八年级数学上尺规作图题练习强烈推荐

合集下载

初二上册数学尺规作图练习题

初二上册数学尺规作图练习题

初二上册数学尺规作图练习题尺规作图是数学中的一项重要技能,本文将为你提供一些初二上册数学尺规作图练习题,帮助你巩固这一技巧。

1. 作一个正三角形ABC,已知边长为5cm。

首先,使用尺子在纸上画一条直线段,作为边AB的长度,标记为点A和点B。

接下来,以点A为圆心,以边长为半径,使用圆规画一个圆弧,交直线段AB于点C。

连接点B和C,得到正三角形ABC。

2. 作一个等边五边形ABCDE,已知边长为6cm。

先绘制一个正三角形ABC,其中AB的长度为6cm,并连接点C和点A。

接着,以点C为圆心,以边长为半径,使用圆规画一个圆弧,交直线段AC于点D。

再以点D为圆心,以边长为半径,使用圆规画一个圆弧,交直线段AD于点E。

连接点E与点B,得到等边五边形ABCDE。

3. 作一个平行四边形ABCD,已知边长AB为7cm,AD为5cm,且AD平行于BC。

首先,使用尺子在纸上作一条长度为7cm的直线段,标记为点A 和点B。

接下来,以点A为起点,使用圆规在直线上切取长度为5cm 的线段,标记为点D。

连接点B和点D,得到平行四边形ABCD。

通过以上练习题,我们可以巩固尺规作图的技巧。

在进行尺规作图时,需要注意以下几点:
- 确定给定的边长或者角度,合理利用这些已知信息;
- 使用尺规和圆规进行绘图时,要保持工具的垂直和水平;
- 使用直尺时,要注意尺子的一端与绘图纸对齐,以确保准确度。

希望通过这些练习题,你能更好地掌握初二上册数学尺规作图的方法和技巧。

请继续进行更多的练习,熟能生巧!。

1.6 尺规作图 浙教版八年级数学上册同步练习(含解析)

1.6 尺规作图 浙教版八年级数学上册同步练习(含解析)

第1章 三角形的初步知识1.6 尺规作图基础过关全练知识点1 基本作图1.(2022浙江义乌绣湖教育集团期中)用直尺和圆规作一个角等于已知角的示意图如下,说明∠A'O'B'=∠AOB的依据是( )A.SSSB.SASC.ASAD.AAS2.(2022浙江宁波春晓中学期中)观察下列作图痕迹,所作CD为△ABC的边AB上的中线的是( )A B C D3.(2022浙江绍兴柯桥联盟学校期中)如图,在△ABC中,按以下步骤作图:①分别以点BBC的长为半径作弧,两弧相交于点M和N;②作直线MN交AC于和C为圆心,以大于12点D,连结BD.若AC=6,AD=2,则BD的长为( )A.2B.3C.4D.6知识点2 按要求进行尺规作图4.(2022浙江台州和合教育联盟期中)已知△ABC(AB<AC<BC),用尺规作图的方法在BC 上取一点P,使PA+PC=BC,下列选项正确的( )A B C D5.(2022浙江杭州之江实验中学期中)如图是作△ABC的作图痕迹,则此作图的已知条件是( )A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角能力提升全练6.(2022浙江宁波海曙期中)以下尺规作图中,点D为线段BC边上一点,一定能得到线段AD=BD的是( )A B C D7.(2020湖北襄阳中考)如图,Rt△ABC中,∠ABC=90°,根据尺规作图的痕迹判断以下结论错误的是( )A.DB=DEB.AB=AEC.∠EDC=∠BACD.∠DAC=∠C8.(2022浙江温州期中)如图,若∠α=38°,根据尺规作图的痕迹,则∠AOB的度数为 .9.如图,在△ABC中,AB=5,AC=8,BC=9,以A为圆心,以适当的长为半径作弧,交AB于点M,MN的长为半径作弧,两弧在∠BAC的内部相交交AC于点N,分别以M,N为圆心,以大于12于点G,作射线AG,交BC于点D,点F在AC边上,AF=AB,连结DF,则△CDF的周长为 .10.(2022浙江慈溪期中)如图,已知△ABC,P为AB上一点,请用尺规作图的方法在AC上找一点Q,使得AQ+PQ=AC(保留作图痕迹,不写作法).11.(2022浙江杭州之江实验中学期中)如图,在Rt△ABC中,∠C=90°,AC<BC.(1)动手操作:要求尺规作图,不写作法,但保留作图痕迹.①作出AB的垂直平分线MN,MN与AB交于点D,与BC交于点E;②过点B作BF垂直于AE,垂足为F;(2)推理证明:求证AC=BF.素养探究全练12.[数学抽象](2022独家原创)郑州“7.20”特大暴雨灾害发生后,公路抢修队发现三条两两相交于A、B、C三点的公路(如图所示)遭到了破坏,现计划迅速建立抢修站,要求抢修站到三条公路的距离相等,则可供选择的位置P有几个?用尺规作图在图中标出抢修站点P的位置.答案全解全析基础过关全练1.A 由作图可知OD=OC=O'D'=O'C',CD=C'D',∴△DOC≌△D'O'C'(SSS),∴∠A'O'B'=∠AOB.故选A.2.D 选项A,CD⊥AB,但不一定平分AB,故不符合题意;选项B,CD为△ABC的角平分线,故不符合题意;选项C,不符合基本作图过程,故不符合题意;选项D,点D为AB的中点,所以CD为△ABC边AB上的中线,故D符合题意.故选D.3.C 由作图可知,MN是线段BC的垂直平分线,∴BD=CD=AC-AD=6-2=4.故选C.4.B 作AB的垂直平分线,交BC于点P,连结PA,则PA=PB,∵BC=PB+PC,∴PA+PC=BC,选项B符合题意.故选B.5.C 观察作图痕迹可得,已知线段AB,∠CAB=α,∠CBA=β.故选C.能力提升全练6.D 选项A中,AD为BC边上的高;选项B中,AD为∠BAC的平分线;选项C中,D点为BC的中点,∴AD为BC边上的中线;选项D中,点D为AB的垂直平分线与BC的交点,则DA=DB.故选D.7.D 由作图可知,∠DAE=∠DAB,∠DEA=90°,∴∠DEA=∠B,又∵AD=AD,∴△ADE≌△ADB,∴DB=DE,AB=AE,∵∠DEA=∠B=90°,∴∠BAC+∠C=90°,∠EDC+∠C=90°,∴∠EDC=∠BAC,故A,B,C中的结论均正确.∠DAC与∠C的大小关系不能确定,故D中的结论错误.故选D.8.76°解析 由尺规作图可知∠AOB=2∠α,∵∠α=38°,∴∠AOB=76°.9.12解析 根据作图可得∠BAD=∠CAD,在△ABD 和△AFD 中,AB =AF ,∠BAD =∠FAD ,AD =AD ,∴△ABD ≌△AFD(SAS),∴AF=AB=5,BD=DF,∴CF=AC-AF=8-5=3,∴△CDF 的周长=DF+DC+FC=BD+DC+FC=BC+FC=9+3=12.10.解析 如图,点Q 即为所求.11.解析 (1)①如图,DE 即为所作.②如图,BF 即为所作.(2)证明:∵ED 垂直平分AB,∴EA=EB,∵BF ⊥AE,∴∠BFE=90°,在△ACE 和△BFE 中,∠C =∠BFE ,∠AEC =∠BEF ,AE =BE ,∴△ACE ≌△BFE(AAS),∴AC=BF.素养探究全练12.解析 4处,如图所示,点P,P 1,P 2,P 3即为抢修站的位置.。

