加标回收试验
加标回收率的测定和结果判断

收稿日期 :1999 - 07 - 22 收修改稿 :1999 - 08 - 02 编 辑 :冯学军
(上接第 31 页) 采用静态挂片测定不同有机酸对碳钢腐蚀的影响 ,结 果见表 3 。
表 3 有机酸对碳钢腐蚀的影响
有机酸
丙 酸
丁 酸
浓 度 ,mol/ l 0. 001 0. 01 0. 1 0. 001 0. 01 0. 1
平均腐蚀速度 ,mm/ a 0. 0116 0. 0712 0. 1532 0. 0086 0. 0378 0. 0604
制 ,测得加标回收率结果波动范围较大 ,且室间的测定
结果相差也较大 ,难以判断加标回收率的测定结果水
平 ;另外 ,在环境监测中 (特别是油气田环境监测) ,样
品的浓度也是多变的 ,同时还存在干扰物 ,所以 ,单一
用标准物质的测定来控制分析准确度 ,则不能反映出
样品中的干扰程度 ,同时也较难掌握在相同浓度下做
(3) 当样品中待测物含量较低时 ,加入标准物质太 少 ,测得回收率值较差 ;加入标准物质太多则会改变待 测物质在加标样品和样品中的测定背景 ;
(4) 当加入标准物质是有机溶剂时 ,加标量过多 , 则会造成溶剂和标准物质难以在水中溶解 ,从而因溶 解度问题造成对加标回收率的影响 。
3 如何进行加标回收率的测定
加标回收率的测定可以和平行样的测定相同 ,一 般多按随机抽取 10 %~20 %的样品量做加标回收率 测定 。例如 ,有 10 个样品待测定 ,则可以从中随机抽 出 2 个样品做加标回收率测定 。抽出的 2 个样品各取 4 份 ,其中两份做平行本底测定 ,另两份做平行加标回 收率测定 。加标回收率的测定往往由于样品中待测物 质含量未知 ,难以估计加标量 ,需预先测定样品含量 , 再作回收率测定 。
加标回收率实验的步骤

加标回收率实验的步骤
进行加标回收率实验的步骤如下:
1. 准备样品:选择一种已知浓度的标准品,准备待测物样品,并使标准品和样品的性质相似。
2. 添加标准品:向已知浓度的标准品中加入一定量的待测物样品,使其浓度不同于标准品。
3. 提取样品:根据待测物样品的性质,选择适当的提取方法,将样品中的待测物提取出来。
4. 测定浓度:使用适当的分析方法,比如色谱法、光谱法或电化学法,测定提取后待测物样品的浓度。
5. 计算回收率:根据测得的待测物样品浓度和添加的标准品浓度,计算加标回收率。
计算公式为回收率(%) = 检测值/加标值× 100。
6. 重复实验:重复以上步骤,进行多次实验,并计算平均回收率和相对标准偏差,以评估实验的精密度和准确度。
7. 数据分析:通过比较加标回收率的结果,评估样品中待测物的提取和测定的准确性,并根据实验结果进行必要的修正和调整。
注意事项:
- 在实验过程中,应严格控制待测物样品、标准品和试剂的质
量和纯度,以避免干扰实验结果。
- 需要注意实验条件的控制,包括温度、pH值、反应时间等,以确保实验的可重复性和可比性。
- 在实验过程中,要严格遵守实验安全操作规程,并使用适当
的个人防护装备。
影响加标回收率6大因素

影响加标回收率6大因素影响加标回收率结果的因素很多,除了方法本身固有的因素外,所有影响样品测定结果的因素都会影响加标回收率的结果,此外,添加标准物质的操作,包括标准物质的量的大小,添加的准确性等都对最终回收率结果有直接影响。
加标回收率的测定是实验室常用的确定准确度的质控手段之一,也是分析人员自控的主要方法。
由于加标回收率受多种因素影响,因此,必须对这些因素要加以注意,使加标回收率的测定更能真实地反映测定结果的准确性。
一、分析与条件的影响理论上,任何分析方法都有一定的误差,且不同分析方法误差存在较大的差异。
