2.4_过不共线三点作圆
九年级秋季班-第9讲:圆的基本性质-教师版

圆的基本性质是初中数学九年级下学期第一章第一节的内容.需要掌握点与圆的位置关系,理解圆心角、弧、弦、弦心距的概念和掌握它们之间的关系,重点是这四者关系的灵活运用,以及垂径定理及其推论的应用.1、圆的概念圆:平面上到一个定点的距离等于定长的所有点所成的图形.圆心:以上概念中的“定点”;以点O为圆心的圆称为“圆O”,记作O.半径:联结圆心和圆上任意一点的线段;以上概念中的“定长”是圆的半径长.2、点与圆的位置关系设一个圆的半径长为R,点P到圆心的距离为d,则有以下结论:当点P在圆外时,d > R;当点P在圆上时,d = R;当点P在圆内时,0d R≤<.反之亦然.3、相关定理:不在同一直线上的三个点确定一个圆.三角形的三个顶点确定一个圆.经过一个三角形各顶点的圆叫做这个三角形的外接圆,外接圆的圆心叫做这个三角形的外心;这个三角形叫做这个圆的内接三角形.如果一个圆经过一个多边形的各顶点,那么这个圆叫做这个多边形的外接圆,这个多边形叫做这个圆的内接多边形.圆的基本性质内容分析知识结构模块一:圆的确定知识精讲ABCD O【例1】 在平面直角坐标系内,A (3-,tan30-︒),B (2a a,0),A 的半径为4,试说明点B 与A 的位置关系.【难度】★ 【答案】点B 在A 外.【解析】由题意得33A ⎛⎫-- ⎪ ⎪⎝⎭,,()10B ,,所以()22373313AB ⎛⎫=--+-= ⎪ ⎪⎝⎭, 因为4AB >,所以点B 在A 外.【总结】本题考察了点与圆的位置关系,设一个圆的半径长为R ,点P 到圆心的距离为 d ,则有以下结论:当点P 在圆外时,d > R ;当点P 在圆上时,d = R ;当点P 在 圆内时,0d R ≤<.反之亦然.【例2】 过一个点可以画______个圆,过两个点可以画______个圆,过三个点可以画______个圆.【难度】★【答案】无数;无数;一或零.【解析】不共线的三点才可以确定一个圆.【总结】本题考察了圆的确定,不共线的三点可以确定一个圆.【例3】 已知,如图,在O 中,AB 、BC 为弦,OC 交AB 于点D .求证:(1)ODB OBD ∠>∠;(2)ODB OBC ∠>∠.【难度】★ 【答案】详见解析.【解析】(1)∵OA OB =,∴OAB OBA ∠=∠,∵ODB OAB AOD ∠=∠+∠,∴ODB OBA AOD ∠=∠+∠,∴ODB OBD ∠>∠.(2)∵OC OB =,∴OBC OCB ∠=∠,∵ODB OCB DBC ∠=∠+∠,∴ODB OBC DBC ∠=∠+∠,∴ODB OBC ∠>∠.【总结】本题考查了圆的性质,利用外角是解决问题的关键.例题解析【例4】 如图,O 的半径为15,O 到直线l 的距离OH = 9,A 、B 、C 为直线l 上的三个点,AH = 9,BH = 12,CH = 15,请分别说明点A 、B 、C 与O 的位置关系.【难度】★★【答案】A 在O 内;B 在O 上;C 在O 外. 【解析】连接OP ,∵15OP =,9OH =,∴2212PH OP OH =-=,∵9AH HP =<,∴A 在O 内; ∵12BH HP ==,∴B 在O 上; ∵12CH HP =<,∴C 在O 外.【总结】本题考查了点与圆的位置关系.【例5】 若A (a ,27-)在以点B (35-,27-)为圆心,37为半径的圆上,求a 的值.【难度】★★ 【答案】2或72-.【解析】∵A 点在B 上,∴37BA =,即()()2235272737a ++-+=,解得12a =,272a =-.【总结】本题考查了点与圆的位置关系,注意此题有两种解.【例6】 如图,作出AB 所在圆的圆心,并补全整个圆. 【难度】★★ 【答案】如图所示.【解析】在AB 上任意作两条弦,分别做两条弦的垂直平分线,两垂直平分线的交点即为圆心.【总结】本题考查了不共线三点定圆的作法.HOlP【例7】 如图,CD 是半圆的直径,O 是圆心,E 是半圆上一点,且45EOD ∠=︒,A 是DC 延长线上一点,AE 与半圆交于B ,若AB = OC ,求EAD ∠的度数.【难度】★★★ 【答案】15EAD ∠=︒.【解析】∵AB OC =,OC OB =,∴AB OB =,∴EAD BOA ∠=∠, ∴2OBE BOA EAD EAD ∠=∠+∠=∠,∵OB OE =,∴E OBE ∠=∠,∴2OEB EAD ∠=∠, ∵345EOD OEA EAD EAD ∠=∠+∠=∠=︒, ∴15EAD ∠=︒.【总结】本题考查了同一个圆中半径处处相等及三角形外角的应用.【例8】 已知,如图,AB 是O 的直径,半径OC AB ⊥,过OC 的中点D 作EF // AB .求证:12ABE CBE ∠=∠.【难度】★★★ 【答案】详见解析. 【解析】连接OE ,∵OC AB ⊥,EF //AB , ∴OC EF ⊥,OBE DEB ∠=∠,∵OB OE =,∴OBE OEB ∠=∠,∴OBE OEB DEB ∠=∠=∠,∵D 为OC 的中点,∴1122OD OC OE ==,∴30OED ∠=︒,∴1152ABE OED ∠=∠=︒,∴451530CBE CBO ABE ∠=∠-∠=︒-︒=︒,∴12ABE CBE ∠=∠.【总结】本题主要考查了等腰三角形的性质以及直角三角形性质的综合运用.AB CDEOABC D E F O【例9】已知:AB是O的直径,点P是OA上任意一点,点C是O上任意一点.≤≤.求证:PA PC PB【难度】★★★【答案】详见解析.==,【解析】当P与O重合时,可得PA PC PB当P与O不重合时,连接OC,则OA = OC = OB,=-=-<,∴PA OA OP OC OP PC=+=+>,PB OP OB OP OC PC≤≤.综上可知PA PC PB【总结】本题考查了圆中半径处处相等,并利用三角形的三边关系解决问题.A BCO1、 圆心角、弧、弦、弦心距的概念圆心角:以圆心为顶点的角叫做圆心角; 弧:圆上任意两点之间的部分叫做圆弧,简称弧;弦:连接圆上任意两点的线段叫做弦,过圆心的弦就是直径; 弦心距:圆心到弦的距离叫做弦心距. 2、 半圆、优弧、劣弧半圆:圆的任意一条直径的两个端点将圆分成两条弧,每一条弧都叫做半圆. 优弧:大于半圆的弧叫做优弧. 劣弧:小于半圆的弧叫做劣弧.如图,以A 、C 为端点的劣弧记作AC ,读作“弧AC ”; 以A 、C 为端点的优弧记作ABC ,读作“弧ABC ”. 3、 等弧和等圆能够重合的两条弧称为等弧,或者说这两条弧相等.若AB 与''A B 是等弧,记作''AB A B .半径相等的两个圆一定能够重合,我们把半径相等的两个圆称为等圆. 