绝对精选!高考数学函数最后一题练习+答案
江苏省高三数学最后一卷试题(解析版)苏教版

A BCDD 1 C 1 B 1 A 1江苏高考最后一卷数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应的位置上.......... 1.若函数cos()3y x πω=+(0)ω>的最小正周期是π,则ω= ▲ .2.若复数(12)(1)i ai ++是纯虚数,则实数a 的值是 ▲ .3.已知平面向量(1,1)a =-,(2,1)b x =-,且a b ⊥,则实数x = ▲ .4.一个袋中有3个大小质地都相同的小球,其中红球1个,白球2个,现从袋中有放回...地取球,每次随机取一个,则连续取两次都是白球的概率是 ▲ . 5.右图是某程序的流程图,则其输出结果为 ▲ . 6.给出下列四个命题:(1)如果平面α与平面β相交,那么平面α内所有的直线都与平面α相交(2)如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β (3)如果平面α⊥平面β,那么平面α内与它们的交线不垂直的直线与平面β也不垂直(4)如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β真命题...的序号是 ▲ .(写出所有真命题的序号) 7.已知双曲线22221(0,0)x y a b a b -=>>的焦点到一条渐近线的距离等于实轴长,那么该双曲线的离心率为▲ .8.已知二次函数()f x =241ax x c -++的值域是[1,)+∞,则19a c+的最小值是 ▲ .9.设函数3()32f x x x =-++,若不等式2(32sin )3f m m θ+<+对任意R θ∈恒成立,则实数m 的取值范围为 ▲ .10.若动点(,)P m n 在不等式组2400x y x y +≤⎧⎪≥⎨⎪≥⎩表示的平面区域内部及其边界上运动,则1n m t m -=+的取值范围是▲ .11.在ABC ∆中,AB 边上的中线2CO =,若动点P 满足221sin cos 2AP AB AC θθ=⋅+⋅()R θ∈,则()PA PB PC +⋅的最小值是 ▲ .12.设D 是函数()y f x =定义域内的一个区间,若存在D x ∈0,使00()f x x =-,则称0x 是()f x 的一个“次不动点”,也称()f x 在区间D 上存在次不动点.若函数25()32f x ax x a =--+在区间[1,4]上存在次不动点,则实数a 的取值范围是 ▲ .13.将所有的奇数排列如右表,其中第i 行第j 个数表示为ij a ,例如329a =.若445ij a =,则i j += ▲ .14.若实数,,a b c 成等差数列,点(1,0)P -在动直线0ax by c ++=上的射影为M ,点(3,3)N ,则线段MN 长度的最大值是 ▲ .二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明或演算步骤.15.(本小题满分14分)已知△ABC 中,∠A ,∠B ,∠C 的对边分别为,,a b c ,且2cos cos cos a B c B b C =+.(1)求角B 的大小;(2)设向量(cos ,cos 2)m A A =,(12,5)n =-,求当m n ⋅取最大值时,tan()4A π-的值.16.(本小题满分14分)如图,直四棱柱1111ABCD A B C D -中,底面ABCD 是直角梯形,90BAD ADC ∠=∠=︒,2AB AD =,CD AD =.(1)求证:1B CB ∠是二面角1B AC B --的平面角;(2)在A 1B 1上是否存一点P ,使得DP 与平面BCB 1与平面ACB 1都平行?证明你的结论.17.(本小题满分14分)某货轮匀速行驶在相距300海里的甲、乙两地间,运输成本由燃料费用和其它费用组成,已知该货轮每小时的燃料费用与其航行速度的平方成正比(比例系数为0.5),其它费用为每小时m 元,根据市场调研,得知m 的波动区间是[1000,1600],且该货轮的最大航行速度为50海里/小时.(1)请将从甲地到乙地的运输成本y (元)表示为航行速度x (海里/小时)的函数; (2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?18.(本小题满分16分)已知中心在原点O 、焦点在x 轴上的椭圆C 过点(2,1)M ,离心率为32.如图,平行于OM 的直线l 交椭圆C 于不同的两点,A B .(1)当直线l 经过椭圆C 的左焦点时,求直线l 的方程; (2)证明:直线,MA MB 与x 轴总围成等腰三角形. 1 3 5 开始结束1(1)S S k k =++2011k >1+=k k 0=S 是否输出S 1k =(第5题)19.(本小题满分16分)已知函数21()(21)2ln 2f x ax a x x =-++,其中常数0a >. (1)求()f x 的单调区间;(2)如果函数(),(),()f x H x g x 在公共定义域D 上,满足()()()f x H x g x <<,那么就称()H x 为()f x 与()g x 的“和谐函数”.设2()4g x x x =-,求证:当522a <<时,在区间(0,2]上,函数()f x 与()g x 的“和谐函数”有无穷多个.20.(本小题满分16分)已知无穷数列{}n a 的各项均为正整数,n S 为数列{}n a 的前n 项和.(1)若数列{}n a 是等差数列,且对任意正整数n 都有()33n n S S =成立,求数列{}n a 的通项公式;(2)对任意正整数n ,从集合12{,,,}n a a a 中不重复地任取若干个数,这些数之间经过加减运算后所得数的绝对值为互不相同的正整数,且这些正整数与12,,,n a a a 一起恰好是1至n S 全体正整数组成的集合.(i )求12,a a 的值;(ii )求数列{}n a 的通项公式.数学Ⅱ(附加题)21.【选做题】在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.A .选修41-:几何证明选讲如图,设AB 为⊙O 的任一条不与直线l 垂直的直径,P 是⊙O 与l 的公共点,AC ⊥l ,BD ⊥l ,垂足分别为C 、D ,且PC PD =,求证:PB 平分∠ABD .B .选修42-:矩阵与变换 已知矩阵122A x ⎡⎤=⎢⎥⎣⎦的一个特征值为1-,求另一个特征值及其对应的一个特征向量.C .选修44-:坐标系与参数方程 若直线22x t y t =⎧⎨=-⎩(参数R t ∈)与圆cos sin x y a θθ=⎧⎨=+⎩(参数[0,2)θπ∈,a 为常数)相切,求a 的值.D .选修45-:不等式选讲若对于一切实数x ,不等式|21||1||||21|x x x a -+-≥⋅+恒成立,求实数a 的取值范围.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)一个口袋装有5个红球,3个绿球,这些球除颜色外完全相同,某人一次从中摸出3个球,其中绿球的个数记为X .