20;
static final int MAX_WEIGHT = 100;
//*********************自定义数据结构************************* //********************题目描述中的变量************************ private final int weight[] = new int[MAX_NUM];
private final int value[] = new int[MAX_NUM];
private final int x[] = new int[MAX_NUM];
private final int m[][] = new int[MAX_NUM][MAX_NUM];
private final int s[][] = new int[MAX_NUM][MAX_NUM];
private int n;
private int w;
int h;
int l;
//***********************算法实现***************************** public void solve() {
int k = 1;
int a = 1;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= w; j++) {
a = 1;
k = 1;
if (weight[i] <= j) {
h = weight[i];
l = value[i];
while (h <= j && a == 1) {//判断是否能够装入
h = weight[i] * k;//k是放入物品的次数,每放一次,k加1再重新判断是否还能放进
l = value[i] * k;
// System.out.println(h + "d");
if (m[i - 1][j] > m[i - 1][j - h] + l || m[i][j] > (m[i - 1][j - h] + l)) {//判断是否应该装入
if (k == 1) {//第一次的时候才执行不放入的操作,k不等于1的时候保持上一次操作的结果不进行改变
m[i][j] = m[i - 1][j];//不装入
s[i][j] = 0;
}
a = 0;
} else {
m[i][j] = m[i - 1][j - h] + l;//应该装入
s[i][j] = k;//存放装入次数,用于求最优解
k++;//装入后k加1
h = weight[i] * k;
l = value[i] * k;
// System.out.println(h + "e");//测试
}
// System.out.println(h + "c");
// System.out.println(i + " " + j + " " + m[i][j]);//测试
}
} else if (m[i][j] < m[i - 1][j]) {//无法装入
m[i][j] = m[i - 1][j];
if (k == 1) {
s[i][j] = 0;
}
}
// System.out.println(i + " " + j + " " + m[i][j]);//测试
}
}
System.out.println("可装入物品的最大价值为:" + m[n][w]);
// for (int i = 1; i <= n; i++) {//测试
// for (int j = 1; j <= w; j++) {
// System.out.println(i + " " + j + " " + s[i][j]);
// }
// }
}
public void trance() {
int y = w;
int j = n;
x[j] = s[j][y];//获取最后一样物品的装入信息
for (int i = j; i > 1; i--) {//由最后一个数据向上推算
y = y - x[i] * weight[i];
x[i - 1] = s[i - 1][y];//将每个物品的装入信息存放起来}
for (int i = 1; i <= n; i++) {
System.out.println("第" + i + "个物品放入" + x[i] + "样");
}
}
public void input() {
Scanner scanner = new Scanner(System.in);
System.out.println("请输入背包能够承受的总重量:");
w = scanner.nextInt();
System.out.println("请输入可以装入背包的物品的种类:");
n = scanner.nextInt();
System.out.println("请输入" + n + "种物品中每一种物品的重量和价值:");
for (int i = 1; i <= n; i++) {
weight[i] = scanner.nextInt();
value[i] = scanner.nextInt();
}
}
}
Test.java
package chap4;
/**
*
* @author Jinyu
*/
public class Test {
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
// MatrixChainApp app1=new MatrixChainApp();
// app1.test();
Knapsack app=new Knapsack();
app.input();
app.solve();
app.trance();
}
}
本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。

相关文档
最新文档