4、 圆心角、弧、弦、弦心距之间关系的定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.5、 圆心角、弧、弦、弦心距之间关系的定理的推论在同圆或等圆中,如果两个圆心角、两条劣弧(或优弧)、两条弦、两条弦的弦心距得到的四组量中有一组量相等,那么它们所对应的其余三组量也分别相等.模块二:圆心角、弧、弦、弦心距之间的关系知识精讲ABCO【例10】 下列命题中真命题的个数是( )① 相等的圆心角所对的弧也相等;② 在同圆中,如果两条弦相等,那么所对的弧也相等; ③ A 、B 是O 上任意两点,则AO + BO 等于O 的直径长; ④ 三角形的外心到三角形三边的距离相等. A .1个B .2个C .3个D .4个【难度】★ 【答案】A .【解析】① 需说明是在同圆或等圆中,故①错误;② 一条弦对两条弧,所以需要说明是优弧还是劣弧,故②错误; ③ 易知AO 、BO 均为圆的半径,所以AO BO +为直径,故③正确; ④ 三角形的外心到三角形三个顶点的距离相等,故④错误.【总结】本题考查了圆心角、弧、弦、弦心距之间关系的定理.【例11】 一条弦把圆分成1 : 3两部分,则弦所对的圆心角为______°. 【难度】★ 【答案】90.【解析】∵一条弦把圆分成1 : 3两部分,∴整个圆分为四等分,则劣弧的度数为360490︒÷=︒, ∴弦所对的圆心角为90︒.【总结】本题考查了同圆中圆心角、弧、弦、弦心距之间的关系.【例12】 如图,在O 中,AB AC =,70B ∠=︒,则BAC ∠=______. 【难度】★ 【答案】40︒.【解析】∵在O 中,AB AC =,∴C B ∠=∠,∵70B ∠=︒,∴18040BAC B C ∠=︒-∠-∠=︒.【总结】本题主要考查等腰三角形的性质以及三角形内角和定理的应用.例题解析ABCDO【例13】 如图,已知O 的半径是6,30BOD ∠=︒,BD BC =,CD =______.【难度】★★ 【答案】6.【解析】∵BD BC =,30BOD ∠=︒,∴30BOD BOC ∠=∠=︒,∴60COD ∠=︒,∵OC OD =,∴OCD ∆是等边三角形, ∴6CD =.【总结】本题考查了圆心角、弧、弦、弦心距之间关系的定理的应用.【例14】 如图,1O 和2O 是等圆,P 是12O O 的中点,过点P 作直线AD 交1O 于点A 、B ,交2O 于点C 、D .求证:AB = CD .【难度】★★ 【答案】详见解析.【解析】作1O E AB ⊥于E ,2O F CD ⊥于F ,∵P 是12O O 的中点,∴1PEO ∆≌2PFO ∆,∴12O E O F =, ∵1O 和2O 是等圆,∴AB CD =.【总结】本题考查了圆心角、弧、弦、弦心距之间关系的定理的应用.【例15】 已知,如图,AB 、CD 是O 的直径,弦AE // CD ,联结CE 、BC .求证:BC = CE . 【难度】★★ 【答案】详见解析.【解析】∵OA OE =,∴A OEA ∠=∠,∵AE //CD ,∴BOC A ∠=∠,EOC OEA ∠=∠, ∴BOC EOC ∠=∠,∴BC CE =.【总结】本题考查了圆心角、弧、弦、弦心距之间关系的定理的应用.FABCDPEA BCDEOOABC【例16】 如图,O 是ABC ∆的外接圆,AO 平分BAC ∠,AOB BOC ∠=∠,判断ABC∆的形状,并说明理由.【难度】★★ 【答案】等边三角形.【解析】∵AO 平分BAC ∠,∴BAO CAO ∠=∠,∵OA OC OB ==,∴ABO BAO CAO ACO ∠=∠=∠=∠, ∴AOB AOC ∠=∠,∵AOB BOC ∠=∠,∴AOB AOC BOC ∠=∠=∠, ∴AB BC CA ==,∴ABC ∆是等边三角形.【总结】本题考查同圆中相等的圆心角所对的弦相等.【例17】 已知,如图,AB 是O 直径,M 、N 分别是AO 、BO 的中点,CM AB ⊥,DN AB ⊥.求证:AC BD =.【难度】★★★ 【答案】详见解析.【解析】连接OC 、OD ,则OC OD =,∵M 、N 分别是AO 、BO 的中点,∴OM ON =, ∵CM AB ⊥,DN AB ⊥,∴OCM ∆≌ODN ∆, ∴COM DON ∠=∠,∴AC BD =.【总结】本题考查了同圆中相等的圆心角所对的弧相等.【例18】 如图,以点O 为圆心的圆弧上依次有四个点A 、B 、C 、D ,且AOB COD ∠=∠.求证:四边形ABCD 是等腰梯形.【难度】★★★ 【答案】详见解析. 【解析】连接AC 、BD ,∵AOB COD ∠=∠,∴AB CD =,∵12ACB AOB ∠=∠,12CAD COD ∠=∠,∴ACB CAD ∠=∠,∴AD ∥BC ,∴四边形ABCD 是等腰梯形.【总结】本题综合性较强,主要考查了同一条弦所对的圆周角和圆心角的关系,老师可以选择性的讲解.ABCDO NM OABCD1、 垂径定理如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,并且平分这条弦所对的弧. 2、 相关结论(1)如果圆的直径平分弦(这条弦不是直径),那么这条直径垂直于这条弦,并且平分这条弦所对的弧.(2)如果圆的直径平分弧,那么这条直径就垂直平分这条弧所对的弦. (3)如果一条直线是弦的垂直平分线,那么这条直线经过圆心,并且平分这条弦所对的弧.(4)如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦.(5)如果一条直线垂直于弦,并且平分弦所对的一条弧,那么这条直线经过圆心,并且平分这条弦.总结:在圆中,对于某一条直线“经过圆心”、“垂直于弦”、“平分弦”、“平分弦所对的弧”这四组关系中,如果有两组关系成立,那么其余两组关系也成立.【例19】 O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长为______. 【难度】★ 【答案】8.【解析】∵O 的直径为10,∴5OB =,∵OM AB ⊥,∴OM 平分AB , ∴224BM OB OM =-=,∴28AB BM ==. 【总结】本题考查了垂径定理的运用.模块三:垂径定理知识精讲例题解析ABCDE F O【例20】 在半径为2的O 中,弦AB 的长为22,则弦AB 所对的圆心角AOB ∠=____°. 【难度】★ 【答案】90.【解析】作OD AB ⊥于D ,则2AD BD ==,∵2OB =,∴222OD OB BD =-=,∴45BOD ∠=︒,∴90AOB ∠=︒.【总结】本题考查了垂径定理的运用.【例21】 如图,O 是ABC ∆的外接圆,圆心O 在这个三角形的高CD 上,点E 和点F分别是边AC 和BC 的中点. 求证:四边形CEDF 是菱形.【难度】★★ 【答案】详见解析.