(1)求摸出的三个球中既有红球又有绿球的概率; (2)X 的分布列及X 的数学期望.23.(本小题满分10分)已知数列{}n a 中,112a <<,21112n n n a a a +=+-(*)n N ∈. (1)求证:3113(,)82a ∈; (2)求证:当3n ≥时,1|2|2n n a -<.江苏高考最后一卷 试题答案与评分标准 数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分.1.【解析】本题主要考查三角函数的周期性. 【答案】2 2.【解析】本题主要考查复数的概念和运算. 【答案】123.【解析】本题主要考查平面向量的垂直. 【答案】3 4.【解析】本题主要考查古典概型.【答案】495.【解析】本题主要考查流程图.【答案】201120126.【解析】本题主要考查立体几何中的平行与垂直关系. 【答案】(3)(4) 7.【解析】本题主要考查圆锥曲线中离心率的计算.58.【解析】本题主要考查基本不等式. 【答案】3 9.【解析】本题主要考查函数的性质. 【答案】(,4)(1,)-∞-+∞ 10.【解析】本题主要考查线性规划.【答案】2[,4]3-解答如下:画出可行域(如图所示阴影部分),而1111n m n t m m -+==-++,其中11n m ++表示(,)P m n 与点(1,1)--连线的斜率k ,由图可知1[,5]3k ∈,故21[,4]3t k =-∈-11.【解析】本题主要考查平面向量的概念与数量积. 【答案】2- 解答如下:因为22221sin cos sin cos 2AP AB AC AO AC θθθθ=⋅+⋅=⋅+⋅且22sin ,cos [0,1]θθ∈,所以点P 在线段OC 上,故()2PA PB PC PO PC +⋅=⋅,设||PO t =([0,2])t ∈,则2()2(2)(1)24PA PB PC t t t t +⋅=-⋅-=-,当1t =时取最小值2- 12.【解析】本题主要考查函数的概念和最值.【答案】1(,]2-∞解答如下:由题意,存在[1,4]x ∈,使25()()202g x f x x ax x a =+=--+=.当1x =时,使1(1)02g =≠;当1x ≠时,解得2452(1)x a x -=-.设245()2(1)x h x x -=-,则由222252'()0(1)x x h x x -+-==-,得2x =或12x =(舍去),且()h x 在(1,2)上递增,在(2,4)上递减.因此当2x =时,2451()2(1)2x g x x -==-最大,所以a 的取值范围是1(,]2-∞.13.【解析】本题主要考查数列的通项. 【答案】34 解答如下:可以求得通项221ij a i i j =-+-,所以221445i i j -+-=且1j i ≤≤,从而22444446i i i i ⎧-≤⎪⎨+≥⎪⎩,解得21i =,于是13j =,故34i j +=14.【解析】本题主要考查直线与圆的方程及位置关系.【答案】52解答如下:由题可知动直线0ax by c ++=过定点(1,2)A -.设点(,)M x y ,由MP MA ⊥可求得点M 的轨迹方程为圆:Q 22(1)2x y ++=,故线段MN 长度的最大值为52QN r +=+二、解答题:本大题共6小题,共计90分.15.本题主要考查平面向量的数量积、边角关系的互化,考查运算求解能力. 解:(1)由题意,2sin cos sin cos cos sin A B C B C B =+ …………………………………… 2分所以2sin cos sin()sin()sin A B B C A A =+=π-=. …………………………………… 3分 因为0A ,所以sin 0A .所以1cos 2B =. ………………………………………………………………………………… 5分 因为0B,所以3B π=. ………………………………………………………………… 6分(2)因为12cos 5cos2m n A A ⋅=- …………………………………………………………… 8分所以2234310cos 12cos 510(cos )55m n A A A ⋅=-++=--+……………………………… 10分 所以当3cos 5A =时,m n ⋅取最大值 此时4sin 5A =(0A ),于是4tan 3A = …………………………………………… 12分 所以tan 11tan()4tan 17A A A π--==+ …………………………………………………………… 14分16.本题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力、推理论证能力. 证明:(1) 直棱柱1111ABCD A B C D -中,BB 1⊥平面ABCD ,∴BB 1⊥AC .…………………… 2分又∠BAD =∠ADC =90°,22AB AD CD ==,∴45CAB ABC ∠=∠=︒,∴BC ⊥AC .…………………………………………… 5分∴AC ⊥平面1B BC ,∴AC ⊥1B C∴1B CB ∠是二面角1B AC B --的平面角.………………………………………… 7分O 1 -1 - 42 x y(2)存在点P ,P 为A 1B 1的中点.………………………………………………………… 8分由P 为A 1B 1的中点,有PB 1‖AB ,且PB 1=12AB . 又∵DC‖AB ,DC =12AB ,∴DC ∥PB 1,且DC = PB 1, ∴DC PB 1为平行四边形,从而CB 1∥DP . ……………………………………… 11分 又CB 1⊂面ACB 1,DP ⊄面ACB 1,∴DP‖面ACB 1. …………………………… 12分 同理,DP‖面BCB 1. ………………………………………………………………… 14分17.本题主要考查,考查数学建模能力、抽象概括能力和解决实际问题的能力.解:(1)由题意,每小时的燃料费用为20.5(050)x x <≤ ……………………………………… 1分从甲地到乙地所用的时间为300x小时 …………………………………………………… 2分 则从甲地到乙地的运输成本23003000.5y x m x x=⋅+⋅,(050)x <≤ 即2150()my x x =+,(050)x <≤…………………………………………………………… 6分(2)22'150(1)my x=-…………………………………………………………………………… 8分令'0y =,得2x m = 当2)x m ∈时,y 关于x 单调递减当(2,)x m ∈+∞时,y 关于x 单调递增 ………………………………………………… 9分 250m >即12501600m <≤时,50x =时y 取最小值 ………………… 11分 250m ≤即10001250m ≤≤时,2x m y 取最小值 ……………… 13分综上所述,若10001250m ≤≤2m /小时时,运输成本最少;若12501600m <≤,则当货轮航行速度为50海里/小时时,运输成本最少. …… 14分18.本题主要考查直线的方程及椭圆的标准方程,考查数学运算求解能力、综合分析问题的能力.