蛋白质组学proteomics
蛋白质组学(proteomics)

1998 年在美国旧金山召开了第二届国际蛋白质组学会
议
1999年1月在英国伦敦举行了应用蛋白质组会议
我国也于1998年启动了蛋白质组学研究,在 中科院上海生物化学研究所举办了两次全国 性的蛋白质组学研讨会
2003 成 立 了 中 国 人 类 蛋 白 质 组 组 织 ( CHHUPO ) , 并 分 别 于 2003 年 9 月 、 2004 年 8 月以及 2005 年 8 月召开了中国蛋白 质组学首届、第二届及第三届学术大会, 2004 年 10 月在中国北京召开了第三届国际 蛋白质组学会议。
基因组
转录组
蛋白组
The study of proteins expressed by genomes Completion of the sequencing of the 1st draft of human genome
indicates there are approximately 250,000 proteins in the human genome Only 2-5% of proteins in human genome have been identified
1994年由Williams和Wilkins提出,是一个动态的概念, 指的是不同细胞在不同时相表达不同的蛋白质。
蛋白质组:
对应于基因组的所有蛋白质、不同组织中的表达情
况各不相同 。
在空间和时间上动态变化着的整体。
蛋白质组学(proteomics)
命细胞的“全部蛋白质”的蛋白质组图谱。
发展进展
各国政府支持,国际著名研究和商业机构 加盟: 1996年澳大利亚建立了世界上第一个蛋白 质组研究中心(Australia Proteome Analysis Facility,APAF)
蛋白质组学(Proteomics)

4.蛋白质组研究的新技术 蛋白质组研究的新技术 双向凝胶电泳存在繁琐、不稳定和低灵敏度等 缺点。发展可替代或补充双向凝胶电泳的新方法已 成为蛋白质组研究技术最主要的目标。目前,二维 色谱 (2D-LC)、二维毛细管电泳 (2D-CE)、液相色 谱-毛细管电泳 (LC-CE) 等新型分离技术都有补充 和取代双向凝胶电泳之势。另一种策略则是以质谱 技术为核心,开发质谱鸟枪法(Shot-gun)、毛细管 电泳-质谱联用 (CE-MS)等新策略直接鉴定全蛋白质 组混合酶解产物。随着对大规模蛋白质相互作用研 究的重视,发展高通量和高精度的蛋白质相互作用 检测技术也被科学家所关注。此外,蛋白质芯片的 发展也十分迅速,并已经在临床诊断中得到应用。
蛋白质组学(Proteomics)
主讲:甘光华
一.概念
蛋白质组学(Proteomics)一词,源于蛋白 质(protein)与 基因组学(genomics)两个 词的组合,意指“一种基因组所表达的全套 蛋白质”,即包括一种细胞乃至一种生物所 表达的全部蛋白质。蛋白质组本质上指的是 在大规模水平上研究蛋白质的特征,包括蛋 白质的表达水平,翻译后的修饰,蛋白与蛋 白相互作用等,由此获得蛋白质水平上的关 于疾病发生,细胞代谢等过程的整体而全面 的认识,这个概念最早是由Marc Wilkins 在 1995年提出的。
四.蛋白质组学技术 蛋白质组学技术
蛋白质组学技术的发展已经成为现代生 物技术快速发展的重要支撑,并将引领生物 技术取得关键性的突破。蛋白组学技术主要 包括双向凝胶电泳、等电聚焦、生物质谱分 析及非凝胶技术。