在化学分析中,通常的标准方法对准确度有一定的要求,允许的误差也是相对的。
有的检测项目,由于分析方法本身存在一定的局限性,而造成加标回收率值偏低或偏高。
如采用马弗炉高温灰化处理样品,一些容易挥发的元素测定回收率偏低的原因正是由于高温使待测元素挥发损失引起的。
因此,通过测定回收率的结果,可在一定程度上证明方法的准确性。
二、加标量的水平以及准确性的影响在化学分析中,由于待测物质都是在一定的浓度范围内才具有某个特定的准确度,超出该范围,可能会产生较大的误差。
在做加标回收时,当样品中待测物含量较低时.加入标准物质太少,测得回收率误差较大;加入标准物质太多,则会改变待测物质在加标样品和样品中的测定背景,也可能会产生较大的误差。
因此在进行加标回收时,加标量的水平要适当,太高或太低都不会得到预期的效果,通常应注意以下两点。
一是标准加入的量要明显高于检出限,二是要尽量与分析组分的含量一致,但同时考虑又不能超出方法检测的容许范围。
例如在分光光度分析中,当样品中待测物含量较高时,加入标准物质过高,使加标后测定值接近方法的检出上限,这样测得加标样中待测物的误差较大,加标后引起的浓度增量在方法测定上限浓度c的0.4~0.6倍之间为宜。
三、加标体积影响通常情况下,尽管因加标而增大了试样体积,但样品分析过程中有蒸发或消解等可使溶液体积缩小的操作技术时,样品经处理后重新定容并不会对分析结果产生影响。
加标回收率计算方法

氨基安替比林萃取光度法分析水中的挥发酚(GB7490287),加标体积若为
1.0 mL,而取样体积为250mL时,加标体积引起的误差可以忽略不计。
理论公式约束条件的含义
加标物的浓度宜较高,加标物的体积应很小”的含义便更加清晰:在计 算加标试样浓度C2时,应尽可能减小标准溶液的取样体积V0.只有这样,
分别采用公式(3)和(4)的计算结果才会相等.由此可见,采用浓度值法计算 加标回收率时,任意加大加标试样的体积,将会导致回收率测定结果偏低。
对加标量的规定:
1.加标量应尽量与样品中待测物质含量相等或相近,并注意对样品容积的
影响
2.当样品中待测物质含量接近方法检出限时,加标量应控制在校准曲线的
低浓度范围;当样品中待测物含量小于方法检出限时,以检出限的量作
(2)凡是可以用分光光度法分析的项目,当试样与空白样的吸光度之差大
于校准曲线的截距时,可直接用吸光度法来计算。
(3)在加标体积对加标试样测定值不产生影响的情况下,可以采用浓度法
计算•
⑷当加标体积影响试样测定值(浓度值)时,应恪守理论公式使用的约束条 件,否则将会出现较大的误差。
回收率的计算
(1)以浓度值计算加标回收率理论公式可以表示为
为待测物质的含量加标
3.一般加标量不得大于待测物含量的3倍
4.加标后的测定值不应超出方法测定上限的90%
5.当样品中待测物浓度高于校准曲线的中间浓度时,加标量应控制在待测
物浓度的半量
结论
(1)凡是可以用加标回收率来评价分析方法和测量系统准确度的分析项目 其加标回收率的计算,应首先考虑采用以物质的量值法计算。
加样回收率

加样回收率液色迷人之宇文皓月创作加标回收率的测定可以反映测试结果的准确度。
进行加标回收率测定时应注意以下问题:1)加标物的形态应和待测物的形态一致。
2)加标量应尽量与样品中待测物含量相近,并注意对样品容积的影响。
3)加标后的测定值不该超出方法的测定上限的90%。
计算方法一: (测定量-已含量)/加入量乘以100%计算方法二: 测定量/(已含量+加入量) 乘以100%以上两种计算方法不知哪种是可行的,还是都可以使用?我认为方法一可行,更准确些加样回收率(%)=(测得量一原有量)/加入量x 100%=实际测得加入量/理论加入量方法二不成行加样回收率(%)=测定量/(已含量+加入量) x 100%=实际测得总量/理论总量从误差传递的角度,以第一种为宜我认为方法一可行,2005年版药典一部附录加样回收率也是这样要求的。