解:(1)根据3c e a ==,可设椭圆方程为222214x y b b+=,将(2,1)M 代入可得22b =,所以椭圆C 的方程为22182x y +=………………………………………………………… 4分因此左焦点为(6,0)-,斜率12l OM k k ==所以直线l 的方程为1(6)2y x =,即1622y x =+ ………………………………… 6分(2)设直线,MA MB 的斜率分别为12,k k ,则11112y k x -=-,22212y k x -=- 12122112121211(1)(2)(1)(2)22(2)(2)y y y x y x k k x x x x ----+--+=+=---- 12211211(1)(2)(1)(2)22(2)(2)x m x x m x x x +--++--=--121212(2)()4(1)(2)(2)x x m x x m x x +-+--=-- (*) …………………………………… 10分设1:2l y x m =+,1122(,),(,)A x y B x y 由2212182y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩,得222240x mx m ++-= 所以,122x x m +=-,21224x x m =-…………………………………………………… 13分 代入(*)式,得2121224(2)(2)4(1)(2)(2)m m m m k k x x -+----+=--2212242444(2)(2)m m m m x x --+-+=--= 所以直线,MA MB 与x 轴总围成等腰三角形. ………………………………………… 16分19.本题主要考查导数的运算及其在研究函数性质、不等式与方程中的运用,考查探索、分析及求证能力.解:(1)22(21)2(2)(1)'()(21)ax a x x ax f x ax a x x x x-++--=-++==(0x >,常数0a >) 令'()0f x =,则12x =,21x a= ……………………………………………………… 2分①当102a <<时,12a>,在区间(0,2)和1(,)a +∞上,()0f x '>;在区间1(2,)a上()0f x '<,故()f x 的单调递增区间是(0,2)和1(,)a +∞,单调递减区间是1(2,)a…………………… 4分②当12a =时,2(2)()2x f x x -'=, 故()f x 的单调递增区间是(0,)+∞ …………………… 5分③当12a >时,102a <<,在区间1(0,)a 和(2,)+∞上,()0f x '>;在区间1(,2)a上()0f x '<,故()f x 的单调递增区间是1(0,)a 和(2,)+∞,单调递减区间是1(,2)a………………… 7分(2)令21()()()(1)(23)2ln 2h x g x f x a x a x x =-=-+--,(0,2]x ∈22(2)(23)2(2)[(2)1]'()(2)23a x a x x a x h x a x a x x x-+----+=-+--==令'()0h x =,则12x =,212x a =- ………………………………………………………… 10分因为522a <<,所以21x x >,且20a -<从而在区间(0,2]上,'()0h x <,即()h x 在(0,2]上单调递减 …………………………… 12分 所以min ()(2)222ln 2h x h a ==-- ………………………………………………………… 13分又522a <<,所以222ln222ln20a -->->,即min ()0h x > ………………………… 15分设()()(22ln 2)H x f x λ=+-(01)λ<<,则()()()f x H x g x <<所以在区间(0,2]上,函数()f x 与()g x 的“和谐函数”有无穷多个 …………………… 16分20.本题主要考查等差、等比数列的有关知识,考查分析、论证及解决问题的能力. 解:(1)设无穷等差数列{}n a 的公差为d ,则11(1)222n n n d d S na d n n a -⎡⎤⎛⎫=+=+- ⎪⎢⎥⎝⎭⎣⎦, 所以333122n d d S n n a ⎡⎤⎛⎫=+-⎪⎢⎥⎝⎭⎣⎦且()333122n d d S n n a ⎡⎤⎛⎫=+-⎪⎢⎥⎝⎭⎣⎦233233211133842222d d d d d d n n a n a n a ⎡⎤⎛⎫⎛⎫⎛⎫=+⨯-+⨯-+-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦因为()33n n S S =对于一切正整数n 都成立,所以32121311,823()0,423()0,22().22d d d da d d a d d a a ⎧=⎪⎪⎪-=⎪⎪⎨⎪-=⎪⎪⎪-=-⎪⎩①②③④…………………………………………………… 4分因为数列{}n a 的各项均为正整数,所以0d ≥ 由①,可得0d =或2d =.当0d =时,由④得11a =,且同时满足②③. 当2d =时,由②得112da ==,且同时满足③④. 因此,共有2个无穷等差数列满足条件,通项公式为1n a =或21n a n =- ………… 6分(2)(i )记{1,2,,}n n A S =,显然111a S == …………………………………………………… 7分对于21221S a a a =+=+,有22222{1,2,,}{1,,1,|1|}{1,2,3,4}A S a a a ==+-=故214a +=,所以23a = …………………………………………………………………… 9分 (ii )由题意可知,集合12{,,,}n a a a 按上述规则,共产生n S 个正整数.………………… 10分而集合121{,,,,}n n a a a a +按上述规则产生的1n S +个正整数中,除1,2,,n S 这n S 个正整数外,还有111,,||n n n a a i a i ++++-(1,2,,)n i S =,共21n S +个数.所以,1(21)31n n n n S S S S +=++=+……………………………………………………… 12分又1113()22n n S S ++=+,所以111111()332222n n n S S -=+⋅-=⋅- ……………………… 14分 当2n ≥时,11111113(3)32222n n n n n n a S S ---=-=⋅--⋅-= …………………………… 15分而11a =也满足13n n a -=所以,数列{}n a 的通项公式是13n n a -= …………………………………………………… 16分数学Ⅱ(附加题) 21.【选做题】在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分. A .选修41-:几何证明选讲本题主要考查三角形、圆的有关知识.