1.双向凝胶电泳 双向凝胶电泳 双向凝胶电泳的原理是第一向基于蛋白质的等 电点不同用等电聚焦分离,第二向则按分子量的不 同用SDS-PAGE分离,把复杂蛋白混合物中的蛋白 质在二维平面上分开。由于双向电泳技术在蛋白质 组与医学研究中所处的重要位置,它可用于蛋白质 转录及转录后修饰研究,蛋白质组的比较和蛋白质 间的相互作用,细胞分化凋亡研究,致病机制及耐 药机制的研究,疗效监测,新药开发,癌症研究, 蛋白纯度检查,小量蛋白纯化,新替代疫苗的研制 等许多方面。近年来经过多方面改进已成为研究蛋 白质组的最有使用价值的核心方法。
蛋白质组学

致病微生物的蛋白质组研究
蛋白质组的一个重要应用是在阐明新抗生素作用机理的研 究上.当今,细菌对大多数抗生素都有了抗性,寻找作用于细菌 内新的靶子的研究工作已经展开,找到了许多有效的抗菌化合 物.但目前遇到的困难在于难以揭示新的化合物的作用靶子及 其作用机理.有时虽在体外发现新化合物能够使某种蛋白质失 活,但在体内是否有这种现象和这是否是抗菌的主要机制仍然 未知,现在双向电泳分析提供了一个有效手段.例如在研究抑制 核糖体类抗生素对细菌的作用机制时,对12种作用于翻译过程 的不同阶段和核糖体内不同分子的抗生素加以考察,发现其中8 种诱导冷休克反应的一系列蛋白质,另4种诱导一系列热休克反 应的蛋白质,因此预计新的作用于核糖体的化合物也是诱导这 两种反应,并且籍此可以推测大肠杆菌对冷热的反应发生于核 糖体水平上.蛋白质组研究的重要优势在于能够从整体水平上 分析不同条件下蛋白质谱的变化.例如作为一种差异显示技术, 这一技术已被用于比较结核分枝杆菌与牛结核分枝杆菌蛋白的 不同,结果发现一些在基因水平上很类似的蛋白在蛋白质水平
生物化学专题
主讲教师 杨婉身 晏本菊 陈惠
蛋白质组学的含义
蛋白质组(Proteome)一词最早由澳大利亚学 者 Wilkins等于1994年提出,指的是由一 个基因组geneome或一个细胞、组织表达的所有 protein。蛋白质组学(proteomics)是在蛋白质水 平上定量、动态、整体性地研究生物体。 同基因组学一样,蛋白质组学不是一个封闭的、 概念化的、稳定的知识体系,而是一个领域。它旨 在阐明生物体全部蛋白质的表达模式及功能模式, 其内容包括蛋白质的定性鉴定、定量检测、细胞 内定位、相互作用研究等,最终揭示蛋白质功能, 是基因组DNA序列与基因功能之间的桥梁。
蛋白质组学研究的内容
蛋白质组学

蛋白质组学阐明生物体各种生物基因组在细胞中表达的全部蛋白质的表达模式及功能模式的学科。
包括鉴定蛋白质的表达、存在方式(修饰形式)、结构、功能和相互作用等。
百科名片蛋白质组学(Proteomics)一词,源于蛋白质(protein)与基因组学(genomics)两个词的组合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。
蛋白质组本质上指的是在大规模水平上研究蛋白质的特征,包括蛋白质的表达水平,翻译后的修饰,蛋白与蛋白相互作用等,由此获得蛋白质水平上的关于疾病发生,细胞代谢等过程的整体而全面的认识,这个概念最早是由Marc Wilkins 在1995年提出的。
前言蛋白质组的研究不仅能为生命活动规律提供物质基础,也能为众多种疾病机理的阐明及攻克提供理论根据和解决途径。
通过对正常个体及病理个体间的蛋白质组比较分析,我们可以找到某些“疾病特异性的蛋白质分子”,它们可成为新药物设计的分子靶点,或者也会为疾病的早期诊断提供分子标志。
确实,那些世界范围内销路最好的药物本身是蛋白质或其作用靶点为某种蛋白质分子。
因此,蛋白质组学研究不仅是探索生命奥秘的必须工作,也能为人类健康事业带来巨大的利益。
蛋白质组学的研究是生命科学进入后基因时代的特征。