关于加样回收率的实验设计:1.高中低三个浓度的选取原则:高浓度应为样品浓度的120%左右、中浓度应为样品浓度的100%左右、低浓度应为样品浓度的80%左右。
2.高中低三个浓度样品的制备:最好采取加入50%量的样品,然后分别加入70%、50%、30%量的对照品储备液,制成供试样品,每个浓度三份。
3.测定:采取测定方法分别测定,这个时候要注意你之前制定的尺度曲线的范围(线性范围),是否能涵盖这九份样品的浓度范围?也就是说这九份样品的浓度都应该在你的尺度曲线范围内。
4.得到测定结果后的结算:应采取你的结果值,也就是每份样品的最终计算结果,而不是测定过程中没有经过计算的数据,因为你的加样回收率要体现的是全部操纵过程的准确与变异程度,其中也包含数据计算。
关于药物定量分析中加样回收率实验的再探讨回收率包含绝对回收率和相对回收率。
绝对回收率考察的是经过样品处理后能用于分析的药物的比例。
因为不管是生物基质还是制剂辅料中的药物,经过样品处理都有一定的损失。
做为一个分析方法,绝对回收率一般要求大于50%才行。
加标回收实验的实施及回收率计算的研究

·10 ·
显然 , V2 ≥V1 + Vs ,取“ = ”时 ,是在 V1 样品中加入 Vs 标 液形成加标样 ;取“ > ”时 , 是在 V1 样品中加入 Vs 标液后稀 释到 V2 形成加标样 。一般地使 V1 = V , V2 = V1 + Vs , 即取相 同体积的 2 份样品 ,其中 1 份加标 , 1 份不加标 , 这是最常用 的加标方式 。
R
=
(
V2·AA12
-
a·V测 (1) a V测 (2)
-
V1)
·bA·1V-测
a
(1)
·Cs1·Vs
×100
%
(3)
可以看出 ,式 (3) 引入了与 A 值有关的参数 , 使公式变
得繁杂 ,相当于把计算浓度的过程放在回收率计算中去完
成 ,计算并没有简化 。式 (3) 适用于任何一种加标方式 ,可作
参考文献 1 Stern O. Zur theorie der electrolytischen doppelschicht . Z Electrochem ,
1924 , 132 :508 516 作者简介 王晓敏 ,同济大学环境科学与工程学院硕士 ,主要从事水 处理化学品研究 。
(收稿日期 :2005 09 28)
2. 2 回收率计算
根据假设和回收率定义 ,可得 :
R
=
V2·C2 - V1·C1 Vs·Cs
×100
%
(1)
式 (1) 是以被测物质的含量变化求取回收率的 , 简单明
了 ,易于理解 ,适用于任何方式的加标实验 ,因此可作为回收
率计算的通式 。式 (1) 可变形为 :
R
=
C2 - V1 C1/ V2 Vs·Cs/ V2
加标回收试验

在测定样品的同时,于同一样品的子样中加入一定量的标准物质进行测定,将其测定结果扣除样品的测定值,以计算回收率注意点1.加标物的形态应该和待测物的形态相同2.加标量应和样品中所含待测物的测量精密度控制在相同的范围内,一般情况下作如下规定:1)加标量尽量与样品中待测物含量相等或相近,并应注意对样品容器的影响2)当样品中待测物含量接近方法检出限时,加标量控制在校准曲线的低浓度范围3)在任何情况下加标量均不得大于待测物含量的3倍4)加标后的测定值不应超过方法的测量上限的90%5)当样品中待测物浓度高于校准曲线的中间浓度时,加标量应控制在待测物浓度的半量空白加标回收:在没有被测物质的空白样品基质中加入定量的标准物质,按样品的处理步骤分析,得到的结果与理论值的比值即为空白加标回收率;样品加标回收:相同的样品取两份,其中一份加入定量的待测成分标准物质;两份同时按相同的分析步骤分析,加标的一份所得的结果减去未加标一份所得的结果,其差值同加入标准物质的理论值之比即为样品加标回收率;加标回收率的测定, 是实验室内经常用以自控的一种质量控制技术. 