几个重要不等式
几个重要不等式

几个重要不等式以下四个不等式在数学竞赛中使用频率是最高的,应用极为广泛。
1、算术-几何平均值(AM-GM)不等式设是非负实数,则2、柯西(Cauchy)不等式设,则等号成立当且仅当存在,使变形(Ⅰ):设,则;等号成立当且仅当存在。
使变形(Ⅱ)设同号,且,则。
等号成立当且仅当3.排序不等式设是的一个排列,则.等号成立当且仅当或。
(用调整法证明).4.琴生(Jensen)不等式若是区间上的凸函数,则对任意的点有等号当且仅当时取得。
(用归纳法证明)二、进一步的结论运用以上四个不等式可得以下更一般的不等式和一些有用的结论,有时用这些结论也会起到意想不到的效果。
1.幂均值不等式设,,则证:作变量代换,令,则,则①,,又函数是上的凸函数,由Jensen不等式知①式成立。
2.(切比雪夫不等式)设两个实数组,则等号成立当且仅当或。
证:由排序不等式有:……………………………………………………………………………以上n个等式相加即得。
3.一个基础关系式其中证:若x,y中有一个为0,则显然成立。
设x,y均不为零,则原不等式,令,则上式,记,则,因此,当时,,当时,,且,所以得极小值为,故,即.4. Holder不等式设且,则等号成立当且仅当存在使得。
证:在上面基础关系式中,取有……①①式两边对k求和,得:,令,代入上式即证。
5.一个有用的结论设,则,推广得设,则.证:原不等式,而,它可把含根式的积性不等式化为和式。
例1设且,求证:。
证:由柯西不等式有…①而即…②由①②有:,∴方法二:由幂均值不等式有:方法三:由切比雪夫不等式和AM-GM不等式有:不妨设,则例2设,求证:证:左边=评注:通过此例注意体会如何运用柯西不等式分离或合成变量。
例3设,求证:证:设,则原不等式由Cauchy不等式有:故原不等式成立。
评注:本题通过换元,把原不等式齐次化,再用柯西不等式。
例4设n是正整数,且,,求证:证:原不等式,由“二,结论5”有又。
几个重要不等式及其应用

几个重要不等式及其应用一、几个重要不等式以下四个不等式在数学竞赛中使用频率是最高的,应用极为广泛。
1、算术-几何平均值(AM-GM )不等式设12,,,n a a a L是非负实数,则12n a a a n+++≥L2、柯西(Cauchy )不等式设,(1,2,)i i a b R i n ∈=L ,则222111.n n n i i i i i i i a b a b ===⎛⎫⎛⎫⎛⎫≥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑等号成立当且仅当存在R λ∈,使,1,2,,.i i b a i n λ==L变形(Ⅰ):设+∈∈R b R a i i ,,则∑∑∑===⎪⎭⎫⎝⎛≥ni in i i ni ii b a b a 12112;等号成立当且仅当存在R λ∈, 使,1,2,,.i i b a i n λ==L变形(Ⅱ)设i i b a ,同号,且0,≠i i b a ,则∑∑∑===⎪⎭⎫ ⎝⎛≥n i ii n i i ni ii b a a b a 1211。
等号成立当且仅当n b b b ===Λ21 3.排序不等式设n n n j j j b b b a a a ,,,,,212121⋯≤⋯≤≤≤⋯≤≤是n ,,2,1⋯的一个排列,则n n j j j n n n b a b a b a b a b a b a b a b a b a n ΛΛΛ++≤+++≤+++-2211321112121. 等号成立当且仅当n a a a ===Λ21或n b b b ===Λ21。