【解析】∵CD AB ⊥,且CD 过圆心,∴AD BD =,∴CA CB =,∵点E 和点F 分别是边AC 和BC 的中点,∴12CE AC =,12DE AC =,12CF BC =,12DF BC =,∴CE DE DF CF ===,∴四边形CEDF 是菱形.【总结】本题考查了垂径定理的运用即菱形的判定.【例22】 如图,一根横截面为圆形的输水管道,阴影部分为有水部分,此时水面宽AB为0.6米,污水深CD 为0.1米,求圆形的下水管道的直径.【难度】★★ 【答案】1米.【解析】连接OB ,设圆半径为R ,则0.1OD R =-, 10.32BD AB ==,由222OD BD OB +=得()2220.10.3R R -+=,解得0.5R =, 所以下水管道的直径为1米.【总结】本题考查了垂径定理以及勾股定理的综合运用.A BD O【例23】 如图,在O 中,弦CD 、EF 的延长线相交于点P ,G 、H 分别是CD 、EF 的中点,GH 与PC 、PE 分别相交于Q 、R 两点,试判断PQR ∆的形状,并证明所得到的结论.【难度】★★ 【答案】等腰三角形. 【解析】连接OG 、OH ,∵G 、H 分别是CD 、EF 的中点, ∴OG CD ⊥,OH EF ⊥,∵OH OG =,∴H G ∠=∠,∴GQC HRE ∠=∠,∴PQR PRQ ∠=∠, ∴PQR ∆是等腰三角形.【总结】本题考查了垂径定理的运用.【例24】 如图,P 是O 的弦AB 的中点,PC OA ⊥,垂足为C ,求证:PA PB AC AO =. 【难度】★★ 【答案】详见解析.【解析】连接OP ,∵P 是O 的弦AB 的中点,∴OP AB ⊥,∵PC OA ⊥,∴ACP ∆∽APO ∆,∴PA AOAC PA =,∵PA PB =, ∴PA AOAC PB=,即PA PB AC AO =. 【总结】本题考查了垂径定与相似三角形的综合运用.CDEFG O PQROP ABCABCDH O【例25】 位于本市浦东临港新城的滴水湖是圆形人工湖.为测量该湖的半径,小智和小方沿湖边选取A 、B 、C 三根木柱,使得A 、B 之间的距离与A 、C 之间的距离相等,并测得BC 长240米,A 到BC 的距离为5米,如图所示.请你帮他们求出滴水湖的半径.【难度】★★ 【答案】1442.5米.【解析】连接OA 交BC 于D 点,连接OC ,∵A 、B 之间的距离与A 、C 之间的距离相等, ∴OA BC ⊥,BD DC =,设半径为R ,则5OD R =-,120DC =,由222OD DC OC +=,∴()2225120R R -+=,解得:1442.5R =, 所以滴水湖的半径为1442.5米.【总结】本题考查了垂径定理的运用.【例26】 如图,弦CD 垂直于O 的直径AB ,垂足为H ,且22CD =,3BD =,则AB 的长为_______.【难度】★★ 【答案】3.【解析】由题意得2DH =,221BH DB DH =-=,设半径为R ,则1OH R =-,由222OD OH HD =+,∴()()22212R R =-+,解得32R =,∴23AB R ==.【总结】本题考查了垂径定理的运用.BCOD【例27】 已知O 的半径4r =,AB 、CD 为O 的两条弦,AB 、CD 的长分别是方程()24341630x x -++=的两根,其中AB > CD ,且AB // CD ,求AB 与CD 间的距离.【难度】★★★【答案】232+或232-.【解析】∵()24341630x x -++=,解得:143x =,24x =.∵AB >CD ,∴43AB =,4CD =,当AB 、CD 圆心同侧时,作OE AB ⊥于E ,并延长交CD 于F ,∵AB // CD ,∴OF ⊥CD ,∴222OE OB BE =-=,2223OF OD DF =-=, ∴232EF OF OE =-=-,当AB 、CD 圆心两侧时,同理可得232EF OF OE =+=+, ∴AB 与CD 间的距离是232+或232-.【总结】本题考查了垂径定理的运用,做题的关键是要分情况讨论.【例28】 已知,如图,1O 与2O 交于A 、B ,过A 的直线分别交1O 与2O 于M 、N ,C 是MN 的中点,P 是12O O 的中点. 求证:PA PC =.【难度】★★★ 【答案】详见解析.【解析】作1O E AM ⊥,2O F AN ⊥,作PH MN ⊥于H ,则12////O E PH O F ,且E 、F 分别为AM 、AN 的中点,∴12AE AF EF MN +==,∵C 是MN 的中点,∴12NC MN =,∴EF NC =,∴EC FN AF ==,∵P 是12O O 的中点,∴EH FH =, ∴HC HA =,∴PA PC =.【总结】本题考查了垂径定理的运用.ABCP N ME FH【例29】 如图,已知四边形ABCD 外接圆O 的半径为2,对角线AC 与BD 的交点为E ,AE = EC ,2AB AE =,且23BD =,求四边形ABCD 的面积.【难度】★★★ 【答案】23.【解析】∵AE EC =,2AB AE =,∴222AB AE AE AC ==⋅,∴AB AE AC AB=,又EAB BAC ∠=∠,∴ABE ∆∽ACB ∆, ∴ABE ACB ∠=∠,∵ADB ACB ∠=∠,∴ABE ADB ∠=∠,∴AB AD =, 连接AO 交BD 于H ,连接BO ,∵AB AD =,∴AO BD ⊥,∴3BH DH ==, ∵2OB =,∴1OH =,∴1AH =,∴132ABD S BD AH ∆=⋅⋅=,∵E 为AC 中点,∴ABE CBE S S ∆∆=,ADE CDE S S ∆∆=,即ABD CBD S S ∆∆=, ∴223ABD ABCD S S ∆==四边形, ∴四边形ABCD 的面积是23.【总结】本题考查了垂径定理的运用及图形的分割,综合性较强,解题时注意认真观察.A BC DE OH【例30】 如图,在半径为2的扇形AOB 中,90AOB ∠=︒,点C 是弧AB 上的一个动点(不与点A 、B 重合),OD BC ⊥,OE AC ⊥,垂足分别为D 、E .(1)在DOE ∆中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由.(2)设BD = x ,DOE ∆的面积为y ,求y 关于x 的函数关系式,并写出它的定义域.【难度】★★★【答案】(1)DE 长度不变,2DE =;(2)()2244024x x x y x -+-=<<.【解析】(1)连接AB ,∴2222AB OA OB =+=,∵OD BC ⊥,OE AC ⊥, ∴D 、E 分别为BC 、AC 中点,∴122DE AB ==.