结识抛物线说课稿
张智宁(说课稿)2.2结识抛物线说课稿(比赛用)

6、板书设计
§2 .2 结识抛物线
1.作函数y=x2的图象 2.y=x2的图象的性质(投影片) 3.函数y=x2与y=-x2的图象的对比
返回
情感、态度、价值观
aa
数学活动中去,能积极与同伴 合作交流,培养学生自主探索 的意识和团结协作的精神。
5
3、教学重难点:
教学重点
能作出二次函数y = x2和y = -x2的图 象,根据图象认识和理解二次函数y =±x2 的性质。
教学难点
二次函数y =±x2性质的归纳
总结。
返回
二、学情分析
对于九年级下期的学生来说,已经具 有了一定的分析能力,掌握了一定的学 习方法;与老师经历了近三年的数学学 习,有对数学独到的认识。就本节课而 言,因为学习过一次函数与反比例函数 的内容,所以已经积累了一定的研究函 数图象的方法和能力,学生的自主探究 活动具备良好的基础。
4. 函数y=x2与y=-x2的图象的比较
2、情景引入
课本P习题 第、 2. 2.2 议一议(性质 ) 2、3. 3题; 研究y =x2的图象的性质.
3、新课学习
6.板书设计
13
五、教学反思
本节课我从学生操作入手身边最熟悉的事 物出发,培养学生“到生活中学数学,在生活 中用数学”的意识,为后面二次函数的应用作 了铺垫。整个课堂都让学生自主探究,不断归 纳总结,帮助学生把所学知识纳入知识体系, 形成良好的认知结构,有利于学生对知识的巩 固、理解和掌握。 本节课以提高学生的数学素质为指导,以 学生积极参与活动为目标,在课堂教学中,教 师充分调动一切因素,让学生在和谐、愉悦的 氛围中获取知识,掌握方法!既突出了学生的 返回 主体地位,又发挥了教师的主导作用。
制作人: 张智宁
结识抛物线 教学设计

结识抛物线教学设计教学设计思路:二次函数的图象——抛物线,也是人们最为熟悉的曲线之一。
喷泉的水流,标枪的投掷等都形成抛物线路径。
同时,抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥,抛物线型隧道等。
本节课将研究最简单的二次函数y=x2与y=-x2的图象及性质。
在教学中,让学生利用描点法作出y=x2的图象,并能根据图象经过大家的合作交流归纳总结出二次函数y=x2的性质。
在此基础上猜想y=-x2的图象及性质,再进行有关验证。
通过讨论最简单的二次函数y=±x2的图象的作法,引出抛物线的概念,在此基础上初步归纳这类抛物线的性质。
本节的内容主要由学生自己思考,动手操作,合作交流得出结论,教师只给以引导,充分体现教师引导,学生学的教学理念。
一、教学目标(一)教学知识点1.能够利用描点法作出函数y=x2的图象,能根据图象认识和理解二次函数y=x2的性质。
2.猜想并能作出y=-x2的图象,能比较它与y=x2的图象的异同。
(二)能力训练要求1.经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验。
2.由函数y=x2的图象及性质,对比地学习y=-x2的图象及性质,并能比较出它们的异同点,培养学生的类比学习能力和发展学生的求同求异思维。
(三)情感与价值观要求1.通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解。
2.在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度看问题,进而比较准确地理解二次函数的性质。
二、教学重点会画y=ax2的图象,理解其性质。
三、教学难点描点法画y=ax2的图象,体会数与形的相互联系。
四、教学过程(一)、创设情景在研究一种函数时,它的图象和性质对我们来说非常重要。
今天我们就来结识二次函数的图象。
请同学们自己先试着画出二次函数y=x2的图象。
(设计说明:学生们过去已熟知了画函数图象的方法:①列表、②描点、③连线。
结识抛物线教案、说课稿、课后反思