(用调整法证明).4.琴生(Jensen )不等式若()x f 是区间()b a ,上的凸函数,则对任意的点()b a x x x n ,,,,21∈Λ*()n N ∈有()()()12121().n n x x x f f x f x f x n n +++≤+++⎡⎤⎣⎦L L 等号当且仅当n x x x ===Λ21时取得。
几个重要的不等式

几个重要的不等式(一):平均值不等式一、平均值不等式设a1,a2,…, a n是n个正实数,则,当且仅当a1=a2=…=a n时取等号1.二维平均值不等式的变形(1)对实数a,b有a2+b2³2ab(2)对正实数a,b有(3)对b>0,有,(4)对ab2>0有,(5)对实数a,b有a(a-b)³b(a-b)(6)对a>0,有(7) 对a>0,有(8)对实数a,b有a2³2ab-b2(9) 对实数a,b及l¹0,有二、例题选讲例1.证明柯西不等式证明:法一、若或命题显然成立,对¹0且¹0,取代入(9)得有两边平方得法二、,即二次式不等式恒成立则判别式例2.已知a>0,b>0,c>0,abc=1,试证明:(1)(2)证明:(1)左=[]=³(2)由知同理:相加得:左³例3.求证:证明:法一、取,有a1(a1-b)³b(a1-b), a2(a2-b)³b(a2-b),…, a n(a n-b)³b(a n-b)相加得(a12+ a22+…+ a n2)-( a1+ a2+…+ a n)b³b[(a1+ a2+…+ a n)-nb]³0 所以法二、由柯西不等式得:(a1+ a2+...+ a n)2=((a1×1+ a2×1+...+ a n×1)2£(a12+ a22+...+ a n2)(12+12+ (12)=(a12+ a22+…+ a n2)n,所以原不等式成立例4.已知a1, a2,…,a n是正实数,且a1+ a2+…+ a n<1,证明:证明:设1-(a1+ a2+…+ a n)=a n+1>0,则原不等式即n n+1a1a2…a n+1£(1-a1)(1-a2)…(1-a n)1-a 1=a2+a3+…+a n+1³n1-a 2=a1+a3+…+a n+1³n …………………………………………1-a n+1=a1+a1+…+a n³n相乘得(1-a 1)(1-a2)…(1-a n)³n n+1例5.对于正整数n,求证:证明:法一、>法二、左==例6.已知a1,a2,a3,…,a n为正数,且,求证:(1)(2)证明:(1)相乘左边³=(n2+1)n 证明(2)左边= -n+2(= -n+2×[(2-a1)+(2-a2)+…+(2-a n)](³ -n+2×n几个重要不等式(二)柯西不等式,当且仅当b i=l a i (1£i£n)时取等号柯西不等式的几种变形形式1.设a i∈R,b i>0 (i=1,2,…,n)则,当且仅当b i=l a i (1£i£n)时取等号2.设a i,b i同号且不为零(i=1,2,…,n),则,当且仅当b1=b2=…=b n时取等号例1.已知a1,a2,a3,…,a n,b1,b2,…,b n为正数,求证:证明:左边=例2.对实数a1,a2,…,a n,求证:证明:左边=例3.在△ABC中,设其各边长为a,b,c,外接圆半径为R,求证:证明:左边≥例4.设a,b,c为正数,且a+b+c=1,求证:证明:左边=³==例5.若n是不小于2的正整数,试证:证明:所以求证式等价于由柯西不等式有于是:又由柯西不等式有<例6.