复合梯形积分和复合Simpson积分计算数值积分

合集下载

几种常用数值积分方法的比较

几种常用数值积分方法的比较

几种常用数值积分方法的比较数值积分是一种计算数学中定积分的方法。

常用的数值积分方法有梯形法、辛普森法和复合梯形法。

这些方法在实际计算中具有不同的优点和适用范围。

梯形法是最简单的数值积分方法之一、它基于求取定积分的梯形面积近似值。

梯形法将积分区间等分为若干个小区间,然后计算每个小区间的梯形面积,并将这些梯形面积相加得到最终的近似值。

梯形法的优点是简单易懂,计算速度较快。

然而,它的精度相对较低,特别是在非平滑函数的情况下。

辛普森法是一种更精确的数值积分方法,它基于使用二次多项式逼近函数曲线。

辛普森法将积分区间等分为若干个小区间,然后对每个小区间内的函数曲线进行三次插值,计算出每个小区间的积分值,并将这些积分值相加得到最终的近似值。

辛普森法的优点是比梯形法更精确,对于平滑函数的近似效果较好。

然而,在处理非平滑函数时,辛普森法的效果可能不如预期。

复合梯形法是对梯形法的改进和扩展。

它将积分区间分为若干个小区间,并在每个小区间内使用梯形法进行积分计算。

然后将这些小区间的积分值相加得到最终的近似值。

复合梯形法的优点是可以通过增加小区间的数量来提高精度。

它在实际计算中被广泛使用,特别是对于非平滑函数的积分计算。

在比较这些常用的数值积分方法时,有几个关键的因素需要考虑。

首先是计算精度,即方法的近似值与实际值的误差大小。

其次是计算复杂度,即使用方法计算积分所需的计算量和时间。

另外,还要考虑方法的适用范围,如对于平滑函数和非平滑函数的效果。

此外,与其他数值方法相比,这些方法的优点和局限性也需要考虑。

综合来看,梯形法是最简单且计算速度较快的数值积分方法,但精度相对较低。

辛普森法在平滑函数的近似计算中效果较好,但对非平滑函数的处理可能不理想。

复合梯形法是一种在实际计算中广泛使用的方法,可以通过增加小区间的数量来提高精度。

根据具体的计算要求和函数特性,可以选择适合的数值积分方法。

同时,还可以根据实际需要结合其他数值方法进行计算,以提高精度和效率。

MATLAB数值分析实验二(复合梯形、辛普森和龙贝格求积,以及二重积分计算等)

MATLAB数值分析实验二(复合梯形、辛普森和龙贝格求积,以及二重积分计算等)

佛山科学技术学院实验报告课程名称_______________ 数值分析________________________实验项目_______________ 数值积分____________________专业班级机械工程姓名余红杰学号2111505010 指导教师陈剑成绩日期月日一、实验目的b1、理解如何在计算机上使用数值方法计算定积分 a f ""X的近似值;2、学会复合梯形、复合Simpson和龙贝格求积分公式的编程与应用。

3、探索二重积分.11 f (x, y)dxdy在矩形区域D = {( x, y) | a _ x _ b, c _ y _ d}的数值D积分方法。

二、实验要求(1)按照题目要求完成实验内容;(2)写出相应的Matlab程序;(3)给出实验结果(可以用表格展示实验结果);(4)分析和讨论实验结果并提出可能的优化实验。

(5)写出实验报告。

三、实验步骤1、用不同数值方法计算积xln xdx =-- 0 9(1)取不同的步长h,分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h的函数,并与积分精确值比较两公式的精度。

(2)用龙贝格求积计算完成问题(1 )。

2、给出一种求矩形区域上二重积分的复化求积方法,然后计算二重积分..e"y dxdy,其中积分区域D二{0乞x岂1,0岂y乞1}。

1.%lnt_t.m复化梯形:function F = Int_t(x1,x2,n)%复化梯形求积公式% x1,x2为积分起点和中点%分为n个区间,没选用步长可以防止区间数为非整数。