基本策略蛋白质组(Proteome)的概念最先由Marc Wilkins提出,指由一个基因组(genOME),或一个细胞、组织表达的所有蛋白质(PROTein). 蛋白质组的概念与基因组的概念有许多差别,它随着组织、甚至环境状态的不同而改变. 在转录时,一个基因可以多种mRNA形式剪接,并且,同一蛋白可能以许多形式进行翻译后的修饰. 故一个蛋白质组不是一个基因组的直接产物,蛋白质组中蛋白质的数目有时可以超过基因组的数目. 蛋白质组学(Proteomics)处于早期“发育”状态,这个领域的专家否认它是单纯的方法学,就像基因组学一样,不是一个封闭的、概念化的稳定的知识体系,而是一个领域. 蛋白质组学集中于动态描述基因调节,对基因表达的蛋白质水平进行定量的测定,鉴定疾病、药物对生命过程的影响,以及解释基因表达调控的机制. 作为一门科学,蛋白质组研究并非从零开始,它是已有20多年历史的蛋白质(多肽)谱和基因产物图谱技术的一种延伸. 多肽图谱依靠双向电泳(Two-dimensional gel electrophoresis, 2-DE)和进一步的图象分析;而基因产物图谱依靠多种分离后的分析,如质谱技术、氨基酸组分分析等.研究基础90年代初期开始实施的人类基因组计划,在经过各国科学家近10年的努力下,已经取得了巨大的成就。
生命科学中的蛋白质科学

生命科学中的蛋白质科学蛋白质是细胞组成的基础,也是细胞内许多重要功能的驱动力。
它们存在于每个角落,从细胞膜到细胞核,从细胞质到细胞器。
解析蛋白质在细胞中的作用是生命科学的一个重要方向,也是基础医学和药物研究的基础。
本文将深入探讨生命科学中的蛋白质科学。
序言生物学与生命科学中的一个核心领域是Proteomics(蛋白质组学)。
Proteomics研究蛋白质在生物体中的功能、结构、定位和相互作用,是基础医学和药物研究的重要组成部分。
蛋白质在细胞内扮演着各种重要的角色,包括参与细胞信号转导、细胞分裂和免疫反应等过程。
发现和解析这些生物分子对于研究疾病机理和研发新的疗法都有重要意义。
因此,蛋白质科学已成为生命科学的中心领域。
蛋白质科学的发展历史蛋白质科学这门学科的前身可以追溯到20世纪初期,当时科学家们开始研究蛋白质的化学和结构。
在1928年,科学家弗雷德里克·索克尔(Frederick Sanger)首次测定并描述了蛋白质的胰岛素序列。
这项研究为如今的蛋白质组学奠定了基础。
20世纪50年代,随着X射线晶体学和NMR技术的发展,科学家们开始能够研究蛋白质的物理结构,包括二级结构、三级结构和四级结构。
这种方法非常有用,科学家们可以根据蛋白质的结构推断它们的功能、定位和多种相互作用。
20世纪90年代以来,分析蛋白质的质谱法成为了解析线性蛋白质序列、探测修饰和突变的高效方法。
然而,蛋白质组学的进一步发展受到了大规模生物数据的挑战。
在生物逐渐数字化和自动化的进程中,高通量技术迅速发展,使生物组学从处理单个蛋白质,逐渐扩展到基因组规模的研究,从“序列到功能”的研究也已成为当下热门研究趋势。
蛋白质科学在医药研发中的应用基于蛋白质的结构和功能的研究,已经产生了许多医药研发的应用。
当识别特定的蛋白质与疾病的关联后,便可根据蛋白质的化学性质和生物学特性,设计新的药物以影响特定的反应,并在疾病治疗中发挥作用。
例如:腫瘤免疫療法:CAR-T与蛋白质科学的结合蛋白质科学在免疫治疗中是一个十分重要的领域。
蛋白质组学测序

蛋白质组学测序
蛋白质组学测序(Proteomics)是一个研究蛋白质活性,结构和表达水平的相对敏感的研究方法。
这是一个非常重要的研究领域,因为蛋白质是生物体的主要结构和功能物质,而蛋白质组学可以帮助研究者了解蛋白质的影响机制以及它们在疾病发生中的作用。
蛋白质组学测序通常以两种主要技术形式实现:质谱测序(MS)和蛋白质序列分析(SEQ)。
MS可以用来分析和鉴定完整的蛋白质,以及它们的结构和特征。