设x1,x2,…,x n都是正数(n³2)且,求证:证明:不等式左端即(1)∵,取,则(2) 由柯西不等式有(3)及综合(1)、(2)、(3)、(4)式得:几个重要的不等式(三):排序不等式设a1£a2£…£a n,b1£b2£…£b n;r1,r2,…,r n是1,2,…,n的任一排列,则有:a1b n+a2b n-1+…+a n b1£a1b r1+a2b r2+…+a n b rn£a1b1+a2b2+…+a n b n 反序和£乱序和£同序和例1.对a,b,c∈R+,比较a3+b3+c3与a2b+b2c+c2a的大小解:取两组数a,b,c;a2,b2,c2,则有a3+b3+c3³a2b+b2c+c2a例2.正实数a1,a2,…,a n的任一排列为a1/,a2/,…a n/,则有证明:取两组数a1,a2,…,a n;其反序和为,原不等式的左边为乱序和,有例3.已知a,b,c∈R+求证:证明:不妨设a³b³c>0,则>0且a12³b12³c12>0则例4.设a1,a2,…,a n是1,2,…,n的一个排列,求证:证明:设b1,b2,…,b n-1是a1,a2,…,a n-1的一个排列,且b1<b2<…<b n-1;c1,c2,…,c n-1是a2,a3,…,a n的一个排列,且c1<c2<…<c n-1则且b1³1,b2³2,…,b n-1³n-1;c1£2,c2£3,…,c n-1£n利用排序不等式有:例5.设a,b,c∈R+,求证:证明:不妨设a³b³c,则,a2³b2³c2>0由排序不等式有:两式相加得又因为:a3³b3³c3>0,故两式相加得例6.切比雪不等式:若a1£a2£…£a n且b1£b2£…£b n,则a1£a2£…£a n且b1³b2³…³b n,则证明:由排序不等式有:a1b1+a2b2+…+a n b n=a1b1+a2b2+…+a n b na1b1+a2b2+…+a n b n³a1b2+a2b3+…+a n b1a1b1+a2b2+…+a n b n³a1b3+a2b4+…+a n b2…………………………………………a1b1+a2b2+…+a n b n³a1b n+a2b1+…+a n b n-1将以上式子相加得:n(a1b1+a2b2+…+a n b n)³a1(b1+b2+…+b n)+a2(b1+b2+…+b n)+…+a n(b1+b2+…+bn)∴。
高中重要不等式公式

高中重要不等式公式一、绝对值不等式(Absolute Value Inequality)绝对值不等式是高中数学中非常重要的一个概念,涉及到求解不等式的解集。
绝对值不等式形式简单,但涵盖的内容却非常广泛。
下面将介绍几个常见的绝对值不等式公式。
1. |x| > a ,其中a为正实数。
解集为:x < -a 或 x > a。
这个不等式表示x与原点的距离大于a。
2. |x| < a ,其中a为正实数。
解集为:-a < x < a。
这个不等式表示x与原点的距离小于a。
3. |x| ≤ a ,其中a为正实数。
解集为:-a ≤ x ≤ a。
这个不等式表示x与原点的距离小于等于a。
4. |x - a| > b ,其中a和b为正实数。
解集为:x < a - b 或 x > a + b。
这个不等式表示x与点a的距离大于b。
5. |x - a| < b ,其中a和b为正实数。
解集为:a - b < x < a + b。
这个不等式表示x与点a的距离小于b。
6. |x - a| ≤ b ,其中a和b为正实数。
解集为:a - b ≤ x ≤ a + b。