(2)作DF OE ⊥于F ,由(1)易得1452DOE AOB ∠=∠=︒,由题意得24OD x =-,∴28222ODx DF OF -===,2222EF DE EF x =-=, ∴28222x xOE OF EF -+=+=,∴()221440224x x x y DF OE x -+-=⋅⋅=<<.【总结】本题考查了垂径定理、勾股定理及中位线定理的综合运用,综合性较强.OABCDEFABCDEO【习题1】已知O 半径为5,若点P 不在O 上,则线段OP 的取值范围为_______________.【难度】★【答案】05OP ≤<或5OP >.【解析】∵点P 不在O 上,∴当点P 在O 内时,05OP ≤<;当点P 在O 外时, 5OP >,综上可知05OP ≤<或5OP >. 【总结】本题考查了点与圆的位置关系.【习题2】 如图,AB 是直径,BC CD DE ==,40BOC ∠=︒,则AOE ∠=_____.【难度】★ 【答案】60︒.【解析】∵BC CD DE ==,∴BOC COD DOE ∠=∠=∠, ∵40BOC ∠=︒,∴180360AOE BOC ∠=︒-∠=︒. 【总结】本题考查了圆心角、弧、弦、弦心距之间关系的定理.【习题3】如图,为方便三个村庄居民子女的上学问题,上级镇政府决定在A 、B 、C 三个村庄旁边造一所学校,要求它到各村庄的距离相等,请你在图中画出学校的位置.(保留作图痕迹)【难度】★ 【答案】如图所示.【解析】作线段AB 、AC 的中垂线的交点P 即为学校位置. 【总结】本题考查了不共线的三点可以确定一个圆.随堂检测A BC D EFOAB CD E O【习题4】如图,AB CD =,OE AB ⊥,OF CD ⊥,25OEF ∠=︒,求EOF ∠的度数.【难度】★★【答案】130︒.【解析】∵AB CD =,OE AB ⊥,OF CD ⊥,∴OE OF =,∴OEF OFE ∠=∠,∵25OEF ∠=︒, ∴1801802130EOF OEF OFE OEF ∠=︒-∠-∠=︒-∠=︒.【总结】本题考查了圆心角、弧、弦、弦心距之间关系的定理.【习题5】如图,在ABC ∆中,90B ∠=︒,60A ∠=︒,以点B 为圆心,AB 为半径画圆,交AC 于点D ,交BC 于点E .求证:(1)2AD DE =;(2)D 是AC 的中点.【难度】★★ 【答案】详见解析.【解析】(1)连接BD ,∵BA BD =,60A ∠=︒,∴ABD ∆是等边三角形,∴60ABD ∠=︒,∵90B ∠=︒,∴30DBC ∠=︒,∴2ABD DBC ∠=∠, ∴2AD DE =;(2)由(1)得60ADB ∠=︒,DB DA =,∵ADB DBC C ∠=∠+∠,∴30C ∠=︒,∴DB DC =,∴DA DC =, ∴D 是AC 的中点.【总结】本题考查了圆心角、弧、弦、弦心距之间关系的定理.【习题6】如图,AB 为O 直径,E 为BC 的中点,OE 交BC 于点D ,BD = 3,AB =10,则AC =______.【难度】★★ 【答案】8.【解析】∵AB 为O 直径,E 为BC 的中点,∴OD BC ⊥,BD CD =,∴224OD OB BD =-=, ∵OA OB =,∴28AC OD ==.【总结】本题考查了垂径定理及三角形中位线.AB CD ECDEFO【习题7】 如图,一条公路的转弯处是一段圆弧(即图中的CD ),点O 是CD 的圆心,其中CD = 600米,E 为CD 上一点,且OE CD ⊥,垂足为F ,EF = 90米,求这段弯路的半径.【难度】★★ 【答案】545米.【解析】∵点O 是CD 的圆心,OE CD ⊥,∴13002DF CD ==,设O 的半径为R ,则90OF R =-,由222OD OF FD =+得()22290300R R =-+,解得545R =, ∴这段弯路的半径为545米.【总结】本题考查了垂径定理的应用.【习题8】如图,在ABC ∆中,70A ∠=︒,O 截ABC ∆的三边所得的弦长都相等,求BOC ∠的度数.【难度】★★★ 【答案】125︒.【解析】作OE AB ⊥、OF BC ⊥、OG AC ⊥,∵O 截ABC ∆的三边所得的弦长都相等, ∴OE OF OG ==,∴OB 平分ABC ∠,OC 平分ACB ∠, ∵70A ∠=︒,∴110ABC ACB ∠+∠=︒,∴115522OBC OCB ABC ACB ∠+∠=∠+∠=︒,∴18055125BOC ∠=︒-︒=︒.【总结】本题考查了圆心角、弧、弦、弦心距之间关系的定理、角平分线的逆定理及三角形的内角和.ABCOEFG【习题9】 已知,如图,ABC ∆是等边三角形,AB 是O 的直径,AE EF FB ==,CE 、CF 交AB 于点M 、N . 求证:AM = MN = NB .【难度】★★★ 【答案】详见解析. 【解析】连接OE 、OF ,∵AE EF FB ==,∴60AOE EOF FOB ∠=∠=∠=︒, ∵ABC ∆是等边三角形,∴CAO AOE ∠=∠,∴OE //AC ,∴OM OEMA AC=. ∵AC BC =,O 是AB 中点, ∴1302ACO ACB ∠=∠=,∴12OA AC =,∴12OE AC =.∴2AM OM =,∴23AM OA =,13OM OA =, 同理23BN OB =,13ON OB =,∵OA OB =,∴23OM ON OA +=,∴AM MN NB ==.【总结】本题考查了圆心角、弧、弦、弦心距之间关系的定理及平分线分线段成比例.【习题10】 如图,AB 为O 的直径,CD 为弦,过点C 、D 分别作CN CD ⊥、DM CD ⊥,分别交AB 于点N 、M ,请问图中的AN 与BM 是否相等,说明理由.【难度】★★★【答案】AN 与BM 相等. 【解析】作OH CD ⊥交CD 于H ,则CH DH =,∵CN CD ⊥、DM CD ⊥, ∴CN ∥OH ∥DM ,∴ON OM =, ∵OA OB =,∴OA ON OB OM -=-, ∴AB BM =.【总结】本题考查了垂径定理及梯形的中位线.ABCDON M HABCE FN MO【作业1】在下列命题中,正确的个数是( ) ① 圆心角相等,则它们所对的弦必相等;② 经过线段的两个端点及线段所在直线外一点可以确定一个圆; ③ 直径平分弦,则必垂直于弦;④ 如果同圆中,两条弦互相平分,那么这两条弦都是直径. A .0个B .1个C .2个D .3个【难度】★ 【答案】B .【解析】① 需说明是在同圆或等圆中,故①错误;② 不共线的三点可以确定一个圆,故②正确; ③ 直径平分非直径的弦,则必垂直于弦,故③错误; ④ 如果同圆中,直径垂直于弦,则必然平分弦,故④错误.【总结】本题考查了圆心角、弧、弦、弦心距之间关系的定理及垂径定理.【作业2】在ABC ∆中,90C ∠=︒,D 、E 分别是AB 、AC 的中点,AC = 7,BC = 4.若以点C 为圆心,BC 为半径作圆,判断点D 、E 与C 的位置关系.