SEQ可以用来分析和鉴定蛋白质或多肽序列,包括其结构和功能特征。
另外,蛋白质组学测序还可以应用于其它相关研究领域,如蛋白质-蛋白质相互作用研究、代谢组学以及抗药性研究。
蛋白质组学测序技术的使用在最近几年中取得了长足的进步。
许多生物医学研究课题都依赖于蛋白质组学测序技术,用以更好地了解蛋白质在细胞内的行为。
随着Proteomics在科学领域中被越来越多地使用,它将继续开辟更多了解生物系统行为的途径,为我们研究新的疾病机理提供新的线索。
蛋白质组学Proteomics-PPT课件.ppt

ICAT的优点
• ICAT具有广泛的兼容性,主要表现在:(1) 能够兼容分析任何条件下体液、细胞、组 织中绝大部分蛋白质;(2)烷化反应即使在 盐、去垢剂、稳定剂(如SDS、尿素、盐酸 胍等)存在下都可进行;(3)只需分析含Cys 残基的肽段,从而降低了蛋白质混合物分 析的复杂性;(4)ICAT战略允许任何类型的 生化、免疫、物理的分离方法,因此能很 好地定量分析微量蛋白质。
双向凝胶电泳
• 首先利用等电点聚焦来分离不同等电点的 蛋白,再利用SDS-PAGE来分离不同分子 量的蛋白,其分辨率是非常高的。微克级 的蛋白质就可以被很好的分辨开了。
基质辅助的激光解吸电离技术
(MALDI)的发展
• 日本岛津公司的田中耕一的工作,是质谱分析发 展的一个主动力。 1987年,在第二届中-日质谱 分析联合讨论会上,田中耕一论述了软激光解吸 附技术可以使蛋白质分子离子化。一年之后,他 的这篇创造性的论文发表在Rapid Communications in Mass Spectrometry上。田中 耕一的工作为基质辅助的激光解吸电离技术 (Maldi)打下了基础。2019年,他和弗吉尼亚联 邦大学的John B Fenn,由于他们对软吸附电离 方法上的贡献一起被授予了该年度诺贝尔化学奖
应用实例
• 1.通过比较给药前后细胞的蛋白质组, 鉴别出毒理学的蛋白质标志物 。
• 2. 疟疾疫苗的研究。
ICAT技术
同位素标记的亲和标签(isotope-coded affinity tag, ICAT)技术作为一种体外标记稳定同位素的相对定量方法, 已经成为重要的蛋白质组学定量分析方案。2019年,Gygi 等人用化学方法合成一种能和半胱氨酸反应的亲和试剂, 称为稳定同位素编码的亲和标签,它有轻链和重链(稳定重 同位素)两种形式,可以在体外标记不同状态下的蛋白质样 品,酶解并用亲和柱分离纯化被标记的肽段后,再用质谱 进行分析,和体内标记法一样也能够得到成对的峰表示不 同样品中肽段及对应蛋白质含量的差异。这种稳定同位素 亲和标签技术可以广泛地应用在细胞和组织的定量蛋白质 组学分析上,提供精确的蛋白质相对定量数据。
医学分子生物学之蛋白质组学

• 发现在PTPN12表达受到抑制时,乳腺癌的促癌基因 EGFR受体家族的酪氨酸磷酸化显著增强,从而产生促 细胞癌变的效应。
• 乳腺癌临床病理标本显示PTPN12蛋白表达低下。所以 PTPN12可能是乳腺癌预防和治疗的新型药物靶点。
第三部分
蛋白质组学 (Proteomics)
• 蛋白质组(Proteome)源于蛋白质(protein)与 基 因组(genome)组合,意指“一种基因组所表达的全 套蛋白质”,即包括一种细胞乃至一种生物所表达的 全部蛋白质。
• 蛋白质组学(proteomics)指的是在大规模水平上研 究蛋白质的特征,包括蛋白质的表达水平,翻译后的 修饰,蛋白与蛋白相互作用等,由此获得蛋白质水平 上的关于疾病发生,细胞代谢等过程的整体而全面的 认识。
蛋白质组学概念
从整体水平对细胞内蛋白质的存在形式及 其动态变化进行研究的科学。
为什么要研究蛋白组学?