2.2结识抛物线教学目标(一)教学知识点1.能够利用描点法作出函数y=x2的图象.能根据图象认识和理解二次函数y=x2的性质.2.猜想并能作出y=-x2的图象,能比较它与y=x2的图象的异同.(二)能力训练要求1.经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.2.由函数y=x2的图象及性质,对比地学习y=-x2的图象及性质,并能比较出它们的异同点,培养学生的类比学习能力和发展学生的求同求异思维.(三)情感与价值观要求1.通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.2.在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度看问题,进而比较准确地理解二次函数的性质.教学重点1.能够利用描点法作出函数y=x2的图象,并能根据图象认识和理解二次函数y=x2的性质.2.能够作出二次函数y=-x2的图象,并能比较它与y=x2的图象的异同.教学难点经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.并把这种经验运用于研究二次函数y=-x2的图象与性质方面.实现“探索——经验——运用”的思维过程.教学方法探索——总结——运用法.教学过程Ⅰ.创设问题情境,引入新课[师]我们在学习了正比例函数,一次函数与反比例函数的定义后,研究了它们各自的图象特征.知道正比例函数的图象是过原点的一条直线,一般的一次函数的图象是不过原点的一条直线,反比例函数的图象是两条双曲线.上节课我们学习了二次函数的一般形式为y=ax2+bx+c.(其中a,b,c是常数且a≠0),那么它的图象是否也为直线或双曲线呢?本节课我们将一起来研究有关问题.Ⅱ.新课讲解一、作函数y=x2的图象.[师]一次函数的图象是一条直线,二次函数的图象是什么形状呢?让我们先看最简单的二次函数y=x2.大家还记得画函数图象的一般步骤吗?[生]记得,是列表,描点、连线.[师]非常正确,下面就请大家按上面的步骤作出y=x2的图象.[生](1)列表:x-3 -2 -1 0 1 2 3y9 4 1 0 1 4 9(2)在直角坐标系中描点.(3)用光滑的曲线连接各点,便得到函数y=x2的图象.[师]画的非常漂亮.二、议一议投影片:(§2.2A)对于二次函数y=x2的图象,(1)你能描述图象的形状吗?与同伴进行交流.(2)图象与x轴有交点吗?如果有,交点坐标是什么?(3)当x<0时,随着x值的增大,y的值如何变化?当x>0时呢?(4)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?(5)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴进行交流.[生](1)图象的形状是一条曲线.就像抛出的物体所行进的路线的倒影.(2)图象与x轴有交点,交于原点,交点坐标是(0,0).(3)当x<0时,图象在y轴的左侧,随着x值的增大,y的值逐渐减小;当x>0时,图象在y轴的右侧,随着x值的增大,y的值逐渐增大.(4)观察图象可知,当x=0时,y的值最小,最小值是0.(5)由图可知,图象是轴对称图形,它的对称轴是y轴,从刚才的列表中可找到对应点(-1,1)和(1,1);(-2,4)和(2,4);(-3,9)和(3,9).[师]大家的分析判断能力很棒,下面我们系统地总结一下.三、y=x2的图象的性质.投影片:(§2.2B)[师]从图象来看抛物线的开口方向向上.下面请大家讨论之后系统地总结出y=x2的图象的所有性质.[生](1)抛物线的开口方向是向上.(2)它的图象有最低点,最低点坐标是(0,0).(3)它是轴对称图形,对称轴是y轴.在对称轴左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大.(4)图象与x轴有交点,这个交点也是对称轴与抛物线的交点,称为抛物线的顶点,同时也是图象的最低点,坐标为(0,0).(5)因为图象有最低点,所以函数有最小值,当x=0时,y最小=0.四、做一做.投影片:(§2.2C)二次函数y=-x2的图象是什么形状?先想一想,然后作出它的图象.它与二次函数y=x2的图象有什么关系?与同伴进行交流.[师]请大家按照画图象的步骤作出函数y=-x2的图象.[生]y=-x2的图象如下图:形状还是抛物线,只是它的开口方向向下,它与y=x2的图象形状相同,方向相反,这两个图形可以看成是关于x轴对称.[师]下面我们试着讨论y=-x2的图象的性质.[生](1)它的开口方向向下.