【难度】★【答案】点D 在C 外;点E 在C 内.【解析】∵AC = 7,BC = 4,90C ∠=︒,∴2265AB AC BC =+=,∵4C R =,1652DC AB R ==>,∴点D 在C 外; 1722EC AC R ==<,∴点E 在C 内. 【总结】本题考查了点与圆的位置关系.课后作业【作业3】已知直线a 和直线外两点A 、B ,经过A 、B 作一圆,使它的圆心在直线a上.【难度】★ 【答案】如图所示.【解析】作线段AB 的中垂线于直线a 的交点P 即为圆心. 【总结】本题考查了线段的垂直平分线的作法.【作业4】已知O 外一点A 和圆上的点最大距离为23厘米,最小距离为10厘米,则O 的半径为______厘米.【难度】★★【答案】132.【解析】点A 与圆心的连心线所在的直线与圆的交点即为点A 到圆上的最大距离和最小距离,所以半径()13231022R =-÷=厘米.【总结】本题考查了点与圆的位置关系.【作业5】 如图,在O 中,2AB BC =,试确定AB 与2BC 的大小关系.【难度】★★ 【答案】2AB BC <.【解析】取AB 中点E ,∵2AB BC =,∴AE EB BC ==,∵AE EB AB +>, ∴2AB BC <.【总结】本题考查了圆心角、弧、弦、弦心距之间关系的定理.AB COE【作业6】如图,矩形ABCD 与圆心在AB 上的O 交于点G 、B 、F 、E ,GB = 8厘米,AG = 1厘米,DE = 2厘米,则EF = ______厘米.【难度】★★ 【答案】6.【解析】连接OE ,作OH DC ⊥于H 点,∵GB = 8厘米,AG = 1厘米,DE = 2厘米, ∴4OE =厘米,3EH =厘米, ∴26EF EH ==厘米.【总结】本题考查了垂径定理的应用.【作业7】已知点A (1,0),B (4,0),P 是经过A 、B 两点的一个动圆,当P与y 轴相交,且在y 轴上两交点的距离为3时,求圆心P 的坐标.【难度】★★【答案】5522⎛⎫ ⎪⎝⎭,或5522⎛⎫- ⎪⎝⎭,.【解析】设()P x y ,∵P 是经过A 、B 两点的一个动圆,∴P 在线段AB 的中垂线上,∵A (1,0),B (4,0),∴52x =且P 在x 轴上两交点的距离为3,∵P 与y 轴相交,且在y 轴上两交点的距离为3, ∴P 在x 轴上与y 轴上截得的两条弦相等.∴x y =,∴52y =±,∴P 点坐标为5522⎛⎫ ⎪⎝⎭,或5522⎛⎫- ⎪⎝⎭,. 【总结】本题考查了垂径定理的应用.OABCD EF GHOP ABC【作业8】 已知,如图,在O 中,弦AB 的长是半径OA 的3倍,C 为AB 的中点,AB 、OC 相交于P .求证:四边形OACB 为菱形.【难度】★★★ 【答案】详见解析.【解析】∵C 为AB 的中点,∴OC AB ⊥,AP PB =,∵弦AB 的长是半径OA 的3倍,∴32AP AO =,∴30PAO ∠=︒, ∴1122PO OA OC ==,即OP PC =,∵AP BP =,OC AB ⊥,∴四边形OACB 为菱形.【总结】本题考查了垂径定理的应用及菱形的判定.【作业9】已知:过圆O 内一点P 作弦AB 、CD ,且AB = CD ,在BD 上取两点E 、F ,且BE DF =.求证:直线PO 是EF 的垂直平分线.【难度】★★★ 【答案】详见解析.【解析】作OM AB ⊥,ON CD ⊥,∵AB = CD ,∴OM ON =,BM DN =, ∴POM ∆≌PON ∆,∴PM PN =,∴PB PD =,∵OB OD =,PO PO =,∴OPB ∆≌OPD ∆, ∴POB POD ∠=∠,∵BE DF =,∴BOE DOF ∠=∠, ∴POE POF ∠=∠,∴EOH FOH ∠=∠,∵OE OF =, ∴直线PO 是EF 的垂直平分线.【总结】本题考查了垂径定理及圆心角、弧、弦、弦心距之间关系的定理的综合应用.ABC D EFOPM NH【作业10】 如图,1O 与2O 交于A 、B ,M 为12O O 的中点,过点A 作EF AM ⊥分别交1O 与2O 于点E 、F .若1290O AO ∠=︒,1212AO AO O O m ==(2m ≥),求EF 的长.【难度】★★★ 【答案】4.【解析】作1O C AE ⊥于C 点,并延长与2O A 的延长线交于G 点,作2O D AF ⊥于D 点,∵EF AM ⊥,M 为12O O 的中点,∴AC AD =,∴2O AD ∆≌GAC ∆,∴2AG AO =,∵1290O AO ∠=︒,∴1O AC ∆∽1O GA ∆,∴11O A AG O G AC ⋅=⋅, ∴121O A AO O G AC ⋅=⋅,∵1212AO AO O O m ==,∴121O O O G AC =⋅,∵1290O AO ∠=︒,2AG AO =,∴121O O O G =, ∴1AC =,∴44EF AC ==.【总结】本题考查了垂径定理及相似三角形性质的综合应用.ABEFMGC D。
【最新版】九年级数学上册课件:24.2.1 点和圆的位置关系

知识点 4 反证法
思考:经过同一条直线上的三个点能作出一个圆吗?
P l1
A
B
如图,假设过同一条直线l上三点A、B、C可以作
一个圆,设这个圆的圆心为P.
那么点P既在线段AB的垂直平分线l1上,又在线段
l2
BC的垂直平分线l2上,即点P为l1与l2的交点.
而l1⊥l,l2⊥l这与我们以前学过的“过一点有且 C 只有一条直线与已知直线垂直”相矛盾.
2. 连接AC,作线段AC的垂直平分 B E O M C 线EF,交MN于点O;
3. 以O为圆心,OB为半径作圆.
所以⊙O就是所求作的圆.
探究新知
24.2 点和圆、直线和圆的位置关系/
问题4:现在你知道怎样将一个如图所示的破损的圆盘复原
了吗?
方法: 1. 在圆弧上任取三点A、B、C;
A B
2. 作线段AB、BC的垂直平分线,
3.⊙O的半径r为5cm,O为原点,点P的坐标为(3,4),
则点P与⊙O的位置关系为 (B )
A.在⊙O内
B.在⊙O上
C.在⊙O外 外
D.在⊙O上或⊙O
课堂检测
24.2 点和圆、直线和圆的位置关系/
4.已知:在Rt△ABC中,∠C=90°,AC=6,BC=8,则它
的外接圆半径= 5 .
5.如图,△ABC内接于⊙O,若∠OAB=20°,则∠C的度 数是___7_0_°___.
B
C
A
课堂小结
24.2 点和圆、直线和圆的位置关系/
点与圆的 位置关系
作 圆
点在圆外 点在圆上 点在圆内
d>r d=r d<r
P
r R
过一点可以作无数个圆
《过不共线三点作圆》导学案

学习目标
1.了解不共线三点确定一个圆的方法,三角形的外接圆及外心等概念;
2.经历不共线三个点确定一个圆的探索过程,培养学生的探索能力.