证明:连结OP ,因为AC ⊥l ,BD ⊥l ,所以AC //BD ……………………………………………3分又OA =OB ,PC =PD ,所以OP //BD …………………………………………………………… 6分 于是∠OPB =∠DBP ………………………………………………………………………………8分 又等腰△OPB 中,∠OPB =∠OBP故PB 平分∠ABD …………………………………………………………………………………10分B .选修42-:矩阵与变换本题主要考查矩阵的特征值与特征向量. 解:矩阵M 的特征多项式为xf ----=λλλ221)(=4))(1(---x λλ…………………………………………………1分因为11λ=-方程0)(=λf 的一根,所以1=x …………………………………………………3分 由04)1)(1(=---λλ得23λ=…………………………………………………………………5分设23λ=对应的一个特征向量为⎥⎦⎤⎢⎣⎡=y x α则220220x y x y -=⎧⎨-+=⎩得x y =…………………………………………………………………………8分所以矩阵M 的另一个特征值为3,对应的一个特征向量为11⎡⎤⎢⎥⎣⎦………………………………10分C .选修44-:坐标系与参数方程本题主要考查极坐标方程与参数方程.解:直线的普通方程是220x y +-=…………………………………………………………… 2分 圆的普通方程是22()1x y a +-=…………………………………………………………… 4分15=……………………………………………………… 7分 解得,25a =±………………………………………………………………………… 10分D .选修45-:不等式选讲本题主要考查绝对值不等式.解:当0x =时,20≥恒成立,所以a R ∈………………………………………………………2分当0x ≠时,|21||1||21|||x x a x -+-+≤………………………………………………………… 4分∵|21||1||211|1||||x x x x x x -+--+-≥=……………………………………………………… 6分 ∴|21|1a +≤……………………………………………………………………………………… 8分 解得10a -≤≤ ………………………………………………………………………………… 10分【必做题】第22题、第23题,每题10分,共计20分. 22.本题主要考查概率分布列的计算.解:(1)记“摸出的三球中既有红球又有绿球”为事件A ,依题意知()122153533845.56C C C C P A C +==…………………………………………………………………4分 所以摸出的三个球中既有红球又有绿球的概率为45.56(2)30533810(0)56C C P X C ===……………………………………………………………………5分 21533830(1)56C C P X C ===………………………………………………………………………6分 12533815(2)56C C P X C ===………………………………………………………………………7分0353381(3)56C C P X C ===………………………………………………………………………8分X 0123P105630561556156所以X 的数学期望()8E X =………………………………………………………………10分23.本题主要考查数学归纳法的原理及简单应用.解:(1)因为112a <<,所以22211111331(1)(1,)2222a a a a =+-=--+∈……………… 2分故2232221131131(1)(,)22282a a a a =+-=--+∈………………………………… 4分(2)当3n =时,31132(2,2)82a -,又111312,28828>-,所以311288a -<-<,即31|2|8a <………………………………… 6分假设当(3)n k k =≥时,1|22k k a <则当1n k =+时,11|2|2|22|2k k k a a a +=⋅⋅+……………………………… 8分111|222|222k k <⋅+112k +<…………………………………………………………10分即1n k =+时结论成立综上所述,当3n ≥时,1|22n n a <.。
高考数学题2023最后一题

高考数学题2023最后一题22.(1)证明:当01x <<时,sin x x x x 2-<<;(2)已知函数()()2cos ln 1f x ax x =--,若0x =是()f x 的极大值点,求a 的取值范围.【答案】(1)证明见详解(2)(),-∞+∞【解析】【分析】(1)分别构建()()sin ,0,1F x x x x =-∈,()()2sin ,0,1G x x x x x =-+∈,求导,利用导数判断原函数的单调性,进而可得结果;(2)根据题意结合偶函数的性质可知只需要研究()f x 在()0,1上的单调性,求导,分类讨论202a <<和22a ≥,结合(1)中的结论放缩,根据极大值的定义分析求解.【详解】(1)构建()()sin ,0,1F x x x x =-∈,则()1cos 0F x x '=->对()0,1x ∀∈恒成立,则()F x 在()0,1上单调递增,可得()()00F x F >=,所以()sin ,0,1x x x >∈;构建()()()22sin sin ,0,1G x x x x x x x x =--=-+∈,则()()21cos ,0,1G x x x x '=-+∈,构建()()(),0,1g x G x x '=∈,则()2sin 0g x x '=->对()0,1x ∀∈恒成立,则()g x 在()0,1上单调递增,可得()()00g x g >=,即()0G x '>对()0,1x ∀∈恒成立,则()G x 在()0,1上单调递增,可得()()00G x G >=,所以()2sin ,0,1x x x x >-∈;综上所述:sin x x x x 2-<<.(2)令210x ->,解得11x -<<,即函数()f x 的定义域为()1,1-,若0a =,则()()()2ln 1,1,1f x x x =--∈-,因为ln y u =-在定义域内单调递减,21y x =-在()1,0-上单调递增,在()0,1上单调递减,则()()2ln 1f x x =--在()1,0-上单调递减,在()0,1上单调递增,故0x =是()f x 的极小值点,不合题意,所以0a ≠.