(2)它的图象有最高点,最高点坐标为(0,0).(3)它是轴对称图形,对称轴是y轴,在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减小.(4)图象与x轴有交点,也叫抛物线的顶点,还是图象的最高点,这点的坐标为(0,0).(5)因为图象有最高点,所以函数有最大值,当x=0时,y最大=0.[师]大家总结得非常棒.五、函数y=x2与y=-x2的图象的比较.我们分别作出函数y=x2与y=-x2的图象,并对图象的性质作系统的研究.现在我们再来比较一下它们图象的异同点.投影片:(§2.2D)不同点:1.开口方向不同,y=x2开口向上,y=-x2开口向下.2.函数值随自变量增大的变化趋势不同,在y=x2图象中,在对称轴左侧,y随x的增大而减小,在对称轴右侧,y随x的增大而增大.在y=-x2的图象中正好相反.3.在y =x 2中y 有最小值,即x =0时,y 最小=0,在y =-x 2中y 有最大值.即当x =0时,y 最大=0.4.y =x 2有最低点,y =-x 2有最高点.相同点:1.图象都是抛物线.2.图象都与x 轴交于点(0,0).3.图象都关于y 轴对称.联系:它们的图象关于x 轴对称.Ⅲ.课堂练习1.在同一直角坐标系中画出函数y =x 2与y =-x 2的图象.2.下列函数中是二次函数的是[ ]A .y =2+5x 2B .y =322+x C .y =3x (x +5)2 D .y =5232++x x 3.分别说出抛物线y =4x 2与y =-41x 2的开口方向,对称轴与顶点坐标. 答案:1.略 2.A3.解:抛物线y =4x 2的开口向上,对称轴是y 轴,顶点是原点,坐标为(0,0).抛物线y =-41x 2的开口向下,对称轴是y 轴,顶点坐标为(0,0). Ⅳ.课时小结本节课我们学习了如下内容:1.画函数y =x 2的图象,并对图象的性质作了总结.2.画函数y =-x 2的图象,并研究其性质.3.比较y =x 2与y =-x 2的图象的异同点及联系.Ⅴ.课后作业习题2.2Ⅵ.活动与探究已知函数y =m ·m m x -2.m 取何值时,它的图象开口向上.当x 取何值时,y 随x 的增大而增大.当x 取何值时,y 随x 的增大而减小.x 取何值时,函数有最小值.解:由题意得:⎩⎨⎧=+≠202m m m 解得⎩⎨⎧-==≠210m m m 或 当m =-2时,y =-2x 2开口向下∴m =1即当m =1时,它的图象是开口向上的抛物线.函数关系式为y =x 2.当x >0时,y 随x 的增大而增大.当x <0时,y 随x 的增大而减小.当x =0时,函数有最小值.《2.2结识抛物线》说课稿今天我说课的内容是北师大版数学九年级下册第二章《二次函数》第二节“结识抛物线”。
《结识抛物线》说课稿

《结识抛物线》说课稿一、教材分析(一). 教材的地位及作用——y=±x2的图象,是学生学习函数知识的过程中的一个重要环节,既是前面所学知识的延续,又是探究其它二此函数的图象及其性质的基础,起到承上启下的作用.(二). 教学目标1. 知识与技能目标(1)能够利用描点法作出函数y=x2的图象,并能根据图象认识和理解二次函数y=x2的性质.(2)猜想并能作出y=-x2的图象,能比较它与y=x2的图象的异同.(1)经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.(2)由函数y=x2的图象及性质,对比地学习y=-x2的图象及性质,并能比较出它们的异同点,培养学生的类比学习能力和发展学生的求同求异思维.3.情感、态度与价值观目标(1)经历探索的过程发现抛物线的性质,体会探索发现的乐趣,增强学习数学的自信心.的图象,培养学生合作(2)通过小组交流、讨论、比较,研究二次函数y=2x和y=2x意识和交流能力.(三). 教学重点、难点教学重点:经历探索二次函数y=±x2的图象的作法和性质的过程,理解二次函数y=±x2的性质.教学难点:描点法画y= x2的图象,体会数与形的相互联系.二、教法分析针对本节课的特点,采用“创设情境—作图探索—总结归纳—知识运用”为主线的教学方法. 把教学的重心放在如何促进学生的“学”上,引导学生采用观察、实验、自主探索、小组活动、集体交流等多样化的学习方式.