八年级数学上册 13.4 尺规作图 13.4.1 作一条线段等于已知线段同步练习 (新版)华东师大版

八年级数学上册 13.4 尺规作图 13.4.1 作一条线段等于已知线段同步练习 (新版)华东师大版

13.4.1作一条线段等于已知线段一.选择题1.下列属于尺规作图的是()A.用量角器画∠AOB的平分线OPB.利用两块三角板画15°的角C.用刻度尺测量后画线段AB=10cmD.在射线OP上截取OA=AB=BC=a答案:D解答:根据尺规作图的定义可得:在射线OP上截取OA=AB=BC=a,属于尺规作图,故选:D.分析:根据尺规作图的定义:是指用没有刻度的直尺和圆规作图可直接选出答案.2.用一把带有刻度的直角尺,①可以画出两条平行线;②可以画出一个角的平分线;③可以确定一个圆的圆心.以上三个判断中正确的个数是()A.0个 B.1个 C.2个 D.3个答案:D解答:(1)任意画出一条直线,在直线的同旁作出两条垂线段,并且这两条垂线段相等.过这两条垂线段的另一端点画直线,与已知直线平行,正确;(2)可先在这个角的两边量出相等的两条线段长,过这两条线段的端点向角的内部应垂线,过角的顶点和两垂线的交点的射线就是角的平分线,正确;(3)可让直角顶点放在圆上,先得到直径,进而找到直径的中点就是圆心,正确.故选:D.分析:根据基本作图的方法,逐项分析,从而得出正确个数.3.下列关于作图的语句中正确的是()A.画直线AB=10厘米B.画射线OB=10厘米C.已知A,B,C三点,过这三点画一条直线D.过直线AB外一点画一条直线和直线AB平行答案:D解答:A.直线没有长度,故A选项错误;B.射线没有长度,故B选项错误;C.三点有可能在一条直线上,可画出一条直线,也可能不在一条直线上,此时可画出三条直线,故选项错误;D.正确.故选:D.分析:根据基本作图的方法,逐项分析,从而得出正确的结论.4.下列作图语句错误的是()A.过直线外的一点画已知直线的平行线B.过直线上的一点画已知直线的垂线C.过∠AOB内的一点画∠AOB的平分线D.过直线外一点画此直线的两条斜线,一条垂线答案:C解答:A.过直线外的一点画已知直线的平行线,此说法正确,故本选项错误;B.过直线上的一点画已知直线的垂线,此说法正确,故本选项错误;C.过∠AOB内的一点画∠AOB的平分线,此说法不正确,故本选项正确;D.过直线外一点画此直线的两条斜线,一条垂线,此说法正确,故本选项错误;故选C.分析:根据平行线的作法.垂线的作法.角平分线的作法进行选择即可.5.按下列条件画三角形,能唯一确定三角形形状和大小的是()A.三角形的一个内角为60°,一条边长为3cmB.三角形的两个内角为30°和70°C.三角形的两条边长分别为3cm和5cmD.三角形的三条边长分别为4cm、5cm和8cm答案:D解答:A.三角形的一个内角为60°,一条边长为3cm,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;B.三角形的两个内角为30°和70°,能唯一确定三角形形状和但不能唯一确定大小,不符合题意;C.三角形的两条边长分别为3cm和5cm,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;D.三角形的三条边长分别为4cm、5cm和8cm,能唯一确定三角形形状和大小,符合题意.故选D.分析:根据基本作图的方法,及唯一确定三角形形状和大小的条件可知.6.下列作图语句中,不准确的是()A.过点A、B作直线ABB.以O为圆心作弧C.在射线AM上截取AB=aD.延长线段AB到D,使DB=AB答案:B解答:A.根据直线的性质公理:两点确定一条直线,可知该选项正确;B.画弧既需要圆心,还需要半径,缺少半径长,故该选项错误;C.射线有一个端点,可以其端点截取任意线段,故选项正确;D.线段有具体的长度,可延长,正确;故选B.分析:根据基本作图的方法,逐项分析,从而得出正确的结论.7.尺规作图是指()A.用量角器和刻度尺作图B.用圆规和有刻度的直尺作图C.用圆规和无刻度的直尺作图D.用量角器和无刻度的直尺作图答案:C解答:尺规作图所用的作图工具是指不带刻度的直尺和圆规.故选:C.分析:根据尺规作图的定义:尺是不带刻度的直尺,规是圆规进而得出答案.8.下列画图语句中正确的是()A.画射线OP=5cm B.画射线OA的反向延长线C.画出A、B两点的中点 D.画出A、B两点的距离答案:B解答:A.画射线OP=5cm,错误,射线没有长度,B.画射线OA的反向延长线,正确.C.画出A、B两点的中点,错误,中点是线段的不是两点的,D.画出A、B两点的距离,错误,画出的是线段不是距离.故选:B.分析:利用射线的定义,线段中点及距离的定义判定即可.9.尺规作图的画图工具是()A.刻度尺、量角器 B.三角板、量角器C.直尺、量角器 D.没有刻度的直尺和圆规答案:D解答:尺规作图的画图工具是没有刻度的直尺和圆规.故选D.分析:根据尺规作图的定义可知.10.下列属于尺规作图的是()A.用刻度尺和圆规作△ABCB.用量角器画一个300的角C.用圆规画半径2cm的圆D.作一条线段等于已知线段答案:D解答:A.用刻度尺和圆规作△ABC,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确.故选:D.分析:根据尺规作图的定义分别分析得出即可.11.