%样点矩阵及其函数值:x = lin space(x1,x2 ,n+1);y = f(x);m = len gth(x);%本题中用Matlab计算端点位置函数值为NaN,故化为零: y(1) = 0;y(m) = 0;%算岀区间长度,步长h:h = (x2 -x1)/n;a = [1 2*o nes(1,m-2) 1];%计算估计的积分值:F = h/2*sum(a.*y);%f.mfun cti on y = f(x)y = sqrt(x).*log(x);%run 11.mclc,clear;%分为10个区间,步长0.1的积分值:F = In t_t(0,1,10);F10 = F%分为100个区间F = In t_t(0,1,100);F100 = F%误差计算W10 = abs((-4/9)-F10);W100 = abs((-4/9)-F100);W = [W10 W100]%复化辛普森:%l nt_s.mfun cti on F = In t_s(x1,x2 ,n)%复化梯形求积公式% x1,x2区间,分为n个区间。

用复合梯形公式和复合辛普森公式求函数积分

用复合梯形公式和复合辛普森公式求函数积分
附录一:
《数值分析》实验报告(模板)
学号********班级信科121姓名张凯茜
【实验课题】用复合梯形公式和复合辛普森公式求函数积分
【实验目标】
1.掌握复合梯形公式与复合辛普森公式的基本思想。掌握常用的数值积分方法(特别是梯形法、Simpson方法、Cotes公式、Romberg算法以及Gauss求积公式)的原理。
【附程序】
复合梯形公式
functionT=comptra(a,b,tol)
h=b-a;
k=0;
T=((f(a)+f(b))*h)/2;
P=T+1;
whileabs(P-T)>tol
P=T;
m=0; h=h/2;
fori=1:2^k
m=m+f(a+(2*i-1)*h);
end
T=0.5*P+m*h; k=k+1;
2.学会用matlab编程实现用复合梯形公式与复合辛普森公式求积分。
3.熟悉matlab软件的使用,通过实验体会常用数值积分方法的逐步精致化过程。
【理论概述与算法描述】
1.根据梯形公式 ,将区间【a,b】划分为n等份,分点x(k)=a+kh,h=(b-a)/n,k=0,1,2,3,……,在每个区间【x(k),x(k+1)】(k=0,1,2……n-1)上采用梯形公式,得
end
复合辛普森公式
functionS=comsinp(a,b,tol)
h=b-a;
k=1;
S=((f(a)+f(b)+4*f((a+b)/2))*h)/6;
P=S;
whileabs(P-S)>tol
P=S;

复化梯形公式和复化Simpson公式

复化梯形公式和复化Simpson公式

数值计算方法上机题目3一、计算定积分的近似值:221x e xe dx =⎰ 要求:(1)若用复化梯形公式和复化Simpson 公式计算,要求误差限71021-⨯=ε,分别利用他们的余项估计对每种算法做出步长的事前估计;(2)分别利用复化梯形公式和复化Simpson 公式计算定积分;(3)将计算结果与精确解比较,并比较两种算法的计算量。

1.复化梯形公式程序:程序1(求f (x )的n 阶导数:syms xf=x*exp(x) %定义函数f (x )n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n 阶导数结果1输入n=2f2 =2*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(2*exp(x) + x*exp(x))','x') %定义f(x)的二阶导数,输入程序1里求出的f2即可。

f3='-(2*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,以便求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的二阶导数的最小值点,也就是求二阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/12*((b-a)/n)^2*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hTn1=0for k=1:n-1 %求连加和xk=a+k*hTn1=Tn1+f(xk)endTn=h/2*((f(a)+2*Tn1+f(b)))z=exp(2)R=Tn-z %求已知值与计算值的差fprintf('用复化梯形算法计算的结果 Tn=')disp(Tn)fprintf('等分数 n=')disp(n) %输出等分数fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用复化梯形算法计算的结果 Tn= 7.3891等分数 n=7019已知值与计算值的误差 R= 2.8300e-0082. Simpson公式程序:程序1:(求f(x)的n阶导数):syms xf=x*exp(x) %定义函数f(x)n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n阶导数结果1输入n=4f2 =4*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(4*exp(x) + x*exp(x))','x') %定义f(x)的四阶导数,输入程序1里求出的f2即可f3='-(4*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,一边求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的四阶导数的最小值点,也就是求四阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/180*((b-a)/(2*n))^4*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hSn1=0Sn2=0for k=0:n-1 %求两组连加和xk=a+k*hxk1=xk+h/2Sn1=Sn1+f(xk1)Sn2=Sn2+f(xk)endSn=h/6*(f(a)+4*Sn1+2*(Sn2-f(a))+f(b)) %因Sn2多加了k=0时的值,故减去f(a)z=exp(2)R=Sn-z %求已知值与计算值的差fprintf('用Simpson公式计算的结果 Sn=')disp(Sn)fprintf('等分数 n=')disp(n)fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用Simpson公式计算的结果 Sn= 7.3891等分数 n=24已知值与计算值的误差 R= 2.7284e-008用复化梯形公式计算的结果为:7.3891,与精确解的误差为:2.8300e-008。

