逆z变换.
第15讲 Z变换及逆Z变换

m
z)
令m n
X ( z) a m z m
m 1
a
m0
z m a 0 z 0 1 a m z m
m 0
z 当 1,即 z a 时收敛 a 1 a z X z 1 1 z az za 1 a
24
6.3
逆Z变换
•部分分式展开法 •幂级数展开法 •围线积分法——留数法
25
一.部分分式展开法
1.z变换式的一般形式
b0 b1 z b2 z 2 br 1 z r 1 br z r N (z) X (z) D( z ) a 0 a 1 z a 2 z 2 a k 1 z k 1 a k z k
n 0
n
1 1 两边,对 z 求导 1 1 z
1 n 1
1 n( z ) 1 2 ( 1 z ) n 0 两边同时乘以z-1 ,可得
L nu n nz
n 0
n
z ( z 1)2
z 1
9
同理可得
n u( n) n z
x ( n) a n u n
0 n
n1
X ( z) a n z n
n 0
a 1 n z a lim n a n 0 z 1 z
a 当 1,即 z a 时收敛 z
j Im( z )
z X z a za 1 z
6.1 概述
1
一.引言
本章主要讨论: Z变换的定义、收敛域、性质,
2
z变换的定义
信号与系统 §6.3 逆z变换

z (z a)3
2z (z a)3
▲
■
第9页
例:已知象函数 F(z) z3 z 2 ,z>1 的原函数。
(z 1)3
解: F(z) z 2 z K11 K12 K13
z (z 1)3 (z 1)3 (z 1)2 z 1
K11 (z 1)3
F(z) z
z1 2
K12
d dz
( z
,|z| > ,|z| <
可见,因果序列和反因果序列的象函数分别是z-1和z 的幂级数。其系数就是相应的序列值。
例:已知象函数
z2
z2
F(z)
(z 1)(z 2) z 2 z 2
其收敛域如下,分别求其相对应的原序列f(k)。 (1) |z| > 2 (2) |z|< 1 (3) 1< |z| < 2
1) 3
F(z) z
z 1
3
K13
1 2
d2 d z2
(z
1) 3
F(z) z
z 1
1
F(z) 2z 3z z (z 1)3 (z 1)2 z 1
f(k)=[k(k-1)+3k+1](k)
▲
■
第 10 页
z e j
若z> , f(k)=2K1kcos(k+)(k) 若z< , f(k)= –2K1kcos(k+)(– k – 1)
▲
■
第8页
(3) F(z)有重极点
F(z)展开式中含
(z
z a)r
项(r>1),则逆变换为
若z> ,对应原序列为 k(k 1).....(k r 2) ak r1 (k)
信号与系统-逆Z变换

X(z) =
z2
(z − 1)( z − 0.5)
X ( z) = A1 + A2 z z − 0.5 z − 1
X(z) = 2z − z z − 1 z − 0.5
A1
=
⎡ ⎢⎣
X (z) z
(z
−
0.5)⎥⎦⎤ z=0.5
=
−1
A2
=
⎡ ⎢⎣
X (z) z
(z
−
1)⎥⎦⎤ z=1
=
2
x(n) = (2 − 0.5n )u(n)
X (z) z
=
1 z(z − 1)2
=
−1 + z−1
1 (z − 1)2
+
1 z
∴
X(z)
=
−z z−1
+
(z
z − 1)2
+1
x(n) = −u(n) + nu(n) + δ (n)
38
信号与系统 生物医学工程学院 2011级
¾ 长除法
x(n)的Z变换为
∞
∑ X (z) = x(n)z−n n = −∞
36
信号与系统 生物医学工程学院 2011级
例
X(z) =
1 (z − 1)2
,
z
> 1,求x(n)。
解
X (z) = 1 = B1 + B2 + B3
z z(z − 1)2 z − 1 (z − 1)2 z
Bj
=
1 (s −
⎡ ds− j
j
)!
⎢ ⎣
d
z
s−
j
(z
−
zi )s
lesson6 Z变换的逆变换

