实用测量不确定度评定

合集下载

测量不确定度的评定

测量不确定度的评定

1.3测量不确定度的评定由于始终存在于测量过程中的随机误差影响和不可能完全消除或修正的系统误差影响,任何实际的测量都不可能获得被测量的真值,即测量结果总是不能准确确定的。

测量不确定度的评定就是要决定测量结果的不确定程度及其相应的置信概率,即给出一定置信概率的测量不确定度。

1.3.1 标准不确定度的A 类评定标准不确定度的A 类评定是对由重复性测量引起的不确定度分量进行评定。

对被测量X ,在重复性条件下进行n 次独立重复观测,观测值为i x (n ,,,i ⋅⋅⋅=21),算术平均值x 为∑==ni i x n x 11 (1.3.1) )x (s i 为单次测量的实验标准差,由贝塞尔公式计算得到112--=∑=n )x x ()x (s n i i i (1.3.2) )x (s 为平均值的实验标准差,其值为n )x (s )x (s i = (1.3.3)在某物理量的观测值中,若系统误差已消除或可以忽略不计,只存在随机误差,则观测值散布在其期望值附近。

当取若干组观测值,它们各自的平均值也散布在期望值附近,但比单个观测值更靠近期望值。

也就是说,多次测量的平均值比一次测量值更准确,随着测量次数的增多,平均值收敛于期望值。

因此,通常以样本的算术平均值作为被测量值的估计(即测量结果),以平均值的实验标准差)x (s 作为测量结果的标准不确定度,即A 类标准不确定度。

n /)x (s )x (u i = (1.3.4) 观测次数n 充分多,才能使A 类不确定度的评定可靠,一般认为n 应大于6。

但也要视实际情况而定,当该A 类不确定度分量对合成标准不确定度的贡献较大时,n 不宜太小,反之,当该A 类不确定度分量对合成标准不确定度的贡献较小时,n 小一些关系也不大。

1.3.2标准不确定度的B 类评定B 类不确定度主要来自于各种不同类型的仪器、不同的测量方法、方法的不同应用以及测量理论模型的不同近似等方面。

因此,B 类不确定度的评定主要从以上几个方面获得信息。

测量不确定度评定方法

测量不确定度评定方法

NJ-NB-1002农残检测不确定度评定方法农药定量检测采用的是标准物质参考法,由于标准物质量值的真值不可能准确知道,造成农药定量准确性不可遇见和对真值的追求。

为了表征检测工作和检测结果的准确性,实验室采用不确定度来对检测结果进行说明。

一、不确定度评估时机当检测结果在限量标准附近或客户要求提供检测结果的不确定度以及其他必要活动需要时,实验室进行检测结果的不确定度评定。

二、参照标准参照JJF1059—1999《测量不确定度评定与表示》要求,在考虑置信概率后还可以计算出扩展不确定度。

三、评估因素评估不确定度需要准确列出各种影响因素,这些因素可能包括方法缺陷、样品均匀性、称量误差、试剂、标准物质、仪器设备和人员差异等,且每一因素都可能形成不确定度的一个分量。

对各因素进行考察,确定是属于 A 类还是 B 类标准不确定度,然后以贝塞尔公式计算标准不确定度。

四、不确定度分量的评定我站采用的检测标准方法是NY/1761—2008《蔬菜和水果中有机磷、有机氯、拟除虫菊酯和氨基甲酸酯类农药多残留的测定》。

标准溶液使用0.1ppm的混合标液。

1•校准过程引入的不确定度(属B类不确定度)(1)标准储备液的不确定度各类农药标准储备液浓度校准值为(100.0 )ug/ ml (到标准溶液证书中查找,以△ =0.2为例),关于不确定度数值没有更多的资料,故假设为正态分布(95% 置信概率)。

其标准不确定度为:u(C s )=0.2/ 1.96=0.10ug/ ml(2)标准溶液配制过程引入的不确定度(a) 1 ug/ ml 标准溶液的配制:将1ml 标准储备溶液完全转移至100ml 容量瓶(A级)中,用正己烷定容。