对于它的计算方法, 给定了一个理论公式:加标回收率= 加标试样测定值-试样测定值÷加标量×100%.1.1理论公式使用的前提条件文献&91;1 &93;中对加标回收率的解释是:“在测定样品的同时, 于同一样品的子样中加入一定量的标准物质进行测定, 将其测定结果扣除样品的测定值, 以计算回收率. ”因此,使用理论公式时应当满足以下2 个条件:①同一样品的子样取样体积必须相等; ②各类子样的测定过程必须按相同的操作步骤进行;1.2理论公式使用的约束条件文献&91;2 &93;中强调指出: 加标量不能过大,一般为待测物含量的0.5~2.0 倍, 且加标后的总含量不应超过方法的测定上限; 加标物的浓度宜较高, 加标物的体积应很小,一般以不超过原始试样体积的1%为好;1.3理论公式的不足之处1 各文献对公式中“加标量”一词的定义, 均未准确给定, 使其含义不是十分明确. 从公式的分子上分析, 加标量应为浓度单位; 从公式的分母上理解, 应为加入一定体积的标准溶液中所含标准物质的量值, 为质量单位;2 若公式中的加标量为浓度单位, 此时的加标量并不是指标准溶液的浓度, 而应该是加标体积所含标准物质的量值除以试样体积或除以试样体积与加标体积之和所得的浓度值.这里存在着浓度换算, 而在理论公式中并没有明确予以表现出来;22.1以浓度值计算加标回收率理论公式可以表示为:P=c2-c1/c3×100%. (1)式中: P为加标回收率;c1 为试样浓度, 即试样测定值, c1 =m1/V1;c2 为加标试样浓度,即加标试样测定值, c2 =m2/V2;c3 为加标量, c3 =c0 ×V0/V 2:m=c0 ×V0;m1为试样中的物质含量; m2 为加标试样中的物质含量; m为加标体积中的物质含量; V1 为试样体积; V2 为加标试样体积, V2 = V1 + V0; V0 为加标体积; c0 为加标用标准溶液浓度;上述符号意义在下文中均相同;1 在加标体积不影响分析结果的情况下, 即V2= V1, 当c3 =c0 ×V0/V1时,P=&91;c2 - c1 ×V1&93;/c0 ×V0×100% (2)2 在加标体积影响分析结果的情况下, 即V2= V1+ V0, 当c3 =c0 ×V0/V1 + V0时,P=&91;c2 - c1 ×V1 + V0&93;/c0 ×V0×100% (3)2.2以样品中所含物质的量值计算加标回收率将理论公式中各项均理解为量值时, 则可以避开加标体积带来的麻烦, 简明易懂,计算方便, 实用性强. 即P=m2 - m1/m×100%,或P=c2 ×V2 - c1 ×V1/c0 ×V0×100%……………… . 42.3以吸光度值计算加标回收率本方法仅限于用光度法分析样品时使用. 在光度法分析过程中, 会用到校准曲线Y= bx+ a, 导出量值公式为:x= Y–a/b,由2. 2 节可知, 当以物质量值计算加标回收率时, 可导出P=Y2 - Y1/b×c0 ×V0×100% (5)式中:Y2 为加标试样的吸光度; Y1 为试样的吸光度; b为校准曲线的斜率;但是, 使用公式5 的前提条件为Y1-Y0 > a. 其中, Y0 为空白试样的吸光度; a为校准曲线的截距. 