X z 的收敛域内的一条环绕原点的积分围线。
3.留数定理法
xn X z z n 1dz 可用留数定 对于有理Z变换,围线积分 2 j C 理来计算。设在有限的Z平面上, ak , k 1,2,, N 是 X z z n1 1
在围线 C 内部的极点集, bk , k 1,2,, M 是 X z z n1 在围线 C 外部的极点集。根据柯西留数定理,有
X z A1 A2 1 2 z 1 1 0.5 z 1
2.部分分式展开法
(Partial Fraction Expansion)
例2.16 解(续):其中
A1 X z 1 2 z
1
z 2
1 4 1 1 0.5 z z2 3 1 1 1 1 2 z z0.5 3
当 n 0 时,因为 X z z n1 在 C 外无极点,且 X z z n1 的分 母与分子多项式阶数之差为 2 n 1 1 n 2因为n为负值 , 所以有 xn 0, n 0
最后得
1 a n 1 x n u n 1 a
1.幂级数法
解(续):
1 4 z 1 7 z 2 1 2 z 1 z 2 4 z 1 z 2 4 z 1 8 z 2 4 z 3 7 z 2 4 z 3 7 z 2 14 z 3 7 z 4 10 z 3 7 z 4
A2 X z 1 0.5 z
1
z 0.5
即
1 4 1 X z 1 3 1 2 z 1 0.5 z 1
4 n 1 n 2 0.5 , x n 3 3 0, n0
逆z变换

极点时,可以展开成以下的部分分式的形式:
X (z)
A0
N k 1
Ak 1 zk z1
z max[ zk ]
N
则其逆Z变换为:x(n) A0 (n) Ak zknu(n)
k 1
说 明 : a.X(z) 较 简 单 时 可 按 算 术 展 开 求 各 系 数
Ak(k=0,1…,N) 。
b.X(z) 较 复 杂 时 可 按 留 数 定 理 求 各 系 数
k 1,, s
3.围线积分法(留数法)
x(n) 1 X (z)zn1dz
2j c
式中C为收敛域中的一条逆时针环绕原点的闭合曲线。
若被积函数 X (z)zn1是有理分式,一般采用留数定理来计 算围线积分 。根据留数定理, x(n) 等于围线C内全部极 点留数之和,即:
x(n) Re s[X (z)zn1, ak ]
直接用长除法进行逆变换
X z xnz n n
(是一个z 的幂级数)
x(2)z2 x(1)z1 x(0)z0 x(1)z1 x(2)z2
级数的系数就是序列 xn
注意:
在用长除法将X(Z)展开成幂级数 形式之前,应先根据给定的收敛域 是圆外域还是圆内域,确定x(n) 是右边序列还是左边序列。
5z 3 4z 4
例1:
因为 X (z) x(0)z0 x(1)z 1 x(2)z 2
所以 xn 0, 1, 2, 3, 4, 因为长除结果无常数项,则x0 0。
例2:
X z z z
z2 2z 1 1 2z z2
z 1
z 2z2 3z3 4z4
1 2z z2 z z 2z2 z3
X(z)
N(z) D(z)
《自动控制原理》z变换与z反变换