容量瓶体积引入的不确定度:根据GB12806—1991《实验室玻璃仪器单标线容量瓶》规定:A级单标线100mL容量瓶的容量允许差为± 0.10ml。

按矩形分布处理,标准不确定度为:u(V i )=0.10/ .3=0.058mL(b)0.1ug/ ml标准溶液的配制:使用1ml移液管吸取1ml、1ug/ml标准溶液,移至l0mL容量瓶(A级)中,用正己烷定容。

测量不确定度评定培训全文

测量不确定度评定培训全文

第二节、测量误差、测量准确度和测量不确定度
4、测量结果的不确定度定义为:表征合理地赋予被测量之值的分散性,与测量结 果相连续的参数。
注: (1)根据定义,测量不确定度表示测量之值的分散性,因此不确定度表
示一个区间,即被测量之值可能的分布区间。而测量误差是一个差值,这 是测量不确定度和测量误差的最根本的区别,在数轴上,误差表示为一个 “点”,而不确定度则表示为一个“区间”;
测量结果与被测量的真值之间的一致程度。 2、真值 Ture value 与给定的特定量的定义一致的值。 注:真值按其本性是不确定的。 3、约定真值 Convent不要用“精 密度”代替“准确
度”。
对于给定目的具有适当不确定度,赋予特定量的值,有时该值是约定采用的。
第一章、引言
第一节、为什么要用测量不确定 度评定来代替误差评定
第二节、测量不确定度的发展历 史
第三节、测量不确定度评定与表 示的应用范围
第一节、为什么要用测量不确定度评定来代替误差评定
采用误差概念,出现两个方面的困难:逻辑概念上的问题和评定方法的问题。 逻辑概念:测量误差定义为“测量结果减去被测量的真值”(JJF 10011998 通用计量术语及定义),由于真值无法知道,实际上使用的约定真 值,而约定真值本身存在误差。这表明了,用误差来确定误差,这在逻 辑概念上不严谨。
第三节、测量不确定度评定与表示的应用范围
国家计量技术规范 JJF 1059-2012《测量不确定度评定与表示》规定了测量不确定 度的评定与表示的通用规则,它适用于各种准确度等级的测量领域,因此它并不仅限 于计量领域中的检定、校准和检测。其主要领域如下:
建立国家基准、计量标准及其国际比对; 标准物质、标准参考数据; 测量方法、检定规程、检定系统和校准规范等; 科学研究和工程领域的测量; 计量认证、计量确认、质量认证以及实验室认可; 测量仪器的校准和检定; 贸易结算、医疗卫生、安全防护、环境检测及资源测量。

测量不确定度评定的方法以及实例

测量不确定度评定的方法以及实例

第一节有关术语的定义3.量值 value of a quantity一般由一个数乘以丈量单位所表示的特定量的大小。

例: 5.34m 或 534cm, 15kg, 10s,- 40℃。

注:对于不可以由一个乘以丈量单位所表示的量,能够参照商定参照标尺,或参照丈量程序,或二者参照的方式表示。

4.〔量的〕真值 rtue value〔of a quantity〕与给定的特定量定义一致的值。

注:(1)量的真值只有经过完美的丈量才有可能获取。

(2)真值按其天性是不确立的。

(3)与给定的特定量定义一致的值不必定只有一个。

5.〔量的〕商定真值 conventional true value〔of a quantity〕对于给定目的拥有适合不确立度的、给予特定量的值,有时该值是商定采纳的。