教学过程中始终坚持学生为主体,教师为主导的方针,使探究知识和培养能力融为一体,让学生不仅学到科学探究的方法,而且体验到探究的甘苦,领会到成功的喜悦.三、学法指导<<数学课程标准纲要>>指出:有效的数学学习活动不能单纯依赖模仿和记忆,动手实践、自主探索与合作交流是学习数学的重要方式.为了充分体现《新课标》的要求,本节课采用“自主探究,合作交流”的学习方法.使学生积极参与教学过程,通过合作交流,激发学生的学习兴趣,领悟数形结合的思想,体验探索的快乐,使学生的主体地位得到充分的发挥.四、教学过程设计学习过程问题教师活动设计意图创设情境提出问题1.我们已经学过哪些函数?研究函数问题的一般程序是怎样的?2.一次函数、反比例函数的图象各是怎样的图形?教师演示课件,学生观察:喷泉的水流、篮球的投掷形成的路径,抛物线型拱桥、抛物线型隧道,都与抛掷一个物体形成的路径的曲线类似,由此导入课题.紧接着提出两个问题.让学生回顾已学的函数类型、图象及研究函数问题的一般思路,以便学生运用类比的方法研究二次函数的相关问题.合作交流,探究新知合1.认识抛物线问题:一次函数的图象是一条直线,二次函数的图象是什么形状呢?让我们先来研究最简单的二次函数y=x2的图象.大家还记得画函数图象的一般步骤吗?画一画:你能试着用描点法画二次函数y=x2的图象吗?两名学生上台板演,其他学生在下面尝试画图.在学生画图时,教师溶入到学生中,了解并搜集学生可能出现的各种问题.比如:学生可能会画成折线、半个抛物线、没画出延伸的趋势……等情形,这时正好针对问题鼓励小组间互相讨论、相互比较,交流各自的观点.以下是学生在作图过程中可能出现的几种情况.通过这个问题让学生回忆起用描点法画图的一般步骤,以便于学生下一步的画图.作交流探究新知图(1)图(2)图(3)图(4)图(5)图(6)通过刚才的分析你认为在画y=x2的图象时:(1)列表取值应注意什么问题?(2)点和点之间用什么样的线连接?你能描述y=x2的图象的形状吗?学生尝试描述y=x2的图象,建立和实际问题的联系.再通过姚明投篮的动态演示,形象的描述并体会y=x2的图象的形状是抛物线,并且与开始的引例相呼应.学生对于自己列表、描点、连线而得到的图象容易画成是个折线图形,因而难以理解为什么要用光滑曲线来连接点的本质,利用列表并与图象关联的方法借助几何画板在单位区间内增加满足函数的点数的办法,从而可看出图象的真实面貌.合作交流探究新知y=x2的性质议一议:请你观察y=x2的图象,先商讨我们需要探究哪些方面的性质,然后分组讨论.在学生讨论交流之后,请每组的学生代表一一发表自己的观察结果.在此过程中,教师不能作裁判,而要把评判权交给学生,注意培养学生语言的规范化、条理化.在学生发表意见的同时点击课件上的相关内容,学生说到哪个方面就点击相应的内容,学生想不到的内容应及时点拨引导.待学生发表自己的观点之后系统在此问题上,不再按课本上的问题一一叠列给学生,而是给学抛物线y=x2的性质:(1)抛物线的开口向上.(2)它是轴对称图形,对称轴是y 轴.(3)在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随着x 的增大而增大.(4)图象与x轴有交点,这个交点也是对称轴与抛物线的交点,称为抛物线的顶点,同时也是图象的最低点,坐标为(0,0).(5)因为图象有最低点,所以函数有最小值,当x=0时,y最小=0.地总结一下y=x2的图象的性质,在多媒体上显示,要做到有放有收.图象与x轴有交点,这个交点也是对称轴与抛物线的交点,称为抛物线的顶点,同时也是图象的最低点,坐标为(0,0).因为图象有最低点,所以函数有最小值,当x=0时,y最小=0.生一个开放的空间,给学生一个交流的平台,一个展现自我的空间.仁者见仁,智者见智,不同的学生肯定会有不同的认识,通过小组讨论与交流,学生可以相互学习,共同提高.作交流探究新知y=2x-的性质想一想:(1)二次函数y=2x-的图象是什么形状?先想一想,然后作出它的图象.(2) 类似的你能说出它的性质吗?让学生先猜想再画图验证,在学生画图时可让每一小组部分同学将y=x2与y=2x-的图象画在一个坐标系内,而后学生通过讨论交流得出结论,教师只给以必要的引导.这一问题设计为学生提供思考的空间,培养学生在观察、分析、对比、交流中发展分析能力和从图象中获取信息的能力.作交流探究新知议一议:函数y=x2与y=2x-的图象及其性质有何异同?