而当Y1 - Y0 < a时,加标回收率只能用公式4 进行计算, 否则将使回收率值人为地增大, 引起较大的正误差;3下列情况下, 均可以采用公式2 计算加标回收率;1 样品分析过程中有蒸发或消解等可使溶液体积缩小的操作技术时, 尽管因加标而增大了试样体积, 但样品经处理后重新定容并不会对分析结果产生影响. 比如采用酚二磺酸分光光度法分析水中的硝酸盐氮GB7480287 , 样品及加标样品经水浴蒸干后, 需要重新定容到50 mL 再行测定;2 样品分析过程中可以预先留出加标体积的项目, 比如采用离子选择电极法分析水中的氟化物GB7484287 , 当样品取样量为35 mL、加标样取5.0mL 以内时, 仍可定容在50 mL , 对分析结果没有影响;3 当加标体积远小于试样体积时, 可不考虑加标体积的影响. 比如采用4-氨基安替比林萃取光度法分析水中的挥发酚GB7490287 , 加标体积若为1.0 mL , 而取样体积为250 mL 时, 加标体积引起的误差可以忽略不计;4在具体实践中, 考虑使用加标体积对回收率测定结果影响的公式3 时, 其计算结果常比使用公式4 计算的结果偏低, 最大时偏差可超过10%. 一般来讲, 同一样品加标回收率的计算, 不管采用哪一种计算方法或公式, 结果都应该相等;经过分析和实例计算, 文献&91; 2 &93;中特别强调要求“加标物的浓度宜较高, 加标物的体积应很小”的含义便更加清晰: 在计算加标试样浓度c2 时, 应尽可能减小标准溶液的取样体积V0. 只有这样, 分别采用公式3 和4 的计算结果才会相等.由此可见, 采用浓度值法计算加标回收率时, 任意加大加标试样的体积, 将会导致回收率测定结果偏低, 文献& 91; 2 &93;中的有关规定是有其科学道理的;51 凡是可以用加标回收率来评价分析方法和测量系统准确度的分析项目, 其加标回收率的计算, 应首先考虑采用以物质的量值法计算;2 凡是可以用分光光度法分析的项目, 当试样与空白样的吸光度之差大于校准曲线的截距时, 可直接用吸光度法来计算;3 在加标体积对加标试样测定值不产生影响的情况下, 可以采用浓度法计算.4 当加标体积影响试样测定值浓度值时, 应恪守理论公式使用的约束条件, 否则将会出现较大的误差;。
加标回收率

加标回收率加标回收率是一种广泛应用于环境监测、食品安全监测、药物分析等领域的质量控制方法。
它通常用于验证分析方法的准确性和可靠性,评估仪器的精度和重现性,并确保分析结果的准确性和可靠性。
在许多实验室中,加标回收率是一项常规的质量控制程序。
加标回收率的定义是指在分析样品中添加已知浓度的标准品,然后通过分析方法来测定该标准品的回收率。
回收率表示从理论上预期的值中获得的实际分析结果的准确性和可靠性。
如果回收率接近100%,则说明分析方法准确可靠;如果回收率显著低于100%,则说明存在一些未知的误差源或分析方法的不准确性。
实施加标回收率的步骤通常包括以下几个方面:1. 准备标准品:在分析前,需要准备一系列的标准品。
这些标准品通常是已知浓度的化合物或混合物,其浓度范围应该能够覆盖实际样品中可能存在的浓度范围。
2. 加标:将已知浓度的标准品添加到实际样品中,并确保标准品的加入量在实际样品中相对较小,以避免对样品本身性质的影响。
加标量的选择应根据实际情况进行合理确定。
3. 分析:使用合适的分析方法对加标样品进行测定。
分析方法可以是色谱法、光谱法、质谱法等,具体选择根据分析目的和标准要求来确定。
4. 计算回收率:根据分析结果计算回收率。
回收率的计算方法通常是通过测定样品中目标物的浓度与添加的标准品浓度之间的比较来进行。
计算公式为:回收率(%) = (测定值/理论值) × 100%。
加标回收率可用于确定分析方法的精确度和可靠性,并评估实验室中不同仪器和人员之间的结果一致性。