复合梯形公式与复合辛普森公式对比

复合梯形公式与复合辛普森公式对比

SHANGHAI JIAO TONG UNIVERSITY题目名称:复合梯形公式与复合辛普森公式对比学生姓名:学生学号:班级:学院(系):目录1.概述 (3)2.问题提出 (4)3.算法推导 (5)4.算法框图 (6)4.1复合梯形公式算法流程图 (6)4.2 复合辛普森公式算法流程图 (6)5.MATLAB源程序 (7)6.结论与展望 (8)图表目录图 4-1 复合梯形公式算法流程图 (6)图 4-2 复合辛普森公式算法流程图 (7)图 6-1 MATLAB计算结果 (9)表 2-1函数计算结果表 (4)1.概述梯形求积公式和辛普森求积公式分别是牛顿-科斯特公式中n=1和n=2时的情形。

其中梯形求积公式可表示为由于牛顿-科斯特公式在n≥8时不具有稳定性,故不可能通过提高阶的方法来提高求积精度。

为了提高精度通常可把积分区间分成若干子区间(通常是等分),再在每个子区间上用低阶求积公式。

这种方法称为复合求积法。

本文主要讨论复合梯形公式和复合辛普森公式在同一数学问题中的应用。

首先给出了复合梯形公式和复合辛普森公式的推导过程以及其余项的表达形式,然后用流程图的形式介绍算法思路,再运用MATLAB编写代码计算结果,最后对结果进行对比讨论。

希望通过两个算法在同一个算例中的应用对比,更好的理解和掌握复合梯形公式和复合辛普森公式的适用范围和适用条件。

并且能够熟悉MATLAB编程求解问题的流程,掌握编程化的思想方法。

同时对两种方法的计算结果对比分析,讨论两种求积方法的计算精度。

2.问题提出对于函数 给出的函数表如下,试用复合梯形公式和复合辛普森公式计算积分 。

表 2-1函数计算结果表3. 算法推导3.1复合梯形公式根据梯形公式,将区间 划分为n 等份,分点 ,, ,在每个子区间上采用梯形公式,则得:记则 为复合梯形公式。

另外,复合梯形公式的余项可表示为2()()12n b a R f h f η-''=-3.2 复合辛普森公式根据辛普森公式将区间 划分为n 等份,在每个子区间 上采用辛普森公式。

数值积分:梯形规则

数值积分:梯形规则

数值积分:梯形规则数值积分:梯形规则--复合梯形规则--辛普森规则--复合辛普森规则--龙贝格求积公式1.问题描述微积分方法求积有很大的局限性,当碰到被积函数很复杂时,找不到相应的原函数。

积分值在几何上可解释为由 x=a,x=b,y=0和y=f(x) 所围成的曲边梯形的面积。

积分计算之所以有困难,就是因为这个曲边梯形有一条边y=f(x)是曲线。

2.理论与方法依据积分中值定理,底为b-a,而高为f(e)的矩形面积恰等于所求曲边梯形的面积I.f(e)称作区间[a,b]上的平均高度。

这样,只要对平均高度f(e)提供一种算法,便相应地获得一种数值求积的算法。

1.梯形规则(Trapezoidal rule)简单选取区间[a ,b]的中点高度作为平均高度。

取h=b-aa0=⌠(a-b)(x-b)/(a-b)dx=(b-a)/2a1=⌠(a-b)(x-a)/(b-a)dx=(b-a)/2得到:2.辛普森规则(Simpson rule)可视作用a , b与c=(a+b)/2三点高度的加权平均值作为平均高度。