教师出示议一议中的问题,学生观察图形,通过小组讨论,归纳y=x2与y=2x-的图象及其性质的异同,然后回答,学生自己总结出哪一点就出在多媒体上出示哪一点,学通过比较y=x2与y=2x-的性质的异同,让学生更充分地生想不到的,及时给予引导. 理解y=±x2的性质.变式训练,巩固提高1.在二次函数y=x2的图象上,与点A(-5,25)对称的点的坐标是.2.点(x1,y1)、(x2,y)2在抛物线y=-x2上,且x1>x2>0,则y1_____y2.3.设边长为x cm的正方形的面积为y cm2,y是x的函数,该函数的图象是下列各图形中()学生独立完成以后,让他们发表自己的看法,辨证出实际问题中的函数图象为何只在第一象限存在.通过一组简单的练习题,及时巩固所学知识,使学生品尝到成功的喜悦.总结反思, 纳入系统通过今天的学习,你是否对二次函数y=x2与y=2x有了一些新的认识?能谈谈你的想法吗?师生行为:教师出示问题,由学生总结本节课所学习的主要内容.在学生归纳的基础上利用多媒体上投放它们的区别与联系.让学生通过知识性内容的小结,把课堂中探究的知识尽快化为学生的素质,并且逐渐培养学生的良好的个性品质.六、教学设计说明为了提高课堂45分钟的学习效率,我让学生观察喷泉的水流、篮球的投掷形成的路径,抛物线型拱桥、抛物线型隧道,都与抛掷一个物体形成的路径的曲线类似,使学生了解抛物线在生活中、在建筑上有着广泛的应用,使学生引起注意,把精力放到新课上。
九年级数学下册《结识抛物线》教案 北师大版

《结识抛物线》公开课教案
【教学目标】
1、知识与技能:
能够利用描点法作出函数y=-x2的图象.能根据图象认识和理解二次函数y=-x2的性质;猜想并能作出y=x2的图象,能比较它与y=-x2的图象的异同.2、过程与方法:
经历探索二次函数y=-x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.由函数y=-x2的图象及性质,对比地学习y=x2的图象及性质,并能比较出它们的异同点,培养学生的类比学习能力和发展学生的求同求异思维.3、情感与态度:
通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度看问题,进而比较准确地理解二次函数的性质.
【教学重点】
能够利用描点法作出函数y=-x2的图象,并能根据图象理解二次函数y=-x2的性质.能够作出二次函数y=x2的图象,并能比较它与y=-x2的图象的异同.【教学难点】
经历探索二次函数y=-x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.并把这种经验运用于研究二次函数y=x2的图象与性质方面.实现“探索——经验——运用”的思维过程.
【教学准备】
PPT课件、三角板、方格纸。
【教学方法】
探索——类比——归纳法.
【教学反思】:。
抛物线几何性质说课稿

抛物线的简单几何性质各位老师好,我就《抛物线的简单几何性质》进行简单的说课。
一、教材分析本节通过类比椭圆、双曲线的几何性质,结合抛物线的标准方程讨论研究抛物线的几何性质,让学生再一次体会用曲线的方程研究曲线性质的方法,通过类比学生不难掌握抛物线的范围、对称性、顶点、离心率等性质.学习本节内容有助于培养学生分析、归纳、推理等能力。
二、教学目标根据上述教材分析,考虑到学生已有的认知心理特征,制定如下教学目标:1。
知识目标:抛物线的几何性质、范围、对称性、定点、离心率;2。
能力目标:使学生掌握抛物线的几何性质,根据给出条件会求抛物线的标准方程;会求抛物线的弦长。
3.情感目标:培养学生数形结合及方程的思想;训练学生分析问题、解决问题的能力,了解抛物线在实际问题中的初步应用。
三、教学重点和难点本着课程标准,在吃透教材基础上,我确立了如下教学重点和难点:教学重点:掌握抛物线的几何性质,使学生能根据给出的条件求出抛物线的标准方程和抛物线的弦长,特别是过焦点的弦长利用定义转化。
教学难点:抛物线几何性质的灵活应用.下面,为了讲清楚重点、难点,使学生能达到本节课设定的教学目标,我再从教法上谈谈:四、教法分析在教学中,采用引导式、小组合作探究,讲练结合法。
利用多媒体课件辅助教学,让学生通过多媒体的演示,对比椭圆和双曲线的几何特点,从而找到抛物线的几何性质,将抽象概念生动、直观地用课件展示,从视觉上刺激学生,激发学生探索的兴趣。