下列作图语句正确的是()A.以点O为顶点作∠AOBB.延长线段AB到C,使AC=BCC.作∠AOB,使∠AOB=∠αD.以A为圆心作弧答案:C解答:A.画角既需要顶点,还需要角度的大小,错误;B.延长线段AB到C,则AC>BC,即AC=BC不可能,错误;C.作一个角等于已知角是常见的尺规作图,正确;D.画弧既需要圆心,还需要半径,缺少半径长,错误.故选C.分析:根据画角的条件判断A;根据线段延长线的等腰判断B;根据基本作图判断C;根据确定弧的条件判断D.12..已知三边作三角形,用到的基本作图是()A.作一个角等于已知角B.作已知直线的垂线C.作一条线段等于已知线段D.作一条线段等于已知线段的和答案:C解答:根据三边作三角形用到的基本作图是:作一条线段等于已知线段.故选C.分析:根据三边作三角形用到的基本作图是:作一条线段等于已知线段.13.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C..两直线平行,同位角相等D.两直线平行,内错角相等答案:A解答:如图:∵∠DPF=∠BAF,∴AB∥PD(同位角相等,两直线平行).故选:A.分析:由已知可知∠DPF=∠BAF,从而得出同位角相等,两直线平行.14.以下作图,用一对三角尺不能办到的是()A.画一个45°的角,再把它三等分B.画一个15°的角,再把它三等分C..画一个周角,再把它三等分D.画一个平角,再把它三等分答案:C解答:A.画一个45°角,把它三等分,每一份都是15°,一副三角板可以画出15°角,可以用一副三角板办到,故此选项不合题意;B.画一个15°角,把它三等分,每一份都是5°,一副三角板不能画出5°角,不能用一副三角板办到,故此选项不符合题意;C.画一个周角,把它三等分,每一份都是120°,一副三角板可以画出120°角,可以用一副三角板办到,故此选项不合题意;D.画一个平角,把它三等分,每一份都是60°,一副三角板可以画出60°角,可以用一副三角板办到,故此选项不合题意;故选:B.分析:一幅三角板有以下几个角度:90°,60°,45°,30°;只要其中的两个角相加或者相减后能得出的角都可以用一副三角板拼出.15.下列作图属于尺规作图的是()A.画线段MN=3cmB.用量角器画出∠AOB的平分线C.用三角尺作过点A垂直于直线L的直线D.作一条线段等于已知线段答案:D解答:A.画线段MN=3cm,需要知道长度,而尺规作图中的直尺是没有长度的,错误;B.用量角器画出∠AOB的平分线,量角器不在尺规作图的工具里,错误;C.用三角尺作过点A垂直于直线L的直线,三角尺也不在作图工具里,错误;D.正确.故选D.分析:根据尺规作图的定义可知.二.填空题16.所谓尺规作图中的尺规是指:.答案:没有刻度的直尺和圆规解答:由尺规作图的概念可知:尺规作图中的尺规指的是没有刻度的直尺和圆规.分析:本题考的是尺规作图的基本概念.17.作图题的书写步骤是、、,而且要画出和,保留.答案:已知|求作|作法|图形|结论|作图痕迹解答:作图题的书写步骤是已知.求作.作法,而且要画出图形和结论,保留作图痕迹.故答案为:已知.求作.作法,图形,结论,作图痕迹.分析:根据作图题的书写步骤和尺规作图的要求作答.18.已知一条线段作等边三角形,使其边长等于已知线段,则作图的依据是.答案: SSS解答:等边三角形三边相等,依题意得使其边长等于已知线段,则按全等三角形的判定定理(SSS)可得作图.分析:等边三角形三边相等,按全等三角形的判定定理(SSS)即可作图.19.用尺规作一个直角三角形,使其两直角边分别等于已知线段,则作图的依据是.答案: SAS解答:用尺规做直角三角形,已知两直角边.可以先画出两条已知线段和确定一个直角,作图的依据为SAS.分析:隐含的条件是直角,是两直角边的夹角,即可得出作图的依据为SAS.20.如图,使用直尺作图,看图填空:延长线段到,使BC=2AB.答案:AB| C解答:延长线段AB到C,使BC=2AB.分析:延长线段AB到C,使BC=2AB.三.解答题21.已知:线段a,画出一条线段,使它等于2a.答案:解答:首先作射线,然后截取AB=BC=a,则AC=2a,即AC就是所求的线段.分析:利用直尺和圆规作一条线段等于已知线段,即可求解.22.作图:已知线段a.b,画一条线段使它等于2a+b(要求:用尺规作图,并写出已知.求作.结论,保留作图痕迹,不写作法)答案:解答:已知:线段a.b,求作:线段AC,使线段AC=2a+b.结论:AC即为所求.分析:可先画出一条线段等于2a,然后再在这条线段延长线上上截去b,即为所求线段.23.用直尺.圆规作图,不写作法,但要保留作图痕迹.已知:线段a,b求作:线段AB,使AB=a+b答案:解答:如图:线段AB就是所求的线段.分析:首先作射线,然后截取线段AC=a,CB=b,则AB即为所求.24.作图题(利用直尺与圆规画图,不写作法,保留作图痕迹):如图,已知线段a.b,作一条线段,使它等于a-2b.答案:解答:如图,BD就是所求的线段.分析:画线段AB=a,AC=b,CD=b,线段BD就是所求线段.25.已知三条线段a.b.c,用尺规作出△ABC,使BC=a,AC=b,AB=c.(不写作法,保留作图痕迹)答案:解答:如图所示:分析:作线段BC=a,以点B为圆心,c为半径画弧,再以点C为圆心,b为半径画弧两弧的交点就是点A的位置,连接AB,AC即可.。