《自动控制原理》z变换与z反变换自动控制原理是一门研究系统动态特性与控制方法的学科,其中涉及到了很多数学工具和方法,其中之一就是z变换和z反变换。
本文将对z 变换和z反变换进行详细的解释和介绍。
z变换是一种非常重要的数学工具,它是离散时间信号和系统分析中的一种常用方法。
z变换的定义如下:X(z)=Z[x(n)]=∑[x(n)*z^(-n)]其中,x(n)为离散时间信号,X(z)为z变换后的结果,z为变量。
z变换可以将离散时间信号从时域转换到z域,从而可以更方便地进行分析和处理。
z变换可以将离散时间信号表示为有理函数的形式,从而可以用于求解离散时间系统的频率响应、系统稳定性等问题。
z变换的性质有很多,这里只介绍其中几个重要的性质。
首先是线性性质,即线性系统的z变换可以表示为输入信号和系统冲激响应的z变换的乘积。
其次是时移性质,即输入信号的z变换与输入信号z变换乘以z^(-n)的结果相等。
最后是共轭对称性质,即输入信号为实数序列时,其z变换的共轭对称性质。
在进行z变换的计算时,可以使用z变换的表格、z变换的性质以及z变换的逆变换来简化计算。
z变换的逆变换可以将z域的信号重新转换回时域的信号,其定义如下:x(n) = Z^(-1)[X(z)] = (1/2πj) * ∮[X(z) * z^(n-1) * dz]其中,X(z)为z变换的结果,x(n)为z变换的逆变换结果。
z反变换可以将z域的信号转换为时域的信号,从而可以得到离散时间信号的具体数值。
z变换和z反变换在自动控制领域中有着广泛的应用。
例如,在系统建模和分析中,可以通过z变换将离散时间系统转换为z域的传递函数,从而可以方便地进行系统分析和控制器设计。
此外,在数字滤波器设计中,z变换也是一种常用的工具,可以将滤波器的差分方程转换为z域的传递函数,从而可以设计出满足要求的数字滤波器。
总结起来,z变换和z反变换是自动控制原理中的重要数学工具,可以方便地进行离散时间信号和系统的分析和处理。
Z变换及逆变换与-稳定性

数字信号处理课程设计课程名称数字信号处理题目名称Z变换与逆变换与稳定性专业班级电子信息(12)学生XX学号指导教师二○××年××月××日Z变换-反变换求系统响应与稳定性判断引言 (1)数字信号处理 (2)MATLAB (2)GUI (2)课题相关 (2)设计要求 (1)理论知识 (1)离散时间系统 (2)Z变换 (2)数字信号处理 (2)离散时间系统的频域分析 (2)系统函数 (6)因果性和稳定在Z域的描述 (6)系统函数的零极点位置 (6)MATLAB仿真 (1)M脚本涉与函数 (2)GUI控件介绍 (2)常用控件 (6)控件的公共属性 (6)程序实现 (1)稳定系统I (5)稳定系统II (5)非稳定系统 (5)致谢 (1)参考文献 (4)附录 (1)1 引言1.1 数字信号处理数字信号处理就是用数值计算的方式对信号进行加工的理论和技术,它的英文原名叫digital signal processing,简称DSP。
另外DSP也是digital signal processor的简称,即数字信号处理器,它是集成专用计算机的一种芯片,只有一枚硬币那么大。
有时人们也将DSP看作是一门应用技术,称为DSP技术与应用。
数字信号处理是将信号以数字方式表示并处理的理论和技术。
数字信号处理与模拟信号处理是信号处理的子集。
数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。
因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。
而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。
1.2 MATLABMATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以与数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。
数字信号处理2 Z变换