例: a) 在给定地址,取由参照标准复现而给予该量的值人作为给定真值。

b) 常数委员会 (CODATA)1986年介绍的阿伏加得罗常数值 6.0221367 × 1023mol-1。

注:(1)商定真值有时称为指定值、最正确预计值、商定值或参照值。

(2)经常用某量的多次丈量结果来确立商定真值。

13.影响量 influence quantity不是被丈量但对丈量结果有影响的量。

例: a) 用来丈量长度的千分尺的温度;b)沟通电位差幅值丈量中的频次;c)丈量人体血液样品血红蛋浓度时的胆红素的浓度。

14.丈量结果 result of a measurement由丈量所获取的给予被丈量的值。

注:(1)在给出丈量结果时,应说明它是示值、示修正丈量结果或已修正丈量结果,还应表示它能否为几个值的均匀。

(2)在丈量结果的完好表述中应包含丈量不确立度,必需时还应说明有关影响量的取值范围。

15.〔丈量仪器的〕示值 indication〔of a measuring instrument〕丈量仪器所给出的量的值。

注:(1)由显示器读出的值可称为直接示值,将它乘以仪器常数即为示值。

测量不确定度的评定与表示

测量不确定度的评定与表示

测量不确定度评定与表示JJF1059.1--20122015.12.29南京JJF1059.1测量不确定度的评定与表示一、(测量)不确定度概念1.不确定度概念绝对测量 x y =直接测量相对测量 0x x y -= 0y U y Y ⊃±=间接测量 ),(21N x x x f y ⋅⋅⋅=定义:测量不确定度是与测量结果相联系的参数,合理地赋予被测量结果的分散性。

新定义:根据所获信息,表征赋予被测量值分散性的非负参数。

2.不确定来源表现为:(1)对被测量的定义不完整或不完善 (2)复现被测量定义的方法不理想 (3)测量所取样本的代表性不够(4)对测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善(5)对模拟式仪器的读数存在人为偏差(6)仪器计量性能上的局限性(7)赋予测量标准和标准物质的标准值的不准确 (8)引用常数或其它参量的不准确(9)与测量原理、测量方法和测量程序有关的的近似性或假定性 (10)在相同的测量条件下,被测量重复观测值的随机变化 (11)对一定系统误差的修正不完善 (12)测量列中的粗大误差因不明显而未剔除(13)在有的情况下,需要对某种测量条件变化,或者是在一个较长的规定时间内,对测量结果的变化作出评定。

应把该相应变化所赋予测量值的分散性大小,作为该测量结果的不确定度。

3.测量不确定度分类与字母表示 3.1绝对量表达A 类标准不确定度(用统计方法得到):A u 一般可统一表示 标准不确定度B 类标准不确定度(用其他方法得到):B u 为:)(x u 或i u 测量不 合成标准不确定度C u 或)(y u C 确定度扩展不确定度 U 或)(y U : C ku U = (k 为包含因子)3.2相对量表达A 类标准不确定度(用统计方法得到):rel A u . 一般可表示 相对标准不确定度B 类标准不确定度(用其他方法得到):rel B u . 为:)(x u rel 或rel i u . 相对测量 合成标准不确定度relC u . 或 )(y u rel C 不确定度相对扩展不确定度 rel U 或 )(y U rel : rel C rel ku U .= (k 为包含因子)二、测量不确定度评定与表示1.A 类标准不确定度计算A 类标准不确定度是指测量随机效应引入的标准不确定度,用A 类评定。

测量不确定度评定方法及应用

测量不确定度评定方法及应用

测量不确定度评定方法及应用摘要:现阶段国家标准实验室验证、计量标准技术报告、鉴定标准证书出具均需要检测部门提供可靠检测数据,检测数据需要用测量不确定度评定方式表示。

针对此,本文以测量不确定度概念为切入点,提出测量不确定度评定方式及实际应用流程,与企业相关工作人员提供理论性帮助。

关键词:测量不确定度;评定方法;应用前言:在现阶段测量工作开展期间,不确定度检测、校准与合格评定工作极为重要,需要结合实际测量要求,选择适宜的不确定度评定方式,明确测量不确定度应用重点,确保测量不确定度应用工作能够在提高测量工作实施水平中发挥出重要作用。

1、测量不确定度概念测量不确定度主要就是指表征合理地赋予被测量值的分散性,与测量结果相联系的参数。

测量结果是测量对象的特定值,可被理解为测量值最佳估计,指代观测结果和测定值的合理处理及修正,经过必要计算获得的量值与报告值[1]。

通常情况下,观测值又被称之为一次观测中由显示器所得的单一值或者测得值。

在表示测量不确定度时,主要就是评估测量结果的可靠度,说明置信水准区间的半宽度。

测量不确定度需要由不确定度大小、置信频率表示。

其中,不确定度大小又指置信区间,置信频率主要包括置信水平、置信水准、置信系数,用测量结果代表落在测量期间的把握。

规定测量不确定主要为说明置信水准区间的半宽度,不确定度为正值。

由方差值计算出正平方根,对称分布的不确定性需要上下区间相等。

不对称分布的不确定性,上下区间不等,需要区间半宽度由上区间减下区间除2计算得出。

2、测量不确定度种类及来源2.1测量不确定度种类由于在实际测量过程中的误差较多,测量结果不确定性要按照评定方式分为多种类型。

如A类不确定度需要用统计方法计算分量,B类不确定度需要用其他方式计算分量[2]。

确定不同度分量的目的为不同处理方法,计算合成不确定度,但并不表示两种方法获得的不确定度存在本质不同,需要获得方法利用概率分布,任何一种方法得到的不确定度分量都可用标准差或方差定量表达。