初二上册数学尺规作图练习题

初二上册数学尺规作图练习题

初二上册数学尺规作图练习题1. 给定线段AB,利用尺规作图方法,构造平行于AB且离AB距离为3cm的直线段CD。

2. 给定线段EF和直线L,利用尺规作图方法,将直线L上的点P 与线段EF做垂线,垂足为点G。

3. 给定一个等边三角形ABC,利用尺规作图方法,找到三角形外部与三边等长的三点D、E、F,即DE=EF=FD。

4. 给定两个已知点A和B,利用尺规作图方法,找到与已知直线段AB等长的线段CD,使得CD垂直于已知直线段AB。

5. 给定两个已知点A和B,以及已知的一个直线段CD,利用尺规作图方法,找到一条经过点A且与线段CD垂直的直线L。

6. 给定一个已知角度,利用尺规作图方法,将已知角度的两边分别延长到任意长度,并找到它们的交点P。

7. 给定两个已知点A和B,以及已知的一个直线段CD,利用尺规作图方法,找到一条经过点A且与直线CD平行的直线L。

8. 给定两个已知点A和B,以及已知的一个直线段CD,利用尺规作图方法,找到一条经过点A且与直线CD相交于点E的直线L。

9. 给定一个已知角度,以及已知的一个直线段CD,利用尺规作图方法,找到一个与已知角度的一边重合且与线段CD相交于点F的直线L。

10. 给定一个已知角度,利用尺规作图方法,找到一个与已知角度的一边重合且经过点A的直线L。

以上是初二上册数学尺规作图的练习题。

通过这些练习题,可以帮助同学们熟悉数学尺规作图的基本方法和步骤,并提高他们的几何思维和空间想象能力。

尺规作图是一种重要的几何工具,对于解决几何问题和理解几何定理有着重要的作用。

通过反复练习和掌握尺规作图的技巧,同学们可以在几何学习中更加游刃有余,提高数学成绩。

在实际操作尺规作图时,同学们需要注意以下几点:1. 选取适当的比例尺:在作图中,要根据实际情况选择适当的比例尺,使得图形能够在纸上完整呈现,并且尽可能占用纸面的空间。

2. 使用准确的标志点:作图中需要准确的标记点、线段和角度大小。

13.4 尺规作图 华东师大版数学八年级上册素养提升练(含解析)

13.4 尺规作图 华东师大版数学八年级上册素养提升练(含解析)