这个不等式表示x与点a的距离小于等于b。
(以上公式中的a、b、x均表示实数)绝对值不等式的应用十分广泛,例如在求解间隔、范围、距离等问题时常常会涉及到绝对值不等式。
熟练掌握这些公式能够帮助我们更加灵活地解决实际问题。
二、平均数不等式(Mean Inequality)平均数不等式是高中数学中另一个重要的概念,用于比较算术平均数、几何平均数和谐平均数的大小关系。
下面将介绍几个常见的平均数不等式公式。
1. 算术平均数与几何平均数不等式:对于任意非负实数a和b,有:(a + b) / 2 ≥ √(ab)。
这个公式表示算术平均数不小于几何平均数。
2. 几何平均数与谐平均数不等式:对于任意正实数a和b,有:2 / (1/a + 1/b) ≥ √(ab)。
概率论中几个不等式的推广及应用

概率论中几个不等式的推广及应用
1. 闵可夫斯基不等式:它是概率论中最重要的不等式,它的推广及应用包括:
(1)贝叶斯不等式:它是闵可夫斯基不等式的一种推广,它可以用来证明贝叶斯定理,以及证明条件概率的关系。
(2)拉普拉斯不等式:它是闵可夫斯基不等式的另一种推广,它可以用来证明拉普拉斯定理,以及证明条件概率的关系。
(3)抽样不等式:它是闵可夫斯基不等式的另一种推广,它可以用来证明抽样定理,以及证明条件概率的关系。
(4)泰勒不等式:它是闵可夫斯基不等式的一种推广,它可以用来证明泰勒定理,以及证明条件概率的关系。
(5)大数定律:它是闵可夫斯基不等式的一种推广,它可以用来证明大数定律,以及证明条件概率的关系。
2. 黎曼不等式:它是概率论中另一个重要的不等式,它的推广及应用包括:
(1)熵不等式:它是黎曼不等式的一种推广,它可以用来证明熵定理,以及证明条件概率的关系。
(2)马尔可夫不等式:它是黎曼不等式的一种推广,它可以用来证明马尔可夫定理,以及证明条件概率的关系。
(3)惩罚不等式:它是黎曼不等式的一种推广,它可以用来证明惩罚定理,以及证明条件概率的关系。
(4)贝尔不等式:它是黎曼不等式的一种推广,它可以用来证明贝尔定理,以及证明条件概率的关系。
(5)贝尔-黎曼不等式:它是黎曼不等式的一种推广,它可以用来证明贝尔-黎曼定理,以及证明条件概率的关系。
几个重要不等式的证明及应用

[a,b]上连续, x)dx=1,k为任意实数,求证:(J' ̄f(x)coskxdx) +
(f:f(x)sinkxdx)‘≤1(2)
证 明 :(2)式 左 端 第 一 项 应 用Schwarz不 等 式 ,得 到 :
)coskxdx) =[J' b、/ -x)( coskx)dx] ≤J' bf(x)dxf ̄f(x)
关 键 词 :Cauchy-T等 式 Schwarz ̄ 等 式 平 均值 不等 式
( .)2=(
、/a +a
2
) ≤
I __,( ai+ai+1):
1 a + aI+I l
’ l
不 等 式 是 初 等 数 学 及 高 等 数 学 中一 种 应 用 广 泛 的解 题 工
具 ,在 中学 各 种 竞 赛 、高 考 、专 升本 、研 究 生 入 学 考 试 等 各 类 考
中 ,不 等 式 的教 学 更 是 一 个 难 点 ,学 生 在 学 习不 等 式 , ∑应 用 不
等 式 解 题 时 困难 重 重 .本 文 以 3个 重 要 的 不 等 式 为 例 a,,对 其 a 证
明 方 法 及 推广 、应 用 技 巧 进行 总结 与归 纳 .
+
1.Cauchy ̄ 等 式
(2)式 成 立 . 评 注6:本 定 理 的证 明 是 灵 活 运 用 一 致 连 续 定 义 的 典 范 .