重点难点
重点:掌握过不共线三点作圆的方法,了解三角形的外接圆及外心等概念.
难点:怎么样去确定过不在同一条直线上的三点的圆的圆心.
学习过程:
一、课前抽测: A B
A·
B· ·C
2.求边长为a的等边三角形的外接圆的半径.(用含有a的式子表示)
五、达标)⊙O是△ABC的圆.
2. 判断:
(1)经过三个点一定可以作圆;( )
(2)任意一个三角形一定有一个外接圆,并且只有一个外接圆;( )
(3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形;( )
1.(1)经过一个已知点A画圆; ·A
想一想:经过已知点A可以画多少个圆?
(2)经过两个已知点C、B画圆.
想一想:①经过两个已知点可以画多少个圆?
C· · B
②圆心在哪儿?半径怎么确定?
2.设三点A,B,C不在同一直线上.
⑴过三点A,B,C的圆的圆心在哪儿?怎么确定?
A· ·B
C·
⑵过不在同一直线上的三点A,B,C如何作圆?
强调:(1)过同一直线上三点不行; (2)“确定”一词应理解成“有且只有”.
3.三角形的外接圆:.
圆的内接三角形:.
外心:.
三、合作探究:
例1:作出下列三角形的外接圆(只要作图痕迹,不要求作法)
归纳:锐角三角形的外心在三角形的
直角三角形的外心是三角形
钝角三角形的外心在三角形的
四、展示质疑:
1.如图,A、B、C表示三个工厂,要建一个供水站,使它到这三个工厂的距离相等,求供水站的位置(用点P表示,保留作图痕迹)。
九年级数学平面几何过三点的圆和垂径定理人教四年制知识精讲

九年级数学平面几何过三点的圆和垂径定理人教四年制【同步教育信息】一. 本周教学内容:平面几何过三点的圆和垂径定理二. 学习要求:(过三点的圆)1. 定理:不在同一直线上的三个点确定一个圆:它的意思是如果有三个点,它们三点不共线,那么经过这三个点可以作一个圆并且只可以做一个圆。
2. 三角形的外接圆,外心以及圆的内接三角形:经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫三角形的外心,这个三角形叫做这个圆的内接三角形,如图:A、(二)学习要点:1. 圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2. 垂径定理:垂直于弦的直径平分这条弦且平分这条弦所对的两条弧。
如图:CD 是直径,AB 是弦,AB CD ⊥于E ,则有:AE=EB ,⋂⋂=DB AD ,⋂⋂=CB AC 。
理由是:因为圆是轴对称图形,CD 是直径是圆的对称轴,若延CD 将圆对折,则CD⋂⋂⋂⋂【典型例题】[例1] 如图,已知直径AB 和CD 相交于点E ,︒=∠==60,5,1BED cm BE cm AE ,求:OA B CD证:依题意:OC=OD ,OA=OB∴OD OBOC OA =且夹角O ∠∴OAB ∆∽OCD ∆ ∴ABCD OA OC =∴CD OA AB OC ⋅=⋅ [例3] ABC ∆中,︒=∠90C 直角边a 、b 分别是方程0132=+-x x 的两个根,求ABC Rt ∆外接圆面积。
解:∵a 、b 是0132=+-x x 两个根∴1,3==+ab b a72132)(22222=⨯-=-+==+ab b a c b a∴7=c ,而ABC Rt ∆外接圆半径=27 ∴ππ47)27(2=⋅=圆S [例4] 已知四边形ABCD 中,︒=∠=∠90D B ,求证ABCD 有外接圆。
ADBCO证:连AC ,取AC 中点O在ABC Rt ∆和ADC Rt ∆中,连OB 、OD 则OC AO AC OD OB ====21∴A 、B 、C 、D 在以O 为圆心,以OA 为半径的圆上[例5] 如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,延长DC 与BA 的延长线交于P ,且PC=OB ,︒=∠99BOD ,求P ∠的度数。
人教版初中九年级上册数学精品课件 第二十四章 圆 点和圆、直线和圆的位置关系 点和圆的位置关系

拓广探索题
某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘要确定 其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.
解:(1)在圆形瓷盘的边缘选A、B、C三点;
(2)连接AB、BC;
B
C
A
(3)分别作出AB、BC的垂直平分线;
(4)两垂直平分线的交点就是瓷盘的圆心.
课堂小结
点与圆的 位置关系
作 圆
三角形的内角和为180度 矛盾.假设不成立.
△ABC中至少有一个内角小于或等于60°.
.
巩固练习
6. 利用反证法证明“在直角三角形中,至少有一个 锐角不大于45°”时,应先假设( D )
A.有一个锐角小于45° B.每一个锐角都小于45° C.有一个锐角大于45° D.每一锐角都大于45°
巩固练习
探究新知
点和圆的位置关系
P
d
d
Pd
r
r
P
r
点P在⊙O内
d<r 点P在⊙O上 d=r 点P在⊙O外
d>r
数形结合: 位置关系
数量关系
探究新知
素养考点 1 判定点和圆的位置关系
例1 如图,已知矩形ABCD的边AB=3,AD=4.
(1)以A为圆心,4为半径作⊙A,则点B、C、D与
⊙A的位置关系如何?
A
解:(1)∵∠ADO=∠ABO=60°, ∠DOA=90°,
∴∠DAO=30°;
探究新知 (2)求点A的坐标和△AOB外接圆的面积.
∵点D的坐标是(0,3),∴OD=3.
在Rt△AOD中,∵∠DOA=90° ,
∴AD为直径. 又∵∠DAO=30°,∴AD=2OD=6, OA= 3 3
因此圆的半径为3.点A的坐标( 3 3, 0) ∴△AOB外接圆的面积是9π. 解题妙招:图形中求三角形外接圆的面积时,关键是确定外 接圆的直径(或半径)长度.