最后我来具体谈一谈这节课的教学过程:五、教学过程学生是认知的主体,遵循学生的认知规律和本节课的特点,我设计了如下的教学过程: 1.知识回顾(让学生回顾以下两个概念)1)抛物线的定义:平面内与一个定点F和一条定直线L的距离相等的点的轨迹叫做抛物线。
点F→焦点,直线L→准线。
2)抛物线的标准方程。
设计意图:以列表的形式让学生回顾概念,便于学生观察比较,从而加深印象,内化知识,让学生学会对比归纳和数形结合的思想。
《结识抛物线》说课稿

《结识抛物线》说课稿一、教材分析(一). 教材的地位及作用本节内容是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习的函数知识,是函数知识螺旋发展的一个重要环节.二次函数曲线——抛物线,也是人们最为熟悉的曲线之一.喷泉的水流、标枪的投掷等都形成抛物线路径.同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等.本节课研究最简单的二次函数y=±x2的图象,是学生学习函数知识的过程中的一个重要环节,既是前面所学知识的延续,又是探究其它二此函数的图象及其性质的基础,起到承上启下的作用.(二). 教学目标1. 知识与技能目标(1)能够利用描点法作出函数y=x2的图象,并能根据图象认识和理解二次函数y=x2的性质.(2)猜想并能作出y=-x2的图象,能比较它与y=x2的图象的异同.2.过程与方法目标(1)经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.(2)由函数y=x2的图象及性质,对比地学习y=-x2的图象及性质,并能比较出它们的异同点,培养学生的类比学习能力和发展学生的求同求异思维.3.情感、态度与价值观目标(1)经历探索的过程发现抛物线的性质,体会探索发现的乐趣,增强学习数学的自信心.的图象,培养学生合作(2)通过小组交流、讨论、比较,研究二次函数y=2x和y=2x意识和交流能力.(三). 教学重点、难点教学重点:经历探索二次函数y=±x2的图象的作法和性质的过程,理解二次函数y=±x2的性质.教学难点:描点法画y= x2的图象,体会数与形的相互联系.二、教法分析针对本节课的特点,采用“创设情境—作图探索—总结归纳—知识运用”为主线的教学方法. 把教学的重心放在如何促进学生的“学”上,引导学生采用观察、实验、自主探索、小组活动、集体交流等多样化的学习方式.教学过程中始终坚持学生为主体,教师为主导的方针,使探究知识和培养能力融为一体,让学生不仅学到科学探究的方法,而且体验到探究的甘苦,领会到成功的喜悦.三、学法指导<<数学课程标准纲要>>指出:有效的数学学习活动不能单纯依赖模仿和记忆,动手实践、自主探索与合作交流是学习数学的重要方式.为了充分体现《新课标》的要求,本节课采用“自主探究,合作交流”的学习方法.使学生积极参与教学过程,通过合作交流,激发学生的学习兴趣,领悟数形结合的思想,体验探索的快乐,使学生的主体地位得到充分的发挥.四、教学过程设计学习过程问题教师活动设计意图创设情境提出问题1.我们已经学过哪些函数?研究函数问题的一般程序是怎样的?2.一次函数、反比例函数的图象各是怎样的图形?教师演示课件,学生观察:喷泉的水流、篮球的投掷形成的路径,抛物线型拱桥、抛物线型隧道,都与抛掷一个物体形成的路径的曲线类似,由此导入课题.紧接着提出两个问题.让学生回顾已学的函数类型、图象及研究函数问题的一般思路,以便学生运用类比的方法研究二次函数的相关问题.合作交流,探究新知1.认识抛物线问题:一次函数的图象是一条直线,二次函数的图象是什么形状呢?让我们先来研究最简单的二次函数y=x2的图象.大家还记得画函数图象的一般步骤吗?画一画:你能试着用描点法画二次两名学生上台板演,其他学生在下面尝试画图.在学生画图时,教师溶入到学生中,了解并搜集学生可能出现的各种问题.比如:学生可能会画成折线、半个抛物线、没画出延伸的趋势……等情形,这时正好针对问题鼓励小组间互通过这个问题让学生回忆起用描点法画图的一般步骤,以便于学生下一步的画图.合作交流探究新知函数y=x2的图象吗?图(1)图(2)图(3)图(4)图(5)图(6)通过刚才的分析你认为在画y=x2的图象时:(1)列表取值应注意什么问题?