• 由于基因表达的复杂性,细胞内mRNA 与 蛋白质非线性关系
• 蛋白质复杂的可变形式,修饰及相互作用 • 蛋白质表达的时空动态变化
2002年人类蛋白质组计划目的:对人类基因 组序列图进行功能“解码”。
• 特异类别蛋白质翻译后修饰的鉴定、 修饰 位点的鉴定及其表达变化的定量分析。 包括磷酸化、糖基化、 泛素化、 甲基 化、 乙酰化、 羧基化、 羟基化等。
磷酸化修饰组学
蛋白质磷酸化分析及其位点鉴定已成为目前蛋 白质组学研究焦点之一。 例如:2006年,对HeLa细胞表皮生长因子(EGF) 刺激后5个时间点的6600个蛋白质磷酸化位点分析, 检测到2244中磷酸化位点有2倍以上的差异。揭示 了HeLa细胞中的磷酸化蛋白受EGF影响的动态过程, 为探索肿瘤的发生发展提供了信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蛋白质组学proteomics定义1:阐明生物体各种生物基因组在细胞中表达的全部蛋白质的表达模式及功能模式的学科。
包括鉴定蛋白质的表达、存在方式(修饰形式)、结构、功能和相互作用等。
蛋白质组学(Proteomics)一词,源于蛋白质(protein)与基因组学(genomics)两个词的组合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。
蛋白质组本质上指的是在大规模水平上研究蛋白质的特征,包括蛋白质的表达水平,翻译后的修饰,蛋白与蛋白相互作用等,由此获得蛋白质水平上的关于疾病发生,细胞代谢等过程的整体而全面的认识,这个概念最早是由Marc Wilkins 在1995年提出的。
目录前言基本策略研究基础研究内容研究意义和背景研究技术发展回顾主要进展前言基本策略研究基础研究内容1.蛋白质研究2.细胞甚至亚细胞研究3.二维电泳分离蛋白质研究意义和背景1.研究意义2.研究背景研究技术1.蛋白质组研究中的样品制备2.蛋白质组研究中的样品分离和分析3.蛋白质组研究的新技术发展回顾主要进展1.启动研究2.重要成就发展趋势1.在基础研究方面2.在应用研究方面3.在技术发展方面前言蛋白质组的研究不仅能为生命活动规律提供物质基础,也能为众多种疾病机理的阐明及攻克提供理论根据和解决途径。
通过对正常个体及病理个体间的蛋白质组比较分析,我们可以找到某些“疾病特异性的蛋白质分子”,它们可成为新药物设计的分子靶点,或者也会为疾病的早期诊断提供分子标志。
确实,那些世界范围内销路最好的药物本身是蛋白质或其作用靶点为某种蛋白质分子。
因此,蛋白质组学研究不仅是探索生命奥秘的必须工作,也能为人类健康事业带来巨大的利益。
蛋白质组学的研究是生命科学进入后基因时代的特征。
基本策略蛋白质组(Proteome)的概念最先由Marc Wilkins提出,指由一个基因组(genOME),或一个细胞、组织表达的所有蛋白质(PROTein). 蛋白质组的概念与基因组的概念有许多差别,它随着组织、甚至环境状态的不同而改变. 在转录时,一个基因可以多种mRNA形式剪接,并且,同一蛋白可能以许多形式进行翻译后的修饰. 故一个蛋白质组不是一个基因组的直接产物,蛋白质组中蛋白质的数目有时可以超过基因组的数目. 蛋白质组学(Proteomics)处于早期“发育”状态,这个领域的专家否认它是单纯的方法学,就像基因组学一样,不是一个封闭的、概念化的稳定的知识体系,而是一个领域. 蛋白质组学集中于动态描述基因调节,对基因表达的蛋白质水平进行定量的测定,鉴定疾病、药物对生命过程的影响,以及解释基因表达调控的机制. 作为一门科学,蛋白质组研究并非从零开始,它是已有20多年历史的蛋白质(多肽)谱和基因产物图谱技术的一种延伸. 多肽图谱依靠双向电泳(Two-dimensional gel electrophoresis, 2-DE)和进一步的图象分析;而基因产物图谱依靠多种分离后的分析,如质谱技术、氨基酸组分分析等.研究基础90年代初期开始实施的人类基因组计划,在经过各国科学家近10年的努力下,已经取得了巨大的成就。