人教版第24章圆的知识点及典型例题

圆知识点总结一.圆的定义1.在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.2.圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.3.确定圆的条件:⑴圆心;⑵半径,其中圆心确定圆的位置,半径长确定圆的大小.二.同圆、同心圆、等圆1.圆心相同且半径相等的圆叫做同圆;#2.圆心相同,半径不相等的两个圆叫做同心圆;3.半径相等的圆叫做等圆.三.弦和弧1.连结圆上任意两点的线段叫做弦.经过圆心的弦叫做直径,并且直径是同一圆中最长的弦,直径等于半径的2倍.2.圆上任意两点间的部分叫做圆弧,简称弧.以A B、为端点的弧记作AB,读作弧AB.在同圆或等圆中,能够重合的弧叫做等弧.*3.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.4.从圆心到弦的距离叫做弦心距.5.由弦及其所对的弧组成的图形叫做弓形.四.与圆有关的角及相关定理1.顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.2.顶点在圆上,并且两边都和圆相交的角叫做圆周角.…圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等.推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.(在同圆中,半弧所对的圆心角等于全弧所对的圆周角)3.顶点在圆内,两边与圆相交的角叫圆内角.圆内角定理:圆内角的度数等于圆内角所对的两条弧的度数和的一半.4.顶点在圆外,两边与圆相交的角叫圆外角.【圆外角定理:圆外角的度数等于圆外角所对的长弧的度数与短弧的度数的差的一半. 5.圆内接四边形的对角互补,一个外角等于其内对角.6.如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.7.圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等. :五.垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; 2.其它正确结论:⑴ 弦的垂直平分线经过圆心,并且平分弦所对的两条弧;⑵ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. ⑶ 圆的两条平行弦所夹的弧相等. \3.知二推三:⑴直径或半径;⑵垂直弦;⑶平分弦;⑷平分劣弧;⑸平分优弧.以上五个条件知二推三.注意:在由⑴⑶推⑵⑷⑸时,要注意平分的弦非直径. 4.常见辅助线做法:⑴过圆心,作垂线,连半径,造RT △,用勾股,求长度;⑵有弧中点,连中点和圆心,得垂直平分. 相关题目: {1.平面内有一点到圆上的最大距离是6,最小距离是2,求该圆的半径 2.(08郴州)已知在O ⊙中,半径5r =,AB CD ,是两条平行弦,且86AB CD ==,,则弦AC 的长为__________.. 六.点与圆的位置关系 1.点与圆的位置有三种:⑴点在圆外⇔d r >;⑵点在圆上⇔d r =;⑶点在圆内⇔d r <.》2.过已知点作圆⑴经过点A 的圆:以点A 以外的任意一点O 为圆心,以OA 的长为半径,即可作出过点A 的圆,这样的圆有无数个. ⑵经过两点A B 、的圆:以线段AB 中垂线上任意一点O 作为圆心,以OA 的长为半径,即可作出过点A B 、的圆,这样的圆也有无数个.⑶过三点的圆:若这三点A B C 、、共线时,过三点的圆不存在;若A B C 、、三点不共线时,圆心是线段AB 与BC 的中垂线的交点,而这个交点O 是唯一存在的,这样的圆有唯一一个. ⑷过n ()4n ≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的圆的圆心.3.定理:不在同一直线上的三点确定一个圆. —注意:⑴“不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆;⑵“确定”一词的含义是“有且只有”,即“唯一存在”.4.三角形的外接圆⑴经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形. ⑵三角形外心的性质:①三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等;②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.|⑶锐角三角形外接圆的圆心在它的内部(如图1);直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半,如图2);钝角三角形外接圆的圆心在它的外部(如图3).图3图2图1CBCC五.直线和圆的位置关系的定义、性质及判定从另一个角度,直线和圆的位置关系还可以如下表示:四.切线的性质及判定1. 切线的性质:定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点.推论2:经过切点且垂直于切线的直线必经过圆心.、2. 切线的判定定义法:和圆只有一个公共点的直线是圆的切线;距离法:和圆心距离等于半径的直线是圆的切线;定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.3. 切线长和切线长定理:⑴在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.⑵从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.:五.三角形内切圆1. 定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2. 多边形内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,该多边形叫做圆的外切多边形.六.圆和圆的位置关系的定义、性质及判定设O O、⊙⊙的半径分别为(其中),两圆圆心距为,则两圆位置关系如下表:|位置关系图形定义性质及判定外离两个圆没有公共点,并且每个圆上的点都在另一个圆的外部.—d R r>+⇔两圆外离外切两个圆有唯一公共点,并且除了这个公共点之外,每个圆上的点都在另一个圆的外部.d R r=+⇔两圆外切相交#两个圆有两个公共点.R r d R r-<<+⇔两圆相交内切两个圆有唯一公共点,并且除了这个公共点之外,一个圆上的点都在另一个圆的内部.d R r=-⇔两圆内切内含>两个圆没有公共点,并且一个圆上的点都在另一个圆的内部,两圆同心是两圆内含的一种特例.0d R r≤<-⇔两圆内含说明:圆和圆的位置关系,又可分为三大类:相离、相切、相交,其中相离两圆没有公共点,它包括外离与内含两种情况;相切两圆只有一个公共点,它包括内切与外切两种情况.七.正多边形与圆,1. 正多边形的定义:各条边相等,并且各个内角也都相等的多边形叫做正多边形.2. 正多边形的相关概念:⑴正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心.⑵正多边形的半径:正多边形外接圆的半径叫做正多边形的半径.⑶正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.⑷正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距.~3. 正多边形的性质:⑴正n边形的半径和边心距把正n边形分成2n个全等的直角三角形;⑵正多边形都是轴对称图形,正n边形共有n条通过正n边形中心的对称轴;⑶偶数条边的正多边形既是轴对称图形,也是中心对称图形,其中心就是对称中心.八、圆中计算的相关公式设O ⊙的半径为R ,n ︒圆心角所对弧长为l ,、1. 弧长公式:π180n Rl =2. 扇形面积公式:21π3602n S R lR ==扇形 3. 圆柱体表面积公式:22π2πS R Rh =+4. 圆锥体表面积公式:2ππS R Rl =+(l 为母线) 常见组合图形的周长、面积的几种常见方法:① 公式法;② 割补法;③ 拼凑法;④ 等积变换法。