第13章 全等三角形13.4 尺规作图基础过关全练知识点1 作一条线段等于已知线段1.(2023山东临清期中)如图,已知线段a,b.按如下步骤完成尺规作图,则AC的长是( )①作射线AM;②在射线AM上顺次截取AD,DB,使AD=DB=a;③在线段AB上截取BC=b.A.2a+bB.2a-bC.a+bD.b-a知识点2 作一个角等于已知角2.如图,尺规作∠HFG=∠ABC,作图痕迹中弧MN是( )A.以点F为圆心,以BE长为半径的弧B.以点F为圆心,以DE长为半径的弧C.以点G为圆心,以BE长为半径的弧D.以点G为圆心,以DE长为半径的弧3.(2023北京东城期末)已知∠AOB.下面是“作一个角等于已知角,即作∠A'O'B'=∠AOB”的尺规作图痕迹.该尺规作图的依据是( )A.S.A.S.B.S.S.S.C.A.A.S.D.A.S.A.4.【一题多解】【新独家原创】如图,D是△ABC的边BA延长线上一点,AB=BC,∠B=40°,结合作图痕迹,求证:AC平分∠BAE.知识点3 作已知角的平分线5.【尺规作图】【新考法】(2023吉林长春四十五中期末(线上))如图,已知AB=AC,BC=6,由尺规作图痕迹可得BD=( )A.2B.3C.4D.56.【易错题】(2023山东烟台期中)用尺规作图如图所示,首先以A为圆心,任意长为半径画弧,分别交AB,AC于点E,F;再分别以E,F为圆心,以EF长为半径画弧,两弧交于D点,最后作射线AD.下列结论不一大于12定正确的是( )A.AF=DFB.∠BAD=∠CADC.∠AFD=∠AEDD.DE=DF7.(2022吉林长春吉大附中期中)如图,在△ABC中,∠A=50°,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为 .知识点4 经过一已知点作已知直线的垂线8.(2023辽宁大连甘井子期中)已知钝角△ABC,用直尺和圆规作边BC 上的高.(不写作法,保留作图痕迹)知识点5 作已知线段的垂直平分线9.根据图中尺规作图的痕迹,可判断AD一定为三角形ABC的( )A.角平分线B.中线C.高线D.都有可能10.(2022四川三台期中)如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA长为半径画弧①;步骤2:以B为圆心,BA长为半径画弧②,交弧①于点D;步骤3:连结AD,交BC的延长线于点H.下列叙述正确的是( )A.AB=ADB.BH⊥ADC.S△ABC=BC·AHD.AC平分∠BAD11.【教材变式·P90T2】如图,在Rt△ABC中,∠C=90°,AC<BC.(1)动手操作:要求尺规作图,不写作法,但保留作图痕迹.①作出线段AB的垂直平分线MN,MN与AB交于点D,与BC交于点E;②连结AE,过点B作BF垂直于AE,垂足为F;(2)推理证明:求证:AC=BF.能力提升全练12.(2021四川广元中考,6,★☆☆)观察下列作图痕迹,线段CD为△ABC的角平分线的是( )A BC D13.(2022海南中考,10,★★☆)如图,在△ABC中,AB=AC,以点B为圆心,适当长为半径画弧,交BA于点M,交BC于点N,分别以点M、N为圆MN的长为半径画弧,两弧在∠ABC的内部相交于点P,画射心,大于12线BP,交AC于点D,若AD=BD,则∠A的度数是( )A.36°B.54°C.72°D.108°14.(2022山西平定期中,18,★☆☆)如图,已知等腰△ABC的顶角∠A=36°.(1)根据要求用尺规作图:作∠ABC的平分线交AC于点D;(不写作法,只保留作图痕迹)(2)在(1)的条件下,求证:△BDC是等腰三角形.15.【新考法】(2022广西贵港中考,20,★★☆)尺规作图(保留作图痕迹,不要求写出作法).如图,已知线段m,n.求作△ABC,使∠A=90°,AB=m,BC=n.素养探究全练16.【推理能力】数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角的平分线,作法如下(如图1):①在OA和OB上分别截取OD、OE,使OD=OE.DE的长为半径作弧,两弧在∠AOB内交②分别以D、E为圆心,大于12于点C.③作射线OC,则OC就是∠AOB的平分线.小聪只带了直角三角板,他发现利用三角板也可以作角的平分线,作法如下(如图2):①利用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角的平分线.