(2)点和点之间用什么样的线连接?你能描述y=x2的图象的形状吗?相讨论、相互比较,交流各自的观点.以下是学生在作图过程中可能出现的几种情况.学生尝试描述y=x2的图象,建立和实际问题的联系.再通过姚明投篮的动态演示,形象的描述并体会y=x2的图象的形状是抛物线,并且与开始的引例相呼应.学生对于自己列表、描点、连线而得到的图象容易画成是个折线图形,因而难以理解为什么要用光滑曲线来连接点的本质,利用列表并与图象关联的方法借助几何画板在单位区间内增加满足函数的点数的办法,从而可看出图象的真实面貌.合作交流探究新2.探究抛物线y=x2的性质议一议:请你观察y=x2的图象,先商讨我们需要探究哪些方面的性质,然后分组讨论.在学生讨论交流之后,请每组的学生代表一一发表自己的观察结果.在此过程中,教师不能作裁判,而要把评判权交给学生,注意培养学生语言的规范化、条理化.在学生发表意见的同时点击课件上的相关内容,学生说到哪个方面就点击相应的内容,学生想不到的内容应及时点拨引导.待学在此问题上,不再按课本上的问题一知抛物线y=x2的性质:(1)抛物线的开口向上.(2)它是轴对称图形,对称轴是y轴.(3)在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随着x 的增大而增大.(4)图象与x轴有交点,这个交点也是对称轴与抛物线的交点,称为抛物线的顶点,同时也是图象的最低点,坐标为(0,0).(5)因为图象有最低点,所以函数有最小值,当x=0时,y最小=0.生发表自己的观点之后系统地总结一下y=x2的图象的性质,在多媒体上显示,要做到有放有收.图象与x轴有交点,这个交点也是对称轴与抛物线的交点,称为抛物线的顶点,同时也是图象的最低点,坐标为(0,0).因为图象有最低点,所以函数有最小值,当x=0时,y最小=0.一叠列给学生,而是给学生一个开放的空间,给学生一个交流的平台,一个展现自我的空间.仁者见仁,智者见智,不同的学生肯定会有不同的认识,通过小组讨论与交流,学生可以相互学习,共同提高.作交流探究新知3.探究抛物线y=2x-的性质想一想:(1)二次函数y=2x-的图象是什么形状?先想一想,然后作出它的图象.(2) 类似的你能说出它的性质吗?让学生先猜想再画图验证,在学生画图时可让每一小组部分同学将y=x2与y=2x-的图象画在一个坐标系内,而后学生通过讨论交流得出结论,教师只给以必要的引导.这一问题设计为学生提供思考的空间,培养学生在观察、分析、对比、交流中发展分析能力和从图象中获取信息的能力.作交流探究新知议一议:函数y=x2与y=2x-的图象及其性质有何异同?教师出示议一议中的问题,学生观察图形,通过小组讨论,归纳y=x2与y=2x-的图象及其性质的异同,然后回答,学生自己总结出哪一点就出在多媒体上出示哪一点,学通过比较y=x2与y=2x-的性质的异同,让学生更充分地生想不到的,及时给予引导. 理解y=±x2的性质.变式训练,巩固提高1.在二次函数y=x2的图象上,与点A(-5,25)对称的点的坐标是.2.点(x1,y1)、(x2,y)2在抛物线y=-x2上,且x1>x2>0,则y1_____y2.3.设边长为x cm的正方形的面积为y cm2,y是x的函数,该函数的图象是下列各图形中()学生独立完成以后,让他们发表自己的看法,辨证出实际问题中的函数图象为何只在第一象限存在.通过一组简单的练习题,及时巩固所学知识,使学生品尝到成功的喜悦.总结反思,纳入系统通过今天的学习,你是否对二次函数y=x2与y=2x有了一些新的认识?能谈谈你的想法吗?师生行为:教师出示问题,由学生总结本节课所学习的主要内容.在学生归纳的基础上利用多媒体上投放它们的区别与联系.让学生通过知识性内容的小结,把课堂中探究的知识尽快化为学生的素质,并且逐渐培养学生的良好的个性品质.六、教学设计说明为了提高课堂45分钟的学习效率,我让学生观察喷泉的水流、篮球的投掷形成的路径,抛物线型拱桥、抛物线型隧道,都与抛掷一个物体形成的路径的曲线类似,使学生了解抛物线在生活中、在建筑上有着广泛的应用,使学生引起注意,把精力放到新课上。
数学:2.2《结识抛物线》教案(北师大版九年级下)