不仅完成了十余种模式生物(从大肠杆菌、酿酒酵母到线虫)基因组全序列的测定工作,还有望在2003年提前完成人类所有基因的全序列测定。
那么,知道了人类的全部遗传密码即基因组序列,就可以任意控制人的生老病死吗?其实并不是这么简单。
基因组学(genomics)虽然在基因活性和疾病的相关性方面为人类提供了有力根据,但实际上大部分疾病并不是因为基因改变所造成。
并且,基因的表达方式错综复杂,同样的一个基因在不同条件、不同时期可能会起到完全不同的作用。
关于这些方面的问题,基因组学是无法回答的。
所以,随着人类基因组计划的逐步完成,科学家们又进一步提出了后基因组计划,蛋白质组(proteome)研究是其中一个很重要的内容。
目前,在蛋白质功能方面的研究是极其缺乏的。
大部分通过基因组测序而新发现的基因编码的蛋白质的功能都是未知的,而对那些已知功能的蛋白而言,它们的功能也大多是通过同源基因功能类推等方法推测出来的。
有人预测,人类基因组编码的蛋白至少有一半是功能未知的。
因此,在未来的几年内,随着至少30种生物的基因组测序工作的完成,人们研究的重点必将转到蛋白质功能方面,而蛋白质组的研究正可以完成这样的目标。
在蛋白质组的具体应用方面,蛋白质在疾病中的重要作用使得蛋白质组学在人类疾病的研究中有着极为重要的价值。
基因组(genome)包含的遗传信息经转录产生mRNA,一个细胞在特定生理或病理状态下表达的所有种类的mRNA称为转录子组(transcriptome)。
很显然,不同细胞在不同生理或病理状态下转录子组包含的mRNA的种类不尽相同。
mRNA经翻译产生蛋白质,一个细胞在特定生理或病理状态下表达的所有种类的蛋白质称为蛋白质组(proteome)。
同理,不同细胞在不同生理或病理状态下所表达的蛋白质的种类也不尽相同。
蛋白质是基因功能的实施者,因此对蛋白质结构,定位和蛋白质-蛋白质相互作用的研究将为阐明生命现象的本质提供直接的基础。
生命科学是实验科学,因此生命科学的发展极大地依赖于实验技术的发展。
以DNA序列分析技术为核心的基因组研究技术推动了基因组研究的日新月异,而以基因芯片技术为代表的基因表达研究技术为科学家了解基因表达规律立下汗马功劳。
在蛋白质组研究中,二维电泳和质谱技术的黄金组合又为科学家掌握蛋白质表达规律再铸辉煌。
蛋白质组学(proteomics)就是指研究蛋白质组的技术及这些研究得到的结果。
蛋白质组学的研究试图比较细胞在不同生理或病理条件下蛋白质表达的异同,对相关蛋白质进行分类和鉴定。
更重要的是蛋白质组学的研究要分析蛋白质间相互作用和蛋白质的功能。
研究内容蛋白质研究1.蛋白质鉴定:可以利用一维电泳和二维电泳并结合Western等技术,利用蛋白质芯片和抗体芯片及免疫共沉淀等技术对蛋白质进行鉴定研究。
2.翻译后修饰:很多mRNA表达产生的蛋白质要经历翻译后修饰如磷酸化,糖基化,酶原激活等。
翻译后修饰是蛋白质调节功能的重要方式,因此对蛋白质翻译后修饰的研究对阐明蛋白质的功能具有重要作用。
3.蛋白质功能确定:如分析酶活性和确定酶底物,细胞因子的生物分析/配基-受体结合分析。
可以利用基因敲除和反义技术分析基因表达产物-蛋白质的功能。
另外对蛋白质表达出来后在细胞内的定位研究也在一定程度上有助于蛋白质功能的了解。
Clontech的荧光蛋白表达系统就是研究蛋白质在细胞内定位的一个很好的工具。
4.对人类而言,蛋白质组学的研究最终要服务于人类的健康,主要指促进分子医学的发展。
如寻找药物的靶分子。
很多药物本身就是蛋白质,而很多药物的靶分子也是蛋白质。
药物也可以干预蛋白质-蛋白质相互作用。