当0a ≠时,令0b a =>因为()()()()()222cos ln 1cos ln 1cos ln 1f x ax x a x x bx x =--=--=--,且()()()()()22cos ln 1cos ln 1f x bx x bx x f x ⎡⎤-=----=--=⎣⎦,所以函数()f x 在定义域内为偶函数,由题意可得:()()22sin ,1,11x f x b bx x x =--∈'--,(i )当202b <≤时,取1min ,1m b ⎧⎫=⎨⎬⎩⎭,()0,x m ∈,则()0,1bx ∈,由(1)可得()()()2222222222sin 111x b x b x x f x b bx b x x x x+-'=-->--=---,且22220,20,10b x b x >-≥->,所以()()2222201x b x b f x x +-'>>-,即当()()0,0,1x m ∈⊆时,()0f x ¢>,则()f x 在()0,m 上单调递增,结合偶函数的对称性可知:()f x 在(),0m -上单调递减,所以0x =是()f x 的极小值点,不合题意;(ⅱ)当22b >时,取()10,0,1x b ⎛⎫∈⊆ ⎪⎝⎭,则()0,1bx ∈,由(1)可得()()()2233223222222sin 2111x x x f x b bx b bx b x b x b x b x b x x x '=--<---=-+++----,构建()33223212,0,h x b x b x b x b x b ⎛⎫=-+++-∈ ⎪⎝⎭,则()3223132,0,h x b x b x b x b ⎛⎫'=-++∈ ⎪⎝⎭,且()33100,0h b h b b b ⎛⎫''=>=-> ⎪⎝⎭,则()0h x '>对10,x b ⎛⎫∀∈ ⎪⎝⎭恒成立,可知()h x 在10,b ⎛⎫ ⎪⎝⎭上单调递增,且()21020,20h b h b ⎛⎫=-<=> ⎪⎝⎭,所以()h x 在10,b ⎛⎫ ⎪⎝⎭内存在唯一的零点10,n b ⎛⎫∈ ⎪⎝⎭,当()0,x n ∈时,则()0h x <,且20,10x x >->,则()()3322322201x f x b x b x b x b x'<-+++-<-,即当()()0,0,1x n ∈⊆时,()0f x '<,则()f x 在()0,n 上单调递减,结合偶函数的对称性可知:()f x 在(),0n -上单调递增,所以0x =是()f x 的极大值点,符合题意;综上所述:22b >,即22a >,解得a >a <,故a 的取值范围为(),-∞+∞.【点睛】关键点睛:1.当202a <≤时,利用()sin ,0,1x x x <∈,换元放缩;2.当22a ≥时,利用()sin ,0,1x x x x 2-<∈,换元放缩。
高三数学函数试题答案及解析

高三数学函数试题答案及解析1.对于函数,若存在非零常数,使得当取定义域内的每一个值时,都有,则称为准偶函数.下列函数中是准偶函数的是()A.B.C.D.【答案】D.【解析】∵,∴的函数图像关于直线对称,A:函数图像不关于某直线对称,B:函数图像关于轴,即直线对称,C:函数图像不关于某直线对称,D:函数图像关于直线,对称,符合题意,故选D.【考点】1.新定义问题;2.常见函数图像的对称性.2.具有性质:=-f(x)的函数,我们称为满足“倒负”变换的函数,下列函数:①y=x-;②y=x+;③y=,其中满足“倒负”变换的函数是________(填序号).【答案】①③【解析】对于①,f(x)=x-,f=-x=-f(x),满足;对于②,f=+x=f(x),不满足;对于③,f=即f=故f=-f(x),满足.综上可知,满足“倒负”变换的函数是①③.3.如果函数在上的最大值和最小值分别为、,那么.根据这一结论求出的取值范围().A.B.C.D.【答案】B【解析】函数在区间上最大值为1,最小值为,即,所以,,即取值范围为,选B.【考点】新定义概念与函数的最值.4.类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S(x)=a x-a-x,C(x)=a x+a-x,其中a>0,且a≠1,下面正确的运算公式是()①S(x+y)=S(x)C(y)+C(x)S(y);②S(x-y)=S(x)C(y)-C(x)S(y);③2S(x+y)=S(x)C(y)+C(x)S(y);④2S(x-y)=S(x)C(y)-C(x)S(y).A.①②B.③④C.①④D.②③【答案】B【解析】经验证易知①②错误.依题意,注意到2S(x+y)=2(a x+y-a-x-y),又S(x)C(y)+C(x)S(y)=2(a x+y-a-x-y),因此有2S(x+y)=S(x)C(y)+C(x)S(y);同理有2S(x-y)=S(x)C(y)-C(x)S(y),综上所述,选B.5.已知函数.若,则的取值范围是( )A.B.C.D.【答案】D【解析】依题意可得或解得.【考点】1.分段函数的应用.2.二次不等式的解法.3.分类的数学思想.6.若函数满足,当x∈[0,1]时,,若在区间(-1,1]上,有两个零点,则实数m的取值范围是A.0<m≤B.0<m<C.<m≤l D.<m<1【答案】A【解析】有两个零点,即曲线有两个交点.令,则,所以.在同一坐标系中,画出的图象(如图所示):直线过定点,所以,满足即选.【考点】分段函数,函数的图象,函数的零点.7.已知函数满足:对定义域内的任意,都有,则函数可以是()A.B.C.D.【答案】C【解析】由可知,对A,,不满足;对B,,不满足;对C,,满足;故选C. 或解,由得,表示的是上凸函数,只有C选项满足.【考点】1.函数性质的应用.8.若直角坐标平面内的亮点P,Q满足条件: P,Q都在函数y=f(x)的图像上, P,Q关于原点对称,则称点对[P,Q]是函数y=f(x)的一对“友好点对”(点对[P,Q]与[Q,P]看作同一对“友好点对”)。
高考数学最后一题

高考数学最后一题1.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(Ⅰ)求这三条曲线的方程;(Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由.解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p =24y x ∴= 抛物线方程为: ………………………………………………(1分)由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆,()()222122112114222a MF MF =+=+++-+=+()222222212123222221322222a ab ac x y ∴=+∴=+=+∴=-=+∴+=++ 椭圆方程为:………………………………(4分)对于双曲线,122222a MF MF '=-=-222222213222221322222a abc a x y '∴=-'∴=-'''∴=-=-∴-=-- 双曲线方程为:………………………………(6分)(Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H令()11113,,,22x y A x y +⎛⎫∴ ⎪⎝⎭ C ………………………………………………(7分) ()()22111111322312322DC AP x y x CH a x a ∴==-++=-=-+()()()2222221112121132344-2324622222DH DC CH x y x a a x a aa DH DE DH l x ⎡⎤⎡⎤∴=-=-+--+⎣⎦⎣⎦=-+==-+=∴=='= 当时,为定值; 为定值此时的方程为: …………(12分)2.(14分)已知正项数列{}n a 中,16a =,点()1,n n n A a a +在抛物线21y x =+上;数列{}n b 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上.