九年级数学下册《过不共线三点作圆》优秀教学案例

在本章节的教学过程中,教师应关注学生的全面发展,将知识与技能、过程与方法、情感态度与价值观有机地结合起来,使学生在掌握基本几何知识的同时,提高自身的综合素质,为未来的学习和发展奠定坚实的基础。
三、教学策略
(一)情景创设
1.创设生活化的教学情境,以学生熟悉的事物或场景作为引入,如校园里的圆形花坛、篮球场的圆形边界等,让学生感受到圆就在我们的身边,激发他们的学习兴趣。
4.通过对几何性质的学习和证明,使学生掌握几何学的基本研究方法和思维方式,提高学生的几何素养。
(三)情感态度与价值观
1.激发学生对数学几何学科的兴趣,培养他们主动探究、勇于创新的科学精神。
2.培养学生严谨、细心的学习态度,使他们认识到几何学习的严密性和逻辑性,从而提高学习的自觉性和自律性。
3.引导学生关注数学与生活的联系,体会数学在现实生活中的广泛应用,增强数学学习的实用性和价值感。
3.教师巡回指导,关注每个小组的讨论情况,给予适当的提示和引导,确保讨论的有效性。
(四)总结归纳
1.邀请各小组代表汇报讨论成果,让学生在倾听他人观点的过程中,加深对知识点的理解。
2.教师针对学生的讨论成果进行点评,总结“过不共线三点作圆”的基本原理、尺规作图方法以及几何证明过程。
3.强调本节课的重点和难点,指导学生掌握几何学习的思维方法和技巧。
4.能够运用所学的知识,解决一些与圆相关的实际问题,如测量圆形场地、设计圆形图案等。
(二)过程与方法
1.通过小组合作和自主探究,培养学生的团队合作意识和解决问题的能力,让学生在实践中学会如何观察、分析和解决问题。
2.引导学生运用尺规作图、直观演示等方法,提高学生的动手操作能力和空间想象能力。
三点共圆公式

三点共圆公式全文共四篇示例,供读者参考第一篇示例:三点共圆公式是圆锥曲线中的一个重要知识点,它是指通过三个点可以确定一个圆的方程。
在几何学中,圆是一个平面内的所有点到圆心的距离都相等的集合。
而三点共圆公式则是利用三个点的坐标来确定一个唯一的圆。
三点共圆公式的应用范围非常广泛,可以用于解决许多几何问题。
在实际生活中,我们经常会遇到需要确定圆的情况,比如建筑设计、地理测量、数学竞赛等。
在这些领域中,三点共圆公式都是必不可少的工具。
三点共圆公式的推导过程并不复杂,下面我们来具体介绍一下。
假设我们有三个点A(x1, y1),B(x2, y2),C(x3, y3)。
要找到一个圆经过这三个点,首先我们可以求出三条边的中垂线,中垂线交点就是圆心的坐标。
然后再求出圆心到任意一个点的距离,这个距离就是圆的半径。
首先我们可以通过两点求中点和中点的斜率来求出中垂线的方程。
设点A到点B的中点为D,中点到A的斜率为k1,中点到B的斜率为k2。
k1 = (y2 - y1) / (x2 - x1)k2 = -1/k1则中垂线的斜率为k2,中垂线的方程为:(xd, yd)为中垂线的交点坐标。
将点C坐标代入上式,可以求出中垂线的方程。
同理,可以求出另外两条中垂线的方程。
求出三条中垂线的交点,即为圆心的坐标。
接着,我们可以求出圆心到任意一个点的距离,这个距离即为圆的半径。
假设圆心坐标为(Ox, Oy),则圆的半径R满足:R = sqrt((x3 - Ox)^2 + (y3 - Oy)^2)将圆心坐标代入上述三式中,可以得到三个方程。
解这三个方程,就可以求出圆心的坐标和半径。
三点共圆公式的推导过程比较复杂,但实际运用时可以通过计算机程序或者在线工具快速求解。
对于一些几何问题,使用三点共圆公式可以方便快捷地找到圆的方程,解决问题。
三点共圆公式是一个实用的数学工具,可以广泛应用于几何学的各个领域。
掌握了这个公式,我们可以更好地理解圆的性质,解决实际问题,拓展数学知识的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过不共线三点作圆
1.了解不在同一直线上的三个点确定一个圆,以
及过不在同一直线上的三个点作圆的方法.
2.了解三角形的外接圆,三角形的外心等概念.
3.经历不在同一直线上的三个点确定一个圆的
探索过程,培养学生的探索能力.
一位考古学家在长沙马王堆汉墓挖掘时,发现一
圆形瓷器碎片,你能帮助这位考古学家画出这个
知什么?求作什么?
1.通过本课的学习,你有什么收获?还有什么问题? 不在同一直线上的三点 2.确定圆的条件—— 圆心、半径 3. 锐角三角形 直角三角形 钝角三角形 --外心的位置--在三角形的内部 在斜边的中点 在三角形的外部
我们应该有恒心,尤其要有自信心. ——居里夫人
垂直平分线上.
●
A
O
●
B
●
O
以线段AB的垂直平分线上的任意一点
为圆心,这点到A或B的距离为半径作
圆.
经过三个已知点A,B,C能确定一个圆吗?
假设经过A、B、C三点的⊙O存在 (1)圆心O到A、B、C三点距离 相等 相等”). (2)连接AB、AC,过O点 的 垂直平分线 ;EF是AC的 (填“相等”或“不
经过两个已知点A、B能作无数个圆. 经过两个已知 点A、B所作的圆的 圆心在怎样的一条 直线上?
A
B
它们的圆心都在线段AB的中垂线上.
过已知点A、B作圆,可以作无数个圆.
你准备如何(确定圆心,半径)作圆?
其圆心的分布有什么特点?与线段AB有 什么关系?
●
O ●O
●
经过两点A、B的圆的圆心在线段AB的
点,它到三角形的三个顶点的距离相等.
A A
●
A
●
O
O C
●
O
B
C
B
┐
B
C
锐角三角形的外心位于三角形内.
直角三角形的外心位于直角三角形斜边中点. 钝角三角形的外心位于三角形外.
过如下三点能不能做一个圆?
为什么?
A
B
C
不在同一直线上的三个点确定一个圆
1.(河北·中考)如图,在5×5正方形网格中,一条圆弧
经过A,B,C三点,那么这条圆弧所在圆的圆心是(
A B C
)
P
Q
R
M
A.点P 【答案】B
B.点Q
C.点R
D.点M
2.(乌鲁木齐·中考)如图,在平面直角坐标系中,点
A.B.C的坐标分别为(1,4),(5,4),(1,-2),
则△ABC的外接圆的圆心的坐标是(
A.(2,3) B.(3,2)
)
C.(1,3)
A
N E O F C B M
分别作直线MN⊥AB, EF⊥AC,则MN是AB
垂直平分线 . 相等 .
(3)AB、AC的中垂线的交点O到B、C的距离
已知:不在同一直线上的三点A、B、C 求作:⊙O使它经过点A、B、C 【解析】1.连接AB,作线段AB
A N
F
E O
的垂直平分线MN;
2.连接AC,作线段AC的垂直平分线E
B
C 交MN于点O; M
3.以O为圆心,OB为半径作圆.所以 ⊙O就是所求作的圆.
1.现在你知道怎样将一个如图所示的 破损圆盘复原吗?
方法: A B
1.在圆弧上任取三点A、 B、C. 2.分别作线段AB、BC 的垂直平分线,其交点 O即为圆心. 3.以点O为圆心,OC长 为半径作圆. ⊙O即为所求.
【答案】D
D.(3,1)
3.(江西·中考)如图,以点P为圆心的圆弧与X轴交于
A、B两点,点P的坐标为(4,2)点A的坐标为(2,0) 则点B的坐标为 .
【答案】 (6,0)
【规律方法】外心它是三边中垂线的交点,到 三个顶点的距离相等,在数学和实际运用中,
要分析清楚题意,转化为数学问题.要求明确已
O
C
2.已知△ABC,用直尺和圆规作出过点A、B、C的圆.
【解析】 A
O C B
经过一个三角形各个顶点的圆叫做这个三角 形的外接圆,外接圆的圆心叫做这个三角形 的外心,这个三角形叫做圆的内接三角形.
A
如图:⊙O是△ABC的外接圆,
O B
△ABC是⊙O的内接三角形,点O
C
是△ABC的外心.
外心是△ABC三条边的垂直平分线的交
碎片所在的整圆,以便于进行深入的研究吗?
想一想
要确定一个圆必须满足几 个条件?
1.过一点可以作几条直线? 2.过几点可确定一条直线? 3.过几点可以确定一个圆呢?
经过一点可以作无数条直线;
●
A
●
A
●
B
经过两点只能作一条直线.
经过一个已知点A能确定一个圆吗?
A
经过一个已知点能 作无数个圆
经过两个已知点A、B能确定一个圆吗?