在实际分析中,如果多个分析员在不同仪器上对相同的样品进行分析,并且得到的回收率结果非常接近,那么可以判定该分析方法和仪器是准确可靠的。
此外,加标回收率还可用于评估样品处理过程中的损失和误差。
例如,在环境样品测定中,样品前处理过程中可能存在挥发、降解、吸附等步骤,这些步骤可能会导致样品中目标物的损失。
通过加标回收率的测定,可以评估前处理过程对样品中目标物的损失情况,并在分析结果中进行修正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在测定样品的同时,于同一样品的子样中加入一定量的标准物质进行测定,将其测定结果扣除样品的测定值,以计算回收率
注意点
1.加标物的形态应该和待测物的形态相同
2.加标量应和样品中所含待测物的测量精密度控制在相同的范围内,一般情况下作如下规定:
1)加标量尽量与样品中待测物含量相等或相近,并应注意对样品容器的影响
2)当样品中待测物含量接近方法检出限时,加标量控制在校准曲线的低浓度范围
3)在任何情况下加标量均不得大于待测物含量的3倍
4)加标后的测定值不应超过方法的测量上限的90%
5)当样品中待测物浓度高于校准曲线的中间浓度时,加标量应控制在待测物浓度的半量
空白加标回收:在没有被测物质的空白样品基质中加入定量的标准物质,按样品的处理步骤分析,得到的结果与理论值的比值即为空白加标回收率。
样品加标回收:相同的样品取两份,其中一份加入定量的待测成分标准物质;两份同时按相同的分析步骤分析,加标的一份所得的结果减去未加标一份所得的结果,其差值同加入标准物质的理论值之比即为样品加标回收率。
加标回收率的测定, 是实验室内经常用以自控的一种质量控制技术. 对于它的计算方法, 给定了一个理论公式:
加标回收率= (加标试样测定值-试样测定值)÷加标量×100%.
1.1
理论公式使用的前提条件
文献[1 ]中对加标回收率的解释是:“在测定样品的同时, 于同一样品的子样中加入一定量的标准物质进行测定, 将其测定结果扣除样品的测定值, 以计算回收率. ”因此,使用理论公式时应当满足以下2 个条件:①同一样品的子样取样体积必须相等; ②各类子样的测定过程必须按相同的操作步骤进行。
1.2
理论公式使用的约束条件
文献[2 ]中强调指出: 加标量不能过大,一般为待测物含量的0.5~2.0 倍,
且加标后的总含量不应超过方法的测定上限; 加标物的浓度宜较高, 加标物的体积应很小,一般以不超过原始试样体积的1%为好。
1.3
理论公式的不足之处
( 1) 各文献对公式中“加标量”一词的定义, 均未准确给定, 使其含义不是十分明确. 从公式的分子上分析, 加标量应为浓度单位; 从公式的分母上理解, 应为加入一定体积的标准溶液中所含标准物质的量值, 为质量单位。
(2) 若公式中的加标量为浓度单位, 此时的加标量并不是指标准溶液的浓度, 而应该是加标体积所含标准物质的量值除以试样体积(或除以试样体积与加标体积之和)所得的浓度值. 这里存在着浓度换算, 而在理论公式中并没有明确予以表现出来。
2
2.1
以浓度值计算加标回收率理论公式可以表示为
:
P=(c2-c1)/c3×100%. (1)
式中: P为加标回收率;c1 为试样浓度, 即试样测定值, c1 =m1/V1;c2 为加标试样浓度,即加标试样测定值, c2 =m2/V2;c3 为加标量, c3 =c0 ×V0/V 2:m=c0 ×V0;m 1 为试样中的物质含量; m2 为加标试样中的物质含量; m为加标体积中的物质含量; V1 为试样体积; V2 为加标试样体积, V2 = V1 + V0; V0 为加标体积; c0 为加标用标准溶液浓度。
上述符号意义在下文中均相同。