它在 理 论 研 究 上 具 有 一 定 的 意 义 . 2.2一 致 连 续 函数 的 运 算 性 质 一 致 连 续 函 数 有 一 系列 的运 算 性 质 ,归结 如 下几 个 命 题 . 命 题 1:设 中(x)与 (x)在 区 间 I上 一 致 连 续 ,则 x)+p
几个重要的不等式

几个重要的不等式不等式是数学中非常重要的概念,它们在数学、物理、经济学等领域都有广泛的应用。
本文将介绍几个重要的不等式,包括柯西-施瓦茨不等式、均值不等式、柯西反向不等式和霍尔德不等式。
一、柯西-施瓦茨不等式柯西-施瓦茨不等式是数学中最基本的不等式之一。
它可以用于证明其他许多重要的定理和不等式。
该不等式表述为:对于任意两个实数序列a1, a2, …, an和b1, b2, …, bn,有(a1b1 + a2b2 + … + anbn)² ≤ (a1² + a2² + … + an²)(b1² + b2² + … + bn²)其中“=”号成立当且仅当ai/bi为常数或bi=0。
该不等式可以推广到内积空间中,即对于任意两个向量x和y,有|x·y| ≤ ||x|| ||y||其中“=”号成立当且仅当x与y线性相关。
二、均值不等式均值不等式是一类基本的算术平均值与几何平均值之间的关系。
它包括算术平均不等式、几何平均不等式和调和平均不等式。
1. 算术平均不等式对于任意n个非负实数a1, a2, …, an,有(a1 + a2 + … + an)/n ≥√(a1a2…an)其中“=”号成立当且仅当a1 = a2 = … = an。
该不等式表明,n个非负实数的算术平均值大于等于它们的几何平均值。
2. 几何平均不等式对于任意n个正实数a1, a2, …, an,有(a1a2…an)^(1/n) ≤ (a1 + a2 + … + an)/n其中“=”号成立当且仅当a1 = a2 = … = an。
该不等式表明,n个正实数的几何平均值小于等于它们的算术平均值。
3. 调和平均不等式对于任意n个正实数a1, a2, …, an,有n/(1/a1 + 1/a2 + … + 1/an) ≤ (a1 + a2 + … + an)/n ≤ (n/(1/a1 + 1/a2 + … + 1/an))其中“=”号成立当且仅当a1 = a2 = … = an。
基本不等式题型大全

基本不等式题型大全知识点:1.几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤ ②(基本不等式)2a b+≥()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: a b +≥ 2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号). ⑤3333(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号).⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b aab a b<+≤-若则(当仅当a=b 时取等号)⑦ban b n a m a m b a b <++<<++<1,其中(000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小.⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<<⑨绝对值三角不等式.a b a b a b -≤±≤+2.几个著名不等式①平均不等式:1122a b a b --+≤≤≤+()a b R +∈,,(当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n+++≥+++1122(,,,).x y x y R ∈④二维形式的柯西不等式: 22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.板块一 基本不等式及其变换一、“配、凑、拆”的技巧 ①基本不等式及变形1.函数f (x )=x +1x (x >0)值域为________;函数f (x )=x +1x (x ∈R )值域为________;2.函数f (x )=x 2+1x 2+1的值域为________.2.若x >1,则x +4x -1的最小值为________. 解:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:53.已知x <0,则f (x )=2+4x +x 的最大值为________. 解:∵x <0,∴-x >0,∴f (x )=2+4x +x =2-⎣⎢⎡⎦⎥⎤4-x+-x .∵-4x +(-x )≥24=4,当且仅当-x =4-x ,即x =-2时等号成立.