测量不确定度评定与表示

• 当怀疑这种近似或假设是否合理有效时, 若必要和可能,最好采用蒙特卡洛法(简 称MCM)验证其评定结果;
实用文档
15
关于GUM法适用条件的理解
(1)GUM法适用于可以假设输入量的概率分布呈对 称分布的情况。
在GUM法评定测量不确定度时,首先要评定输入量的标准 不确定度,
• A类评定时,一般对在重复性条件下的多次测量,由各 种随机影响造成测得值的分散性可假设为对称的正态分
布;
• B类评定时,只有输入量的概率分布为对称分布时,才
实际的,GUM中,约定采用k=2的扩展不确定度U, 由它确定的包含区间为y±U,包含概率约为95%左
右,就是在接近正态分布的基础上得出的。
b.若用算术平均值作为被测量(即输出量)的最佳估计值y, 其为以扩自用展由查不度t分确为布定的ef度ft、为临方U界p差,值为当表(y来U服p/确从kp定)正2包的态含t分概分布率布时为。,pG则的UMy包规/u含定c的因,分子可布 kp,得到扩展不确定度Up和包含概率为p的包含区间y±Up。
本次修订主要内容
1、名称术语与JJF1001-2011《通用计量术语及定 义》一致;新增部分术语。(55页)
2、对适用范围做了补充,明确了GUM法适用的主 要条件。(14页)
3、根据计量实际,增加预评估重复性。(75页)
4、增加协方差和相关系数的估计方法。(97页)
5、弱化了给出自由度的要求,一般给出k值。
实用文档
14
规范中的“主要”两字是指:
• 从严格意义上来说,在规定的该三个条件 同时满足时,GUM法是完全适用的。
• 当其中某个条件不完全满足时,有些情况 下可能可以作近似、假设或适当处理后使 用。
• 在测量要求不太高的场合,这种近似、假 设或处理是可以接受的。但在要求相当高 的场合,必须在了解GUM适用条件后予以慎 重处理。

测量数据不确定度的评定

测量数据不确定度的评定在分析和确定测量结果不确定度时,应使测量数据序列中不包括异常数据。

即应先对测量数据进行异常判别,一旦发现有异常数据就应剔除。

因此,在不确定度的评定前均要首先剔除测量数据序列中的坏值。

1.A类标准不确定度的评定A类标准不确定度的评定通常可以采用下述统计与计算方法。

在同一条件下对被测参量X进行n次等精度测量,测量值为Xi(i=1,2,…,n)。

该样本数据的算术平均值为X的实验标准偏差(标准偏差的估计值)可用贝塞尔公式计算式中,(x)为实验标准偏差。

用作为被测量X测量结果的估计值,则A类标准不确定度uA为(1)2.标准不确定度的B类评定方法当测量次数较少,不能用统计方法计算测量结果不确定度时,就需用B类方法评定。

对某一被测参量只测一次,甚至不测量(各种标准器)就可获得测量结果,则该被测参量所对应的不确定度属于B类标准不确定度,记为uB。

B类标准不确定度评定方法的主要信息来源是以前测量的数据、生产厂的产品技术说明书、仪器的鉴定证书或校准证书等。

它通常不是利用直接测量获得数据,而是依据查证已有信息获得。

例如:①最近之前进行类似测试的大量测量数据与统计规律;②本检测仪器近期性能指标的测量和校准报告;③对新购检测设备可参考厂商的技术说明书中的指标;④查询与被测数值相近的标准器件对比测量时获得的数据和误差。