(1) 在加标体积不影响分析结果的情况下, 即V2= V1, 当c3 =c0 ×V0/V1时,
P=[(c2 - c1) ×V1]/(c0 ×V0)×100% (2)
(2) 在加标体积影响分析结果的情况下, 即V2= V1+ V0, 当c3 =(c0 ×V0)/(V1 + V0)
时,
P=[(c2 - c1) ×(V1 + V0)]/(c0 ×V0)×100% (3)
2.2
以样品中所含物质的量值计算加标回收率
将理论公式中各项均理解为量值时, 则可以避开加标体积带来的麻烦, 简明易懂,
计算方便, 实用性强. 即
P=(m2 - m1)/m×100%,或
P=(c2 ×V2 - c1 ×V1)/c0 ×V0×100%……………… . (4)
2.3
以吸光度值计算加标回收率
本方法仅限于用光度法分析样品时使用. 在光度法分析过程中, 会用到校准曲线
Y= bx+ a, 导出量值公式为:
x= Y–a/b,
由2. 2 节可知, 当以物质量值计算加标回收率时, 可导出
P=(Y2 - Y1)/(b×c0 ×V0)×100% (5)
式中:Y2 为加标试样的吸光度; Y1 为试样的吸光度; b为校准曲线的斜率。
但是, 使用公式(5) 的前提条件为(Y1-Y0) > a. 其中, Y0 为空白试样的吸光度; a
为校准曲线的截距. 而当(Y1 - Y0 ) < a时,加标回收率只能用公式(4) 进行计算, 否则
将使回收率值人为地增大, 引起较大的正误差。
3
下列情况下, 均可以采用公式(2) 计算加标回收率。
(1) 样品分析过程中有蒸发或消解等可使溶液体积缩小的操作技术时, 尽管因加
标而增大了试样体积, 但样品经处理后重新定容并不会对分析结果产生影响. 比如采用酚二磺酸分光光度法分析水中的硝酸盐氮(GB7480287) , 样品及加标样品经水浴蒸干
后, 需要重新定容到50 mL 再行测定。
(2) 样品分析过程中可以预先留出加标体积的项目, 比如采用离子选择电极法分析水中的氟化物(GB7484287) , 当样品取样量为35 mL、加标样取5.0mL 以内时, 仍可定容在50
mL , 对分析结果没有影响。
(3) 当加标体积远小于试样体积时, 可不考虑加标体积的影响. 比如采用4-氨基
安替比林萃取光度法分析水中的挥发酚(GB7490287) , 加标体积若为1.0 mL , 而取样体积为250 mL 时, 加标体积引起的误差可以忽略不计。
4
在具体实践中, 考虑使用加标体积对回收率测定结果影响的公式(3) 时, 其计算结果常比使用公式(4) 计算的结果偏低, 最大时偏差可超过10%. 一般来讲, 同一样品加标回收率的计算, 不管采用哪一种计算方法或公式, 结果都应该相等。
经过分析和实例计算, 文献[ 2 ]中特别强调要求“加标物的浓度宜较高, 加标物的体积应很小”的含义便更加清晰: 在计算加标试样浓度c2 时, 应尽可能减小标准溶液的取样体积V0. 只有这样, 分别采用公式(3) 和(4) 的计算结果才会相等.由此可见, 采用浓度值法计算加标回收率时, 任意加大加标试样的体积, 将会导致回收率测定结果偏低, 文献[ 2 ]中的有关规定是有其科学道理的。
5
(1) 凡是可以用加标回收率来评价分析方法和测量系统准确度的分析项目, 其加标回收率的计算, 应首先考虑采用以物质的量值法计算。
(2) 凡是可以用分光光度法分析的项目, 当试样与空白样的吸光度之差大于校准曲线的截距时, 可直接用吸光度法来计算。
(3) 在加标体积对加标试样测定值不产生影响的情况下, 可以采用浓度法计算.
(4) 当加标体积影响试样测定值(浓度值) 时, 应恪守理论公式使用的约束条件, 否则将会出现较大的误差。