∴f (x )=2-⎣⎢⎡⎦⎥⎤4-x+-x ≤2-4=-2,∴f (x )的最大值为-2..54124,45.1的最大值求函数已知-+-=<x x y x 答案:1.,)0(312)(.2的值并求取最值时的最值求x x x xx f ≠+=答案:略223.,,()().a b y x a x b =-+-(三星)为实常数求的最小值解:(1)方法一:方法二:(1)函数f (x )=x (1-x )(0<x <1)的值域为____________; (2)函数f (x )=x (1-2x )⎝ ⎛⎭⎪⎫0<x <12的值域为____________.解:(1)∵0<x <1,∴1-x >0, x (1-x )≤⎣⎢⎡⎦⎥⎤x +1-x 22=14, ∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,14.(2)∵0<x <12,∴1-2x >0.x (1-2x )=12×2x (1-2x )≤12·⎣⎢⎡⎦⎥⎤2x +1-2x 22=18,∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,18.8.已知0<x <1,则x (3-3x )取得最大值时x 的值为________. 解:由x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.9.函数y =x 1-x 2的最大值为________.解:x 1-x 2=x 21-x 2≤x 2+1-x 22=12..)2)(12(,523.42222的最大值求已知++==+b a y b a答案:147162223.,1,1.2y x y R x x y +∈+=+(三星)设且求的最大值221y+≤2210.1,.x yx y xyx y+>=-(二星)若且求的最小值答案:23.设x,y∈R,且xy≠0,则⎝ ⎛⎭⎪⎫x2+1y2·⎝⎛⎭⎪⎫1x2+4y2的最小值为________.解:⎝⎛⎭⎪⎫x2+1y2⎝⎛⎭⎪⎫1x2+4y2=5+1x2y2+4x2y2≥5+21x2y2·4x2y2=9,当且仅当x2y2=12时“=”成立.14.在各项都为正数的等比数列{}n a中,若2018a=,则2017201912a a+的最小值为________.4 14.已知正数x y,满足2230x xy+-=,则2x y+的最小值是___________.3②二次分式有关12.已知t>0,则函数y=t2-4t+1t的最小值为________.答案-2解:∵t>0,∴y=t2-4t+1t=t+1t-4≥2-4=-2,且在t=1时取等号.13.当x>0时,则f(x)=2xx2+1的最大值为________.解:∵x>0,∴f(x)=2xx2+1=2x+1x≤22=1,当且仅当x=1x,即x=1时取等号.14.(1)求函数f(x)=1x-3+x(x>3)的最小值;(2)求函数f(x)=x2-3x+1x-3(x>3)的最小值;解:(1)∵x>3,∴x-3>0.∴f(x)=1x-3+(x-3)+3≥21x-3·x-3+3=5.当且仅当1x-3=x-3,即x=4时取等号,∴f(x)的最小值是5.(2)令x-3=t,则x=t+3,且t>0.∴f(x)=t+32-3t+3+1t=t+1t+3≥2t·1t+3=5.当且仅当t=1t,即t=1时取等号,此时x=4,∴当x=4时,f(x)有最小值为5.15.设x>-1,求函数y=x+4x+1+6的最小值;解:∵x>-1,∴x+1>0.∴y=x+4x+1+6=x+1+4x+1+5≥2x+1·4x+1+5=9,当且仅当x+1=4x+1,即x=1时,取等号.∴当x=1时,函数y的最小值是9.4.当x>0时,则f(x)=2xx2+1的最大值为________.解:(1)∵x >0,∴f(x)=2xx2+1=2x+1x≤22=1,当且仅当x=1x,即x=1时取等号.5.函数y=x2+2x-1(x>1)的最小值是________.解:∵x>1,∴x-1>0.∴y=x2+2x-1=x2-2x+2x+2x-1=x2-2x+1+2x-1+3x-1=x-12+2x-1+3x-1=x-1+3x-1+2≥2 x-13x-1+2=23+2.当且仅当x-1=3x-1,即x=1+3时,取等号.答案:23+2③平方平均数的应用228.,1,.x y R x y x y +∈+=+(一星)已知且求的最大值解:使用不等式变形2a b +≤.11.()0,0,1,.a b a b >>+=二星设答案:7.(三星)设,0,5,a b a b >+= _________. 解:因为,0,5,a b a b >+=所以()()139a b +++=由不等式2x y+≤2≤=,13.