3.复合梯形规则(Composite numerical)设将求积区间[a,b]划分为n等份,步长h=(b-a)/2 ,等分点为xi=a+bi , i=0,1,...,n 所谓复化求积法,就是先用低阶求积公式求得每个子段[xi,xi+1]上的积分值,然后再将它们累加求和,用各段积分之和Ii,i=0,1,n-1作为所求积分的近似值。

复化梯形公式:4.复合辛普森规则(Composite Simpson)记子段[xi,xi+1]的中点为则复化公式为复化Simpson公式:5.龙贝格求积公式(Romberg)龙贝格求积公式也称为逐次分半加速法。

它是在梯形公式、辛普森公式和柯特斯公式之间的关系的基础上,构造出一种加速计算积分的方法。

作为一种外推算法, 它在不增加计算量的前提下提高了误差的精度.在等距基点的情况下,用计算机计算积分值通常都采用把区间逐次分半的方法进行。

复合梯形公式、复合辛普森公式matlab

复合梯形公式、复合辛普森公式matlab

复合梯形公式、复合⾟普森公式matlab 1. ⽤1阶⾄4阶Newton-Cotes公式计算积分程序:function I = NewtonCotes(f,a,b,type)%syms t;t=findsym(sym(f));I=0;switch typecase 1,I=((b-a)/2)*(subs(sym(f),t,a)+subs(sym(f),t,b));case 2,I=((b-a)/6)*(subs(sym(f),t,a)+4*subs(sym(f),t,(a+b)/2)+...subs(sym(f),t,b));case 3,I=((b-a)/8)*(subs(sym(f),t,a)+3*subs(sym(f),t,(2*a+b)/3)+...3*subs(sym(f),t,(a+2*b)/3)+subs(sym(f),t,b));case 4,I=((b-a)/90)*(7*subs(sym(f),t,a)+...32*subs(sym(f),t,(3*a+b)/4)+...12*subs(sym(f),t,(a+b)/2)+...32*subs(sym(f),t,(a+3*b)/4)+7*subs(sym(f),t,b));case 5,I=((b-a)/288)*(19*subs(sym(f),t,a)+...75*subs(sym(f),t,(4*a+b)/5)+...50*subs(sym(f),t,(3*a+2*b)/5)+...50*subs(sym(f),t,(2*a+3*b)/5)+...75*subs(sym(f),t,(a+4*b)/5)+19*subs(sym(f),t,b));case 6,I=((b-a)/840)*(41*subs(sym(f),t,a)+...216*subs(sym(f),t,(5*a+b)/6)+...27*subs(sym(f),t,(2*a+b)/3)+...272*subs(sym(f),t,(a+b)/2)+...27*subs(sym(f),t,(a+2*b)/3)+...216*subs(sym(f),t,(a+5*b)/6)+...41*subs(sym(f),t,b));case 7,I=((b-a)/17280)*(751*subs(sym(f),t,a)+...3577*subs(sym(f),t,(6*a+b)/7)+...1323*subs(sym(f),t,(5*a+2*b)/7)+...2989*subs(sym(f),t,(3*a+4*b)/7)+...1323*subs(sym(f),t,(2*a+5*b)/7)+...3577*subs(sym(f),t,(a+6*b)/7)+751*subs(sym(f),t,b));endsyms xf=exp(-x).*sin(x);a=0;b=2*pi;I = NewtonCotes(f,a,b,1)N=1:I =N=2:I =N=3:I =(pi*((3*3^(1/2)*exp(-(2*pi)/3))/2 - (3*3^(1/2)*exp(-(4*pi)/3))/2))/4N=4:I =(pi*(32*exp(-pi/2) - 32*exp(-(3*pi)/2)))/452. 已知,因此可以通过数值积分计算的近似值。