在基础医学和疾病机理研究中,了解人不同发育、生长期和不同生理、病理条件下及不同细胞类型的基因表达的特点具有特别重要的意义。
这些研究可能找到直接与特定生理或病理状态相关的分子,进一步为设计作用于特定靶分子的药物奠定基础。
细胞甚至亚细胞研究不同发育、生长期和不同生理、病理条件下不同的细胞类型的基因表达是不一致的,因此对蛋白质表达的研究应该精确到细胞甚至亚细胞水平。
可以利用免疫组织化学技术达到这个目的,但该技术的致命缺点是通量低。
LCM技术可以精确地从组织切片中取出研究者感兴趣的细胞类型,因此LCM 技术实际上是一种原位技术。
取出的细胞用于蛋白质样品的制备,结合抗体芯片或二维电泳-质谱的技术路线,可以对蛋白质的表达进行原位的高通量的研究。
很多研究采用匀浆组织制备蛋白质样品的技术路线,其研究结论值得怀疑,因为组织匀浆后不同细胞类型的蛋白质混杂在一起,最后得到的研究数据根本无法解释蛋白质在每类细胞中的表达情况。
虽然培养细胞可以得到单一类型细胞,但体外培养的细胞很难模拟体内细胞的环境,因此这样研究得出的结论也很难用于解释在体实际情况。
因此在研究中首先应该将不同细胞类型分离,分离出来的不同类型细胞可以用于基因表达研究,包括mRNA和蛋白质的表达。
LCM技术获得的细胞可以用于蛋白质样品的制备。
可以根据需要制备总蛋白,或膜蛋白,或核蛋白等,也可以富集糖蛋白,或通过去除白蛋白来减少蛋白质类型的复杂程度。
相关试剂盒均有厂商提供。
二维电泳分离蛋白质蛋白质样品中的不同类型的蛋白质可以通过二维电泳进行分离。
二维电泳可以将不同种类的蛋白质按照等电点和分子量差异进行高分辨率的分离。
成功的二维电泳可以将2000到3000种蛋白质进行分离。
电泳后对胶进行高灵敏度的染色如银染和荧光染色。
如果是比较两种样品之间蛋白质表达的异同,可以在同样条件下分别制备二者的蛋白质样品,然后在同样条件下进行二维电泳,染色后比较两块胶。
也可以将二者的蛋白质样品分别用不同的荧光染料标记,然后两种蛋白质样品在一块胶上进行二维电泳的分离,最后通过荧光扫描技术分析结果。
胶染色后可以利用凝胶图像分析系统成像,然后通过分析软件对蛋白质点进行定量分析,并且对感兴趣的蛋白质点进行定位。
通过专门的蛋白质点切割系统,可以将蛋白质点所在的胶区域进行精确切割。
接着对胶中蛋白质进行酶切消化,酶切后的消化物经脱盐/浓缩处理后就可以通过点样系统将蛋白质点样到特定的材料的表面(MALDI-TOF)。
最后这些蛋白质就可以在质谱系统中进行分析,从而得到蛋白质的定性数据;这些数据可以用于构建数据库或和已有的数据库进行比较分析。
LCM-二维电泳-质谱的技术路线是典型的一条蛋白质组学研究的技术路线,除此以外,LCM-抗体芯片也是一条重要的蛋白质组学研究的技术路线。
即通过LCM技术获得感兴趣的细胞类型,制备细胞蛋白质样品,蛋白质经荧光染料标记后和抗体芯片杂交,从而可以比较两种样品蛋白质表达的异同。
Clontech最近开发了一张抗体芯片,可以对378种膜蛋白和胞浆蛋白进行分析。
该芯片同时配合了抗体芯片的全部操作过程的重要试剂,包括蛋白质制备试剂,蛋白质的荧光染料标记试剂,标记体系的纯化试剂,杂交试剂等。
对于蛋白质相互作用的研究,酵母双杂交和噬菌体展示技术无疑是很好的研究方法。
Clontech开发的酵母双杂交系统和NEB公司开发的噬菌体展示技术可供研究者选用。
关于蛋白质组的研究,也可以将蛋白质组的部分或全部种类的蛋白质制作成蛋白质芯片,这样的蛋白质芯片可以用于蛋白质相互作用研究,蛋白表达研究和小分子蛋白结合研究。
Science,Vol. 293,Issue 5537,2101-2105,September 14,2001发表了一篇关于酵母蛋白质组芯片的论文。
该文主要研究内容为:将酵母的5800个ORF表达成蛋白质并进行纯化点样制作芯片,然后用该芯片筛选钙调素和磷脂分子的相互作用分子。