(四星)已知实数a b c ,,满足22201a b c a b c ++=++=,,则a 的最大值是 ____________. 解:∵222b c bc +≥,即()()2222222b c b c bc b c +++=+≥,∴()2222b c b c++≥,由0a b c ++=,得b c a +=-,由2221a b c ++=,得()22222122b c a a b c +-=+=≥,∴223a ≤,∴a ,故a .9.(三星)已知R k ∈,点(),P a b 是直线2x y k +=与圆22223x y k k +=-+的公共点,则ab 的最大值为( )BA .15B .9C .1D .53-1.(二星)若0,0x y >>的最小值为_________.2.)510)(51(.52的最值求函数≤≤-=x x x y答案:4675.cos sin ,.62的最大值求为锐角设θθθ=y答案:9二、附条件求最值:“1”的代换5:已知正数a ,b 满足a +2b =1,则1a +1b 的最小值是____. 解:1a +1b =a +2b a +a +2b b =3+2b a +ab ≥3+22b a ·ab =3+2 2.36.已知x >0,y >0,且2x +y =1,则1x +2y 的最小值是_________. 解 因为1x +2y =(2x +y )⎝ ⎛⎭⎪⎫1x +2y=4+y x +4x y ≥4+2y x ·4x y =8,等号当且仅当y =12,x =14时成立.37.已知x >0,y >0,且2x +y =1,则1x +1y 的最小值为________; 解 ∵x >0,y >0,且2x +y =1,∴1x +1y =2x +y x +2x +y y=3+y x +2xy ≥3+2 2.当且仅当y x =2xy 时,取等号.38.已知x >0,y >0,且9x +1y =1,求x +y 的最小值. 解:∵9x +1y =1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫9x +1y =10+9y x +x y ≥10+29y x ·xy =16.当且仅当9y x =x y 且9x +1y =1,即x =12,y =4时取等号. ∴当x =12,y =4时,x +y 有最小值为16.39.已知x ,y 为正实数,且1x +16y =1,求x +y 的最小值. 解:∵1x +16y =1,∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +16y =17+16x y +y x ≥17+216x y ·yx =25.当且仅当16x y =y x 且1x +16y =1时,等号成立. ∴x =5,y =20时,x +y 有最小值25.1.已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是________. 解: ∵a +b =2,∴a +b2=1.∴1a +4b =⎝ ⎛⎭⎪⎫1a +4b ⎝⎛⎭⎪⎫a +b 2 =52+⎝ ⎛⎭⎪⎫2a b +b 2a≥52+22a b ·b 2a=92⎝ ⎛⎭⎪⎫当且仅当2a b =b 2a ,即b =2a 时,等号成立. 故y =1a +4b 的最小值为92.40.若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A.245B.285 C .5 D .6解 ∵x >0,y >0,由x +3y =5xy 得15⎝ ⎛⎭⎪⎫1y +3x =1.∴3x +4y =15(3x +4y )⎝ ⎛⎭⎪⎫1y +3x=15⎝ ⎛⎭⎪⎫3xy +4+9+12y x =135+15⎝⎛⎭⎪⎫3x y +12y x ≥135+15×23x y ·12yx =5(当且仅当x =2y 时取等号),∴3x +4y 的最小值为5.41.正数x ,y 满足1x +9y =1. (1)求xy 的最小值; (2)求x +2y 的最小值. 解:(1)由1=1x +9y ≥2 1x ·9y 得xy ≥36,当且仅当1x =9y ,即y =9x =18时取等号,故xy 的最小值为36.(2)由题意可得x +2y =(x +2y )⎝ ⎛⎭⎪⎫1x +9y =19+2y x +9x y ≥19+22y x ·9xy =19+62,当且仅当2y x =9xy ,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2.9.,,280,.x y R x y xy x y +∈+-=+(二星)已知且求的最小值答案:18227.()01,,,().1a b x a b f x x x<<=+-三星设为常数求的最小值答案:2()a b +2.