(Ⅰ)求数列{}{},n n a b 的通项公式;(Ⅱ)若()()()n n a f n b ⎧⎪=⎨⎪⎩, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k值;若不存在,说明理由; (Ⅲ)对任意正整数n ,不等式11202111111n n nn a a n a b b b +-≤⎛⎫⎛⎫⎛⎫-++++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭成立,求正数a 的取值范围.解:(Ⅰ)将点()1,n n n A a a +代入21y x =+中得()11111115:21,21n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-⋅=+=+∴=+ 直线 …………………………………………(4分)(Ⅱ)()()()521n f n n ⎧+⎪=⎨+⎪⎩, n 为奇数, n 为偶数………………………………(5分)()()()()()()27274275421,42735227145,24k k f k f k k k k k k k k k k ++=∴++=+∴=+∴++=+∴==当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。
高考数学最后压轴大题系列--函数与导数

20XX 年高考数学最后压轴大题系列----函数与导数1.已知函数||1y x =+,y =,11()2ty x x-=+(0)x >的最小值恰好是方程320x ax bx c +++=的三个根,其中01t <<. (1)求证:223a b =+;(2)设1(,)x M ,2(,)x N 是函数32()f x x ax bx c =+++的两个极值点. 若122||3x x -=,求函数()f x 的解析式.解:(1)三个函数的最小值依次为1,………………………2分 由(1)0f =,得1c a b =---∴3232()(1)f x x ax bx c x ax bx a b =+++=++-++2(1)[(1)(1)]x x a x a b =-+++++,故方程2(1)(1)0x a x a b +++++=(1)a +=-+1a b =++.……………………………5分22(1)a =+,即222(1)(1)a b a +++=+∴ 223a b =+. ………………………………………………………………………7分 (2)①依题意12,x x 是方程2'()320f x x ax b =++=的根, 故有1223a x x +=-,123b x x =, 且△2(2)120a b =->,得3b <.由12||33x x -===10分23=;得,2b =,2237a b =+=.由(1(1)0a =-+>,故1a <-,∴ a =(1)3c a b =-++=∴ 32()23f x x x =-+.………………………………………………14分2.设函数),10(3231)(223R b a b x a ax x x f ∈<<+-+-=. (Ⅰ)求函数f (x )的单调区间和极值;(Ⅱ)若对任意的],2,1[++∈a a x 不等式| f ′(x )|≤a 恒成立,求a 的取值范围.解:(Ⅰ)2234)(a ax x x f -+-='(1分)令,0)(>'x f 得)(x f 的单调递增区间为(a ,3a )令,0)(<'x f 得)(x f 的单调递减区间为(-∞,a )和(3a ,+∞) (4分)∴当x=a 时,)(x f 极小值=;433b a +- 当x=3a 时,)(x f 极小值=b.(6分)(Ⅱ)由|)(x f '|≤a ,得-a ≤-x 2+4ax -3a 2≤a .①(7分)∵0<a <1,∴a +1>2a .∴]2,1[34)(22++-+-='a a a ax x x f 在上是减函数. (9分)∴.44)2()(.12)1()(min max -=+='-=+'='a a f x f a a f x f 于是,对任意]2,1[++∈a a x ,不等式①恒成立,等价于.154.12,44≤≤⎩⎨⎧-≥-≤-a a a a a 解得 又,10<<a ∴.154<≤a (12分)3.已知函数.3()2f x x ax =+与2()g x bx cx =+的图象都过点P(2,0),且在点P 处有公共切线.(1)求f(x)和g(x)的表达式及在点P 处的公切线方程; (2)设()()ln(1)8mg x F x x x=+-,其中0m <,求F(x)的单调区间. 解:(1)∵3()2f x x ax =+过点(2,0),P ∴a=-83()28f x x x =-, …………………2分2()68f x x x '=-∴切线的斜率(2)16k f '==………………………3分 ∵2()g x bx cx =+的图像过点(2,0),P ∴4b+2c=0,∵()2,(2)(2)416g x bx c f g b c '''=+==+=,解得:b=8,c=-16……………4分 ∴2()816g x x x =-……………………………………………………………5分 切线方程为16y =(x-2).即16x-y-32=0……………………………………6分 (2) ∵ ()(2)ln(1)(1)F x m x x x =-+->11()(1)11mx m F x m x x x -+'=+=>--……………………………………8分 当m<0时,1[(1)]()1m x m F x x --'=-∵m<0 ∴111m ->………………………………9分 又x>1 当1(1,1)x m ∈-时()0F x '> 当1(1,)x m ∈-+∞时()0F x '<∴F (x)的单调减区间是1(1,)m-+∞∴F(x)的单调增区间是(1,11m-)………………………………………………11分即m<0时,F(x)的单调递增区间是(1,11m -),单调减区间是(11m -,+∞) (2)4.已知函数x x f ln )(=(Ⅰ)若)()()(R a xax f x F ∈+=,求)(x F 的极大值; (Ⅱ)若kx x f x G -=2)]([)(在定义域内单调递减,求满足此条件的实数k 的取值范围. 解:(Ⅰ)xax x a x f x F +=+=ln )()(Θ定义域为),0(+∞∈x 2ln )1()(x xa x F --=∴ ……………………………………………………………2分令a e x x F -=='10)(得 由a e x x F -<<>'100)(得由a e x x F -><'10)(得 …………………………………………………………4分即),0()(1aex F -在上单调递增,在),(1+∞-a e 上单调递减a e x -=∴1时,F (x )取得极大值11)1(---=+-=a aa e ea a e F ……………………6分(Ⅱ)kx x x G -=2)(ln )(Θ的定义域为(0+∞) k xxx G -='∴ln 2)( 由G (x )在定义域内单调递减知:0ln 2)(<-='k xxx G 在(0+∞)内恒成立 ………8分 令k x x x H -=ln 2)(,则2)ln 1(2)(xx x H -=' 由e x x H =='得0)( ∵当),0(e x ∈时)(,0)(x H x H >'为增函数当),(+∞∈e x 时0)(<'x H )(x H 为减函数 ……………………………………10分 ∴当x = e 时,H (x )取最大值k ee H -=2)( 故只需02<-k e 恒成立,e k 2>∴ 又当e k 2=时,只有一点x = e 使得0)()(=='x H x G 不影响其单调性.2ek ≥∴ ………………………………………………………………………………12分5.