数学:2.2《结识抛物线》教案(北师大版九年级下)一、教学目标(一)知识与能力:能够利用描点法作出函数2y x =±的图象,并根据图象认识和理解二次函数2y x =±的性质;比较两者的异同.(二)过程与方法:经历探索二次函数2y x =±图象的作法和性质的过程,获得利用图象研究函数性质的经验.(三)情感态度与价值观:通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.(四)教学重点:能够利用描点法作出函数2y x =±的图象,并根据图象认识和理解二次函数2y x =±的性质;比较两者的异同.(五)教学难点:借助函数图象研究函数性质. 二、教学设计 (一) 复习引入我们在学习了正比例函数、一次函数、反比例函数的定义后,都借助图像研究了它们的性质.而上节课我们所学的二次函数的图象是什么呢?本节课我们将从最简单的二次函数y=x 2入手去研究.(二) 新课 1.作函数y=x 2的图象回顾作函数图象的一般步骤:列表、描点、连线.(1)观察y= x 2的表达式,选择适当的x 值,并计算相应的y 值,完成下表:(图象是未知的,所以应根据自变量的取值,x 为任何实数,选取一些有代表性、方便计算的x 值,如:几个负整数、0、几个正整数)x -3-2 -1123y=x 2941 0 1 4 9(2)在直角坐标系中描点.(按x 的值从小到大,从左到右描点)(3)用光滑的曲线连接各点,便得到函数y=x 2的图象.(能用直线连接吗?) 2.议一议(3)当x<0时,随着x 值的增大,y 的值如何变化?当x>0时呢?(4)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?[(5)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴进行交流.分析并总结:二次函数y=x2的图象是抛物线.(1)抛物线的开口向上;(2)它的图象有最低点,最低点的坐标是(0,0);(3)它是轴对称图形,对称轴是y轴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《结识抛物线》教学设计
《结识抛物线》教学反思
根据市骨干教师交流学习的安排,我在九年九班上了《结识抛物线》这节课.这节课我首先问学生咱班有多少男生喜欢打篮球,在你打篮球或观看篮球比赛时,你是否注意投篮时球的运行路线?我们把这种形如物体抛出后所经过的路线,叫抛物线.抛物线在生活中无处不在,比如喷泉水流经过的路线,摇动的大绳在空中静态时所呈现的图形等.它们与函数有联系吗?
首先让学生在生活中结识抛物线.然后让学生动手在同一坐标系中作二次函数y=x2和y=-x2的图象,从而从感性上结识抛物线.再后又对两个特殊的二次函数的图象和性质进行了归纳和总结.再由特殊到一般总结y=ax2的图象和性质,从而从理性上再次结识抛物线.最后针对巩固二次函数的图象和性质进行了巩固练习.
课后,组内的老师认真地评析了本节课,结合学生的接受效果我自己也进行了认真反思.
成功之处:
1.课前的引课很精彩,联系学生身边的实例,感受数学就在我们的身边,并激起学生学习数学的兴趣.
2.对二次函数图象的作图,通过一生叙述步骤起到指导全体学生的作用.实物投影展示学生的作品,给学生以成功的体验.作图后让学生反思自己的作图过程,加深学生对作图的理解,规范作图,同时培养学生严谨治学的精神.
3.二次函数的图象和性质掌握起来有一定的难度,因此我设计一系列问题串,让学生观察图象回答,以突出重点分散难点.同时借助课件的动态展示能帮助学生更形象地理解和掌握二次函数的图象和性质,也为今后探讨其他类函数的性质提供思路.
4.在新知的巩固应用环节,我精心设计了不同题型的问题,很好巩固应用了本节的新知,课堂收到了较好的教学效果.
不足之处:
1.在分组作图教学时,课堂上有一部分学生没有进行完,此处给学生的时间少一些.
2.在探索二次函数的图象和性质的活动中,问题提得过细,没有让学生有更多的思考交流和评价的过程,限制了学生思维的发展.
3.课堂过于沉闷.
总之,通过本节课,让我真正意识到:对于每节课的教学不能仅仅凭经验设计.在每节课的课前,一定要进行精心的预设.在课堂中,同时要结合课堂的实际效果和学生的情况注意灵活处理课堂生成,并及时调节自己的教学.课堂上在进行分组教学时,提前预设好教学时间,在每节课上,既要放的开,同时又要注意在适当的时机收回,以保证每节教学基本任务的完成。