图1 图2根据以上情境,解决下列问题:(1)李老师用尺规作角的平分线时,用到的三角形全等的判定方法是 ;(2)小聪的作法正确吗?请说明理由;(3)请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)答案全解全析基础过关全练1.B 如图,AC=AB-BC=AD+BD-BC=2a-b.故选B.2.D 3.B 由作图得DO=D'O'=CO=C'O',CD=C'D',在△DOC和△D'O'C'中,DO=D'O', CO=C'O', CD=C'D',∴△DOC≌△D'O'C'(S.S.S.),∴∠O'=∠O.故选B.4.证明 证法一:根据作图痕迹可知∠DAE=∠B.∵∠B=40°,∴∠DAE=40°.∵AB=BC,∴∠BAC=∠C,∴∠BAC=180°-∠B2=180°-40°2=70°,∴∠CAE=180°-∠BAC-∠DAE=180°-70°-40°=70°,∴∠BAC=∠CAE,∴AC平分∠BAE.证法二:根据作图痕迹可知∠DAE=∠B,∴AE∥BC,∴∠EAC=∠C,∵AB=BC,∴∠BAC=∠C,∴∠BAC=∠CAE,∴AC平分∠BAE.5.B 本题将尺规作图与等腰三角形的三线合一的性质结合起来考查.由尺规作图痕迹可知AD平分∠BAC,∵AB=AC,BC=6,∴BD=CD=3,故选B.6.A 解答此题时易因不理解基本的尺规作图步骤导致判断错误.由作图可得AF=AE,FD=DE,在△AFD 和△AED 中,AF =AE ,AD =AD ,FD =DE ,∴△AFD ≌△AED(S.S.S.),∴∠BAD=∠CAD,∠AFD=∠AED,故选项B,C,D 中的结论正确,不合题意;无法得出AF=DF,故选项A 中的结论不一定正确,符合题意.故选A.7.答案 65°解析 ∵∠A=50°,∠B=80°,且∠ACD 是△ABC 的外角,∴∠ACD=∠A+∠B=50°+80°=130°,观察题图中尺规作图的痕迹,可得CE 平分∠ACD,∴∠DCE=12∠ACD=12×130°=65°.8.解析 如图,AD 即为所作.9.B 由作图可知,D 是线段BC 的中点,故AD 是△ABC 的中线,故选B.10.B 由作图可知,直线BC 是线段AD 的垂直平分线,所以BH ⊥AD,故选B.11.解析 (1)①②如图所示:(2)证明:∵直线MN 是线段AB 的垂直平分线,∴AD=BD,∠ADE=∠BDE=90°,在△ADE 和△BDE 中,AD =BD ,∠ADE =∠BDE ,ED =ED ,∴△ADE ≌△BDE(S.A.S.),∴EA=EB,∵BF ⊥AE,∴∠BFE=90°=∠C,在△ACE 和△BFE 中,∠C =∠BFE ,∠AEC =∠BEF ,AE =BE ,∴△ACE ≌△BFE(A.A.S.),∴AC=BF.能力提升全练12.C A 、D 选项中的线段CD 为△ABC 的高,B 选项中的线段CD 为△ABC 的中线,C 选项中的线段CD 为△ABC 的角平分线.故选C.13.A 由题意可得射线BP 为∠ABC 的平分线,∴∠ABD=∠CBD,∵AD=BD,∴∠A=∠ABD,∴∠A=∠ABD=∠CBD,∴∠ABC=2∠A,∵AB=AC,∴∠ABC=∠C=2∠A,∴∠A+∠ABC+∠C=∠A+2∠A+2∠A=180°,解得∠A=36°.故选A.14.解析 (1)如图所示,BD即为所求.(2)证明:∵∠A=36°,AB=AC,∴∠ABC=∠C=(180°-36°)÷2=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=72°÷2=36°,∴∠CDB=180°-36°-72°=72°,∴∠C=∠CDB,∴BD=BC,∴△BDC是等腰三角形.15.解析 如图所示,△ABC即为所求.注: (1)作直线l及l上一点A;(2)过点A作l的垂线AD;(3)在l上截取AB=m;(4)作BC=n交l的垂线于C.△ABC即为所作.素养探究全练16.解析 (1)S.S.S..(2)小聪的作法正确.理由如下:∵PM⊥OM,PN⊥ON,∴∠OMP=∠ONP=90°,在Rt△OMP和Rt△ONP中,OP=OP, OM=ON,∴Rt△OMP≌Rt△ONP,∴∠MOP=∠NOP,∴OP平分∠AOB.(3)步骤:①利用刻度尺在OA、OB上分别截取OG、OH,使OG=OH.②连结GH,利用刻度尺作出GH的中点Q.③作射线OQ,则OQ就是∠AOB的平分线.如图所示.。