复合梯形和复合辛普森MATLAB程序

复合梯形和复合辛普森MATLAB程序
s=0;
fork=1:(b-a)/h,
s= s+y(k)+y(k+1)+4*z(k);
end
s=s*h./6;
③龙贝格求积程序
function[q,R]=Romberg(a,b,eps)
h=b-a;
R(1,1)=h*(0+sqrt(b).*log(b))/2;
M=1;
J=0;
err=1;
whileerr>eps
五.实验结果比较与分析
(1)
h = 0.2时,结果如下:
h = 0.02时,结果如下:
h = 0.002时;得到的结果如下:
由结果(1)可知对于同一步长h,复合辛普森法求积分精度明显比复合梯形法求积的精度要高,且当步长取不同值时即h越小时,积分精度越高。实验结果说明不存在一个最小的h,使得精度不能再被改善。又两个相应的关于h的误差(余项)Rn(f)=- h2f’’(η);Rn(f)=- (h/2)4f(4)(η),其中η属于a到b。可知h愈小,余项愈小,从而积分精度越高。
>> h=0.002;
>> t=TiXing_quad(a,b,h)
>> s=Simpson_quad(a,b,h)
(2)
>> a=0;
>> b=1;
>> eps=10^-8;
>> [quad,R]=Romberg(a,b,eps)
(3)
>> a=0;
>> b=1;
>> eps=10^-4;
>> q=ZiShiYingSimpson('sqrt(x).*log(x)',a,b,eps)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五
一、实验名称
复合梯形积分和复合Simpson 积分计算数值积分
二、实验目的与要求:
实验目的: 掌握复合梯形积分和复合Simpson 积分算法。

实验要求:1.给出复合梯形积分和复合Simpson 积分算法思路,
2.用C 语言实现算法,运行环境为Microsoft Visual
C++。

三、算法思路:
我们把整个积分区间[a,b]分成n 个子区间[xi,xi+1],i=0,1,2,…,n,其中x0=a ,xn+1=b 。

这样求定积分问题就分解为求和问题:
⎰∑⎰=-==b a n i x x i i dx x f dx x f S 11)()(
当这n+1个结点为等距结点时,即n a b h ih a x i /)(-=+=,其中,i=0,1,2,…,n ,复化梯形公式的形式是
∑=-+=n
i i i n x f x f h S 1
1)]()([2 算法:
input n
0.0←S
for i=1 to n do ))()((2
1i i x f x f h S S ++
←- end do
output S
如果n 还是一个偶数,则复合Simpson 积分的形式是
∑=--++=2
/1
21222)]()(4)([3n i i i i n x f x f x f h S 算法:
input n
0.0←S
for i=1 to n/2 do ))()(4)((3
21222i i i x f x f x f h S S +++
←-- end do
output S
四、实验题目:
五、问题的解:
编写程序(程序见后面附录),输出结果如下:
为了便于看清数值积分结果与原函数积分实际结果的差异。

我在运行程序时故意计算了一下原函数积分的实际结果。

分析并比较得到的数据可以看出,当k 越来越大时,数值积分的结果越来越靠近原函数积分实际结果,并且复合Simpson 积分的结果更迅速地靠近原函数积分实际结果,这是有原因的,从两种方法的误差项即可看出。

复合梯形积分的误差项是)()(121''2ξf h a b --
,Simpson 积分的误差项是)()(1801)4(4ξf h a b --,),(b a ∈ξ,当h 趋于零时,显然Simpson 积分的误差项更快地趋于零,实验结果复符合这一结论。

六、附录:
实验编程,运行环境为Microsoft Visual C++
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
double f(double x) //定义函数f(x)//
{
double y;
y=sin(x);
return(y);
}
double S1(int N,double a,double b) //建立复合梯形积分// {
double s,h;
int i;
h=(b-a)/N; s=0.0;
for(i=1;i<=N;i++)
{
s=s+h*(f(a+(i-1)*h)+f(a+i*h))/2.0;
}
return(s);
}
double S2(int N,double a,double b) //建立符合Simpson积分//
{
double s,h;
int i;
h=(b-a)/N; s=0.0;
for(i=1;i<=N/2;i++)
{
s=s+h*(f(a+(2*i-2)*h)+4*f(a+(2*i-1)*h)+f(a+2*i*h))/3.0;
}
return(s);
}
void main() //main函数进行最终运算并输出结果//
{
int k;
printf("s1代表复合梯形积分结果,s2代表Simpson积分结果\n");
for(k=0;k<=12;k++)
{
printf("k=%d时,s1=%.12f , s2=%.12f \n",
k,S1(pow(2,k),0.0,4.0),S2(pow(2,k),0.0,4.0));
}
printf("积分精确结果是:%.12f\n",1-cos(4.0)); }。

相关文档
最新文档