X1 ( z ) Z1[ x(n)] x(n) z n
n 0
z是复数,X(z)是复变函数
X ( z ) X ( re )
jw z re jw n
x ( n ) r n e jnw
r 1
2
F变换属于双边Z变换
X ( z ) X ( e jw )
正、逆Z变换:存在条件
变换存在&绝对可和
Z变换存在,即复变函数幅值有限(定义)
X (z)
存在条件放宽(充要条件)
X (z)
n
x(n) z
n
n
x(n) z
n
n
x(n) z n
收敛域:
z r Rx
已知x(n), 使
Im(z)
a z b
….
n1
0
x n
….
n2
Re(z)
Im(z)
a z b, a b
….
n1
0
….
n2
Re(z)
9
第五次 @ 5.20
回顾:
单、双边Z变换公式 Z变换的收敛域
定义(对比DTFT变换的“绝对可和”条件) 不同序列的收敛域
本次:
Z逆变换 Z变换性质
2 z 2 z 2 2 z 3 2 z 4 ... z 1 1 2 2 2z 2z 2z 2z2 2z2 2z 2 2z3 2z3
X1(z)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(z zi )s
X (z)
z
zzi
在这种情况下,X(z)也可展开为下列形式
X (z)
A0
M
m1
Am z z zm
S j 1
Cjz j (z zi ) j
其中,对于j=s项系数
Cs
z
zi z
s
X (z)
zzi
其他各Cj系数由待定系数法求出
思考题
• 1. 逆变换的定义式? • 2. 求逆变换的方法? • 3. 利用部分分式展开法求逆变换的步骤?
z
X(z)
z
z (z 1)(z 2)
X z A B
z z1 z2
A (z 1)
z
(z 1)(z 2)
1 同理:B=2
z1
X(z) 1 2 z z1 z2
部分分式乘以 z
X(z) z 2z z1 z2
查表 x(n) u(n) 2(2)nu(n)
收敛域与原函数的对应
围坐标原点的逆时针方向的围线
j Im(z)
C, X的z全z部n1极点都在积分路
线的内部。已知
0
X z xnz n
1
n0
1式两边同乘以z m1,并进行围线积分
Re(z) C
1 X zzm1 d z 1x nFra bibliotekznzm1 d z
2j c
2j
c n0
将积分与求和互换得
X zzm1 d z x n znm1 d z
部分方式求逆Z变换步骤:
1)F(z)F(z)/z(真分式); 2)F(z)/z进行部分分式展开; 3)求部分分式中的系数; 4)部分分式型 F(z)/z F(z); 5)利用基本形式进行逆变换,求得f(k)。
例:已知X (z)
z2
,ROC : z 2,求xn。
(z 1)(z 2)
解: Xz除以z 将 X z 展开为部分分式
在这里,zm是X(z)的极点,而A0
b0 a0
如果X(z)除了含有M个一阶极点外,在z=zi处还 含有一个s阶极点,此时X(z)应展开为
X (z)
A0
M
m1
Am z z zm
S j 1
Bjz (z zi ) j
式中Am确定方法与前相同,而Bj等于
Bj
1 (s
d s j
j)!
dz
s
j
§ 7.4 逆z变换
• 主要内容
•逆z变换的定义及推导 •求逆变换的方法
• 重点:部分分式展开法
• 难点:围线积分法和幂级数展开法
一、逆变换的定义及推导
1.z逆变换的的定义
已知z变换
X z xnzn
n0
利用围线积分得 z 逆变换公式
xn
1
2
j
X zzn1 d c
z
2.逆变换公式的推导
在 X 的z 收敛域内,选择一条包
X(z) z 2z z1 z2
z 2
右右
x(n) u(n) 2(2)nu(n)
j Imz
12
O
Rez
1 z 2
右左
x(n) u(n) 2(2)nu(n 1)
z 1
左左
x(n) u(n 1) 2(2)nu(n 1)
一般情况下,X(z)表达式为
X (z)
b0 b1z br1z r1 br z r a0 a1z ak1z k1 ak z k
对于因果序列,它的z变换收敛域为|z|>R, 为保证在z=∞处收敛,其分母多项式的阶次 不低于分子多项式的阶次,即满足k≥r。
如果X(z)只含有一阶极点,则 X (可z)以展开为
z
X (z) k Am
z
m0 z zm
Am 是X (z) 在
z
zm 处的留数
或者表示成
X
(z)
A0
k m1
Am z z zm
c
c
2
n0
根据柯西定理:
z
c
k 1
d
z
2j
0
k 0 k 0
(2)式的右边只存在m=n一项,其余均等于零。 于是(2)式变成
X zzn1
c
d
z
2jxn
xn
1
2j
c X
z z n1
d
z
二、求逆变换的方法
1 留数法(自己看) 2 幂级数展开法(自己看) 3 部分分式展开法
部分分式展开法
序列的z变换通常是z的有理数,可表示为有 理分式形式。类似于拉氏变换中部分分式展 开法,在这里,也可以先将X(z)展成一些简 单而常见的部分分式之和,然后分别求出各 部分分式的逆变换,把各逆变换相加即可得 到x(n)。