初二数学尺规作图练习题

初二数学尺规作图练习题

初二数学尺规作图练习题尺规作图是数学中的重要内容,通过使用尺规来解决几何问题。

在初二数学中,尺规作图是一项基础技能,帮助学生理解几何概念并锻炼解决问题的能力。

本文将介绍一些初二数学尺规作图的练习题,并提供相应的解答。

【练习题一】已知正方形ABCD的边长为2cm,E为边AB上的一点,连接DE并延长至与边BC相交于点F,请使用尺规作图的方法求出DF的长度。

解答:1. 作辅助线:过点D作DE的垂线,交边BC于点G。

2. 以尺规的一点放在点D上,另一点固定在边DE上,画弧与边BC相交于点G。

3. 以尺规的一点放在点G上,另一点放在点F上,画弧与边DC相交于点H。

4. 连接DH,DH即为所求的DF的长度。

【练习题二】已知直角三角形ABC,其中∠ABC=90°,AB=3cm,BC=4cm,请使用尺规作图的方法求出三角形ABC的内切圆的半径。

解答:1. 作辅助线:连接AB和AC,延长AC至点D。

2. 以尺规的一点放在点A上,另一点固定在边AC上,画弧与边AB相交于点E。

3. 以尺规的一点放在点E上,另一点放在点C上,画弧与边BC相交于点F。

4. 连接AF,AF即为三角形ABC的内切圆的半径。

【练习题三】已知正方形ABCD的边长为6cm,E为边AB上的一点,连接DE 并延长至与边BC相交于点F,连接CF,请使用尺规作图的方法求出三角形CEF的周长。

解答:1. 作辅助线:过点D作DE的垂线,交边BC于点G。

2. 以尺规的一点放在点D上,另一点固定在边DE上,画弧与边BC相交于点G。

3. 以尺规的一点放在点G上,另一点放在点F上,画弧与边FC相交于点H。

4. 连接CF和FH,CHFH即为三角形CEF。

5. 使用尺规测量边CH、HF和FC的长度,计算出三角形CEF的周长。

通过以上三个练习题,我们了解了尺规作图的基本方法和步骤。

在实际操作中,我们需要准确使用尺规,并且要仔细观察图形的性质和特点,以便选择合适的作图方法。

初二尺规作图练习题

初二尺规作图练习题

初二尺规作图练习题在初二的几何学学习中,尺规作图是一个重要的议题。

通过使用尺规,我们可以准确地绘制各种几何图形,从而帮助我们更好地理解几何学的概念和原理。

在本篇文章中,我将向大家介绍一些初二尺规作图的练习题,以帮助大家提高几何作图的能力。

1. 给定一条线段AB,要求将其平分。

解题思路:首先,使用尺子将AB两个端点连线,得到直线l。

然后,用尺子量取一个较长的距离,将其分成两段。

第一个刻度对应A 点,第二个刻度对应B点。

连接两个刻度点,得到直线m。

直线m即为线段AB的平分线。

2. 给定一条线段AB和一点C,要求在线段AB上构造一个与线段AB等长的线段CD。

解题思路:首先,将AB的长度量取到尺子上。

然后,将尺子的一端放在点C上,另一端与A对齐。

在尺子上的刻度上找到点D,将D与C连线,得到线段CD,它与线段AB等长。

3. 给定一个角AOB和一条线段CD,要求在线段CD上构造一个与角AOB相等的角。

解题思路:首先,将尺子的一边放在A点上,另一边与O点对齐。

然后,保持尺子的角度不变,将尺子的一边放在C点上,另一边与D连线。

调整尺子的位置,直到尺子的另一边与B点重合。

然后,将尺子沿着CD方向平移到与A点重合,即可得到所要构造的角。

4. 给定一条线段AB和一点C,要求将线段AB向点C平移。

解题思路:首先,将尺子的一边放在A点上,另一边与B点对齐。

然后,在尺子的延长线上找到点D,使得CD与AB重合。

接着,将尺子的一边放在C点上,另一边与D点对齐。

最后,将尺子保持不动,将整个尺子与AD连线平移至C点,线段AB就成功地向点C平移了。

通过以上的几个练习题,相信大家对初二尺规作图有了更深入的理解。

几何学是一门需要实践和动手能力的学科,通过反复练习尺规作图,我们可以不断提高自己的几何直观和几何思维能力。

希望大家能够充分利用课后时间,练习更多的尺规作图题目,提升自己在几何学上的能力。