已知函数.23)32ln()(2x x x f -+=(I )求f (x )在[0,1]上的极值;(II )若对任意0]3)(ln[|ln |],31,61[>+'+-∈x x f x a x 不等式成立,求实数a 的取值范围;(III )若关于x 的方程b x x f +-=2)(在[0,1]上恰有两个不同的实根,求实数b 的取值范围.解:(I )23)13)(1(33323)(+-+-=-+='x x x x x x f , 令1310)(-==='x x x f 或得(舍去))(,0)(,310x f x f x >'<≤∴时当单调递增;当)(,0)(,131x f x f x <'≤<时单调递减. ]1,0[)(613ln )31(在为函数x f f -=∴上的极大值(II )由0]3)(ln[|ln |>+'+-x x f x a 得xx a x x a 323ln ln 323ln ln ++<+->或设332ln 323ln ln )(2x x x x x h +=+-=,xxx x x g 323ln 323lnln )(+=++=,依题意知]31,61[)()(∈<>x x g a x h a 在或上恒成立,0)32(2)32(33)32(3332)(2>+=+⋅-+⋅+='x x x x x x x x g Θ, 03262)62(31323)(22>++=+⋅+='xx x x x x x h , ]31,61[)()(都在与x h x g ∴上单增,要使不等式①成立,当且仅当.51ln 31ln),61()31(<><>a a g a h a 或即或 (III )由.0223)32ln(2)(2=-+-+⇒+-=b x x x b x x f令xx x x x b x x x x 329723323)(,223)32ln()(22+-=+-+='-+-+=ϕϕ则,当]37,0[)(,0)(,]37,0[在于是时x x x ϕϕ>'∈上递增; ]1,37[)(,0)(,]1,37[在于是时x x x ϕϕ<'∈上递减而)1()37(),0()37(ϕϕϕϕ>>, ]1,0[0)(2)(在即=+-=∴x b x x f ϕ恰有两个不同实根等价于⎪⎪⎪⎩⎪⎪⎪⎨⎧≤-+=>-+-+=≤-=0215ln )1(067267)72ln()37(02ln )0(b b b ϕϕϕ .37267)72ln(215ln +-+<≤+∴b …………………………………………12分6. 已知函数f (x )=-x 3+21x 2+b|x -1|+c (Ⅰ)若函数f (x )是R 上减函数,试确定实数b 的取值范围;(Ⅱ)设f (x )在x =2时取极值,过点(0,2)作与f (x )相切的直线,问是否至少存在两条与f (x )相切的直线,若存在,试求出c 的取值范围,若不存在,说明理由。
高考数学真题——函数压轴题(含答案)

2018年数学全国1卷 已知函数1()ln f x x a x x=-+.(1)讨论()f x 的单调性; (2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.解:(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x-+'=--+=-. (i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减. (ii )若2a >,令()0f x '=得,x =或x =.当2(0,()22a a a x +∈+∞时,()0f x '<;当(,)22a a x +∈时,()0f x '>.所以()f x 在(0,),(,)22a a -++∞单调递减,在单调递增.(2)由(1)知,()f x 存在两个极值点当且仅当2a >. 由于()f x 的两个极值点12,x x 满足210xax -+=,所以121x x =,不妨设12x x <,则21x >.由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a ax x x x x x x x x x ----=--+=-+=-+----,所以1212()()2f x f x a x x -<--等价于22212ln 0xx x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <. 所以22212ln 0xx x -+<,即1212()()2f x f x a x x -<--.2017年数学全国1卷已知函数)f x =(a e 2x+(a ﹣2) e x﹣x . (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. (1)()f x 的定义域为(,)-∞+∞,2()2(2)1(1)(21)x x x x f x ae a e ae e '=+--=-+,(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点. (ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a -=-+.①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a -+>,即(ln )0f a ->,故()f x 没有零点;③当(0,1)a ∈时,11ln 0a a -+<,即(ln )0f a -<.又422(2)e (2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点. 设正整数n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->.由于3ln(1)ln aa ->-,因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1) 2016年数学全国1卷已知函数2()(2)e(1)xf x x a x =-+-有两个零点.(I )求a 的取值范围;(II )设x 1,x 2是()f x 的两个零点,证明:122x x+<.【答案】(I)(0,)+∞;(II )见解析 【解析】试题分析:(I)求导,根据导函数的符号来确定(主要要根据导函数零点来分类);(II)借助(I)的结论来证明,由单调性可知122x x+<等价于12()(2)f x f x >-,即2(2)0f x -<.