应说明的是,B类标准不确定度uB与A类标准不确定度uA同样可靠,特别是当测量自由度较小时,uA反而不如uB可靠。

B类标准不确定度是根据不同的信息来源,按照一定的换算关系进行评定的。

例如,根据检测仪器近期性能指标的测量和校准报告等,并按某置信概率P评估该检测仪器的扩展不确定度Up,求得Up的覆盖因子k,则B类标准不确定度uB等于扩展不确定度Up除以覆盖因子k,即uB(X)=Up(X)/k(2)【例1】公称值为100g的标准砝码M,其检定证书上给出的实际值是100.000 2.34 9,并说明这一值的置信概率为0.99的扩展不确定度是0.000120g,假定测量数据符合正态分布。

测量不确定度评定(很实用)课件

支持多种测量不确定度评定方 法,如A类评定和B类评定。
兼容多种数据格式
能够读取和处理多种数据格式 ,如Excel、CSV和数据库等

可视化报告生成
软件能够自动生成测量不确定 度评定报告,并以可视化形式
展示结果。
软件操作流程
数据导入
将测量数据导入到软件中,可 以选择多种数据格式。
参数设置
根据实际情况设置相关参数, 如评定方法、置信水平等。
定义
测量不确定度是测量结果的可信 程度或可靠性的度量,它反映了 测量结果的不确定性或分散性。
意义
测量不确定度是测量结果的一个 重要参数,它有助于评估测量结 果的可靠性和准确性,以及为决 策提供依据。
测量不确定度的来源
仪器设备误差
仪器设备的精度和稳定 性对测量结果的影响。
环境因素
如温度、湿度、气压、 振动等环境条件对测量
计算不确定度
软件自动进行不确定度的计算 ,并给出结果。
报告生成
根据计算结果生成测量不确定 度评定报告。
软件应用案例
案例一
某实验室使用该软件进行测量不确定 度评定,提高了测量数据的准确性和 可靠性。
案例二
某企业使用该软件对产品进行质量控 制,确保产品符合相关标准和客户要 求。
PART 05
测量不确定度的优势与局 限性
优势
01
02
03
量化评估
测量不确定度为测量结果 提供了量化评估,帮助我 们了解测量的可靠性和准 确性。
比较性
通过比较不同测量方法和 结果的测量不确定度,可 以评估哪种方法更可靠或 更精确。
改进空间
测量不确定度可以帮助识 别改进测量的空间,从而 优化测量过程。

测量不确定度的评定与表示2015.5.28


度为 u x s x s xk
2
【例】
某实验室事先对某一电流量进行n=10次重 复测量,测量值列于下表。按下表的计算步骤得 到单次测量的估计标准偏差 s(x)=0.074mA。 ① 在同一系统中在以后做单次(m =1)测量, 测量值x=46.3mA,求这次测量的标准不确定度 u(x)。 ② 在同一系统中在以后做3(m =3)次测量, 45.4 45.3 45.5 mA x ,求这次测量的标 45.4 3 准不确定度 u( x ) 。
根据概率分布和要求的概率p确定k,则B类标准不确 定度
uB 可由下式得到:
a uB k
a ------ 被测量可能值区间的半宽度
k ------ 包含因子
预备知识
分布┈数据散布的“形状”
一组数值的散布会取不同的形式,或称为服从不同的概率 分布。 (1)正态分布 在一组读数中,较多的读数值靠近平均值,少数读数 值离平均值较远。这就是正态分布或高斯分布的特征。 (2)均匀分布(矩形分布) 当测量值非常平均地散布在最大值和最小值之间的范 围内时,就产生了矩形分布或称为均匀分布。 (3)其他分布 还有其他分布形状,但较少见,例如三角分布、反余 弦分布(U型分布)等。表2.1给出了几种概率分布及其 包含因子。
贝塞尔公式法
单个测得值 xk 的实验标准偏差 sxk ,按下式 计算:
2 1 n sxk xi x n 1 i 1


(贝塞尔公式)
此式是单次测量的实验标准偏差(σ),也就是 标准不确定度u(x)。自由度(反应了相应实验标准 偏差的可靠程度)v=n-1。
标准不确定度的A类评定
一、不确定度的基本概念
标准不确定度(standard uncertainty): 以标准偏差表示的测量不确定度。 实验标准偏差(experimental standard deviation): 对同一被测量进行n次测量,表征测量结果分 散性的量。用符号s表示。(σ)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档