尺规作图不仅仅是课堂上的一项学习内容,它还具有实际应用的价值。

尺规作图初二上册练习题

尺规作图初二上册练习题

尺规作图初二上册练习题在初中数学学习中,尺规作图是一个很重要的章节。

通过尺规作图,我们可以绘制出各种形状的图形,并解决与这些图形相关的问题。

本文将针对初二上册的尺规作图练习题进行讲解和解答。

1. 给定一个线段AB,要求将其平分。

解析:我们可以使用尺规作图的方法来达到平分线段AB的目的。

a) 以A为圆心,以AB为半径画一个弧,再以B为圆心,以BA为半径画一个弧。

b) 这两个弧交于点C,连接AC和BC,则AC和BC为所求平分线段AB的两部分。

2. 给定一个角AOB,要求将其平分。

解析:类似于问题1,我们可以通过尺规作图的方法来平分角AOB。

a) 以O为圆心,以任意半径画一个弧,将OA、OB分别交于点C、D。

b) 以C和D为圆心,相同的半径画两个弧。

这两个弧将会交于一点E。

c) 以O和E为起点,以相同的长度画两条弧,这两条弧将分别交于两点F、G。

d) 连接OF和OG,则OF和OG为所求平分角AOB的两部分。

3. 给定一个线段AB和一点O,要求以点O为圆心,以AB为半径画一个圆。

解析:使用尺规作图可以很方便地以给定的点为圆心,以给定的线段为半径画一个圆。

a) 以点O为圆心,以任意半径作一个弧。

这个弧将会和线段AB 交于两点C、D。

b) 以C和D为圆心,相同的半径分别作两个弧。

这两个弧将会交于两点E、F。

c) 连接OE和OF,则OE和OF为所求的圆的直径。

4. 给定一个角AOB和一点C,要求以点C为圆心,绕过A和B分别画两个弧。

解析:我们可以使用尺规作图的方法绕过给定的两个点分别画出两个弧。

a) 以点C为圆心,以任意半径作一个弧,将OA、OB分别交于点D、E。

b) 以D和E为圆心,相同的半径分别作两个弧。

这两个弧将会交于两点F、G。

c) 连接CF和CG,则CF和CG为所求的两个弧。

通过以上练习题的详细解析,我们对初二上册的尺规作图有了更深入的了解。

通过尺规作图的方法,我们可以解决很多与图形相关的问题,并且可以通过直观的图示帮助我们更好地理解和掌握数学知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上尺规作图题练习
姓名班别座号基本作图一:作一条线段等于已知线段
已知:如图,线段a .
求作:线段AB,使AB = a .
基本作图二:作一个角等于已知角
已知:如图,已知∠AOB
求作:∠A’O’B’,使A’O’B’=∠AOB
基本作图三:作线段的垂直平分线
已知:线段AB(如图).
求作:线段AB的垂直平分线CD.
A B
基本作图四:利用尺规作一个角的平分线
已知∠AOB ,请作出它的角平分线OP.
基本作图五:作已知直线的垂线
(1)过直线上一点作一条直线与已知直线垂直
已知:如图,点A 在1l 上,
求作:直线2l ,使2l 经过点A ,且2l ⊥1l
作法:①以点A 为圆心,以为适当长为半径画弧交1l 于B 、C
②分别以点B 、C 为圆心,以大于21BC 为半径,在1l 一侧作弧,交点为D ③连接AD
∴AD 就是所求作的直线2l
(2)过直线外一点作一条直线与已知直线垂直
已知:如图,直线1l 及直线1l 外一点A
求作:直线2l ,使2l 经过点A ,且2l ⊥1l
作法:①以点A 为圆心,以大于点A 到1l 的距离的长度为半径画弧交1l 于B 、C
②分别以点B 、C 为圆心,以大于2
1BC 为半径,在另一侧作弧,两弧交于点D ③连接AD
∴AD 就是所求作的直线2l
练习:
1、请在图中作出△ABC的 .
角平分线BD(要求保留作图痕迹).
3、已知:如图,∠AOB内有两定点C、D
求作:一点P使PC=PD,且P到∠AOB的
两边之距相等
要求:用尺规作图,不写作法,但要保留作图痕迹
4、张庄A、李庄B位于河沿L的同侧,现在河沿
L上修一泵站C向张庄A、李庄B供水,问泵站修
在河沿L的什么地方,所用水管最少?。

相关文档
最新文档