(二星)若直线()10,0x ya b a b+=>>过点(1,1),则a b +的最小值等于( )A.2B.3C.4D.5解:因为直线过点(1,1),所以111=+b a ,所以ba ab b a a b b a b a b a ++=+++=++=+211)11)((,因为0,0>>b a ,所以4222=⨯+≥++baa b b a a b ,当且仅当“a=b=2”时等号成立.14.(二星)若()42log 34log a b +=则a b +的最小值是( )DA .6+B .7+C .6+D .7+112511.0,0,1,:.4a b a b a b a b ⎛⎫⎛⎫>>+=++≥ ⎪⎪⎝⎭⎝⎭(三星)设求证1.(四星)已知20x y >>,且满足181022x y x y++=-,求实数x 的最大值. 答案:[]2,181.已知,x y 都是正数,且1x y +=,则4121x y +++的最小值为__________.941.(三星)设,x y 是正实数,且1x y +=,则2221x y x y +++的最小值是___________.141.(三星)已知1,,(0,1)4ab a b =∈,则1211a b+--的最小值是__________.20.(四星)函数()22log 1log 1x f x x -=+,若()()1221f x f x +=(其中1x 、2x 均大于2),则()12f x x 的最小值为_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几个重要不等式(二)柯西不等式
,当且仅当b i=l a i(1£i£n)时取等号
柯西不等式的几种变形形式
1.设a iÎR,b i>0 (i=1,2,…,n)则,当且仅当b i=l a i(1£i£n)时取等号
2.设a i,b i同号且不为零(i=1,2,…,n),则,当且仅当b1=b2=…=b n时取等号
例1.已知a1,a2,a3,…,a n,b1,b2,…,b n为正数,求证:
证明:左边=
例2.对实数a1,a2,…,a n,求证:
证明:左边=
例3.在DABC中,设其各边长为a,b,c,外接圆半径为R,求证:
证明:左边³
例4.设a,b,c为正数,且a+b+c=1,求证:证明:左边=
³
=
=
例5.若n是不小于2的正整数,试证:
证明:
所以求证式等价于
由柯西不等式有
于是:
又由柯西不等式有
<
例6.设x1,x2,…,x n都是正数(n³2)且,求证:
证明:不等式左端即 (1)
∵,取,则(2) 由柯西不等式有 (3)
及
综合(1)、(2)、(3)、(4)式得:
三、排序不等式
设a1£a2£…£a n,b1£b2£…£b n;r1,r2,…,r n是1,2,…,n的任一排列,则有:a1b n+ a2b n-1+…+ a n b1£a1b r1+ a2b r2+…+ a n b rn£ a1b1+ a2b2+…+ a n b n
反序和£乱序和£同序和
例1.对a,b,cÎR+,比较a3+b3+c3与a2b+b2c+c2a的大小
解:取两组数a,b,c;a2,b2,c2,则有a3+b3+c3³a2b+b2c+c2a
例2.正实数a1,a2,…,a n的任一排列为a1/,a2/,…a n/,则有
证明:取两组数a1,a2,…,a n;
其反序和为,原不等式的左边为乱序和,有
例3.已知a,b,cÎR+求证:
证明:不妨设a³b³c>0,则>0且a12³b12³c12>0
则
例4.设a1,a2,…,a n是1,2,…,n的一个排列,求证:
证明:设b1,b2,…,b n-1是a1,a2,…,a n-1的一个排列,且b1<b2<…<b n-1;c1,c2,…,c n-1是a2,a3,…,a n的一个排列,且c1<c2<…<c n-1
则且b1³1,b2³2,…,b n-1³n-1;c1£2,c2£3,…,c n-1£n 利用排序不等式有:
例5.设a,b,cÎR+,求证:
证明:不妨设a³b³c,则,a2³b2³c2>0
由排序不等式有:
两式相加得
又因为:a3³b3³c3>0,
故
两式相加得
例6.切比雪不等式:若a1£a2£…£a n且b1£b2£…£b n,则
a1£a2£…£a n且b1³b2³…³b n,则
证明:由排序不等式有:
a1b1+a2b2+…+a n b n= a1b1+a2b2+…+a n b n
a1b1+a2b2+…+a n b n³ a1b2+a2b3+…+a n b1
a1b1+a2b2+…+a n b n³ a1b3+a2b4+…+a n b2
…………………………………………
a1b1+a2b2+…+a n b n³ a1b n+a2b1+…+a n b n-1
将以上式子相加得:
n(a1b1+a2b2+…+a n b n)³ a1(b1+b2+…+b n)+ a2(b1+b2+…+b n)+…+ a n(b1+b2+…+b n) ∴。