设2()e(2)e xx g x x x -=---,则2'()(1)(e e )x x g x x -=--.则当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <.从而22()(2)0g x f x =-<,故122x x+<.试题解析:(Ⅰ)'()(1)e2(1)(1)(e 2)xx f x x a x x a =-+-=-+.(i )设0a =,则()(2)e xf x x =-,()f x 只有一个零点.时()0f x <,所以()f x 不存在两个零点.若e 2a <-,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞. (Ⅱ)不妨设12xx <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,()f x 在(,1)-∞单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<.由于222222(2)e (1)x f x x a x --=-+-,而22222()(2)e (1)0x f x x a x =-+-=,所以222222(2)e (2)e x x f x x x --=---.设2()e(2)e xx g x x x -=---,则2'()(1)(e e )x x g x x -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <.从而22()(2)0g x f x =-<,故122x x+<.2013年数学全国1卷设函数()f x =2x ax b ++,()g x =()xe cx d +,若曲线()yf x =和曲线()yg x =都过点P(0,2),且在点P 处有相同的切线42y x =+ (Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)当x ≥-2时,()f x ≤()kg x ,求k 的取值范围。
高考数学函数专题习题及详细答案

1.函数ye x1(xR)的反函数是()A.y1lnx(x0)B.y1lnx(x0).y1lnx(x0).y1lnx(x0)C D2.f(x)(3a1)x4a,x1是(,)上的减函数,那么a的取值范围是log a x,x1(A )(0,1)(B)(0,1)(C)[1,1)(D)[1,1)37373.在以下四个函数中,满足性质:“对于区间(1,2)上的任意x1,x2(x1x2),|f(x1)f(x2)||x2x1|恒成立〞的只有()1(B)fx|x|(C)f(x)2x(D)f(x)x2Af(x)x4.f(x)是周期为2的奇函数,当0x1时,f(x)lgx.设a f(6),bf(3),c f(5),那么522(A)abc(B)bac(C)cba(D)cab5.函数f(x)3x2lg(3x1)的定义域是1xA .1B1C11D1 (,)(,1)(,),)..3.( 33336、以下函数中,在其定义域内既是奇函数又是减函数的是A.y x 3,x R B y sinx,x R C y x,x R D1xy(),x R ...y27、函数y f(x)的反函数y f1(x)的图像与y轴交于点4y f 1 (x)P(0,2 )(如右图所示),那么方程f(x)0在[1,4]上的根是x2B.3C.28、设f(x)是R上的任意函数,那么以下表达正确的选项是1O3x(Af(x)f(x)是奇函数(Bf(x)f(x)是奇函数))(C)f(x)f(x)是偶函数(D)f(x)f(x)是偶函数9、函数y e x的图象与函数y fx的图象关于直线y x对称,那么A.f2x e2x(x R)B.f2x ln2glnx(x0)C.f 2x2x(x)D.f2x lnx ln2(x0)e R2e x1,x<2,那么f(f(2))的值为10、设f(x)2log3(x1),x 2.(A)0(B)1(C)2(D)311、对a,ba,a bx R)的最R,记max{a,b}=<,函数f(x)=max{|x+1|,|x-2|}(,bba小值是(A)0(B)1(C)3(D)3 2212、关于x的方程(x21)2x21k0,给出以下四个命题:①存在实数k,使得方程恰有2个不同的实根;②存在实数k,使得方程恰有4个不同的实根;③存在实数k,使得方程恰有5个不同的实根;④存在实数k,使得方程恰有8个不同的实根;其中假命题的个数是.A.0B.1C.2D.3〔一〕填空题(4个)1.函数f x对于任意实数x满足条件fx21,假设f15,那么f xff5_______________。
高三数学函数试题答案及解析

高三数学函数试题答案及解析1.一个平面图由若干顶点与边组成,各顶点用一串从1开始的连续自然数进行编号,记各边的编号为它的两个端点的编号差的绝对值,若各条边的编号正好也是一串从1开始的连续自然数,则称这样的图形为“优美图”.已知如图是“优美图”,则点A,B与边a所对应的三个数分别为________.【答案】3、6、3【解析】观察图中编号为4的边,由于6-2=5-1=4,而数字2已为一端点的编号,故编号为4的边的左、右两端点应为5、1,从而易知编号为1的边的左、右两端点应为4、3.考虑到图中编号为1的边,易知点A对应的数为3,点B对应的数为6.故应填3、6、3.2.对于实数x,符号[x]表示不超过x的最大整数.例如,[π]=3,[-1.08]=-2.如果定义函数f(x)=x-[x],那么下列命题中正确的一个是()A.f(5)=1B.方程f(x)=有且仅有一个解C.函数f(x)是周期函数D.函数f(x)是减函数【答案】C【解析】f(5)=5-[5]=0,故A错误;因为f()=-[]=,f()=-[]=,所以B错误;函数f(x)不是减函数,D错误;故C正确.3. [2012·江苏高考]已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为________.【答案】9【解析】通过值域求a,b的关系是关键.由题意知f(x)=x2+ax+b=(x+)2+b-.∵f(x)的值域为[0,+∞),∴b-=0,即b=.∴f(x)=(x+)2.又∵f(x)<c,∴(x+)2<c,即--<x<-+.∴②-①,得2=6,∴c=9.4.下列函数中,不满足f(2x)=2f(x)的是()A.f(x)=|x|B.f(x)=x-|x|C.f(x)=x+1D.f(x)=-x【答案】C【解析】若f(x)=|x|,则f(2x)=|2x|=2|x|=2f(x);若f(x)=x-|x|,则f(2x)=2x-|2x|=2(x-|x|)=2f(x);若f(x)=-x,则f(2x)=-2x=2f(x);若f(x)=x+1,则f(2x)=2x+1,不满足f(2x)=2f(x).5.(3分)(2011•重庆)已知,则a=()A.1B.2C.3D.6【答案】D【解析】先将极限式通分化简,得到,分子分母同时除以x2,再取极限即可.解:原式==(分子分母同时除以x2)===2∴a=6故答案选D.点评:关于高中极限式的运算,一般要先化简再代值取极限,本题中运用到的分子分母同时除以某个数或某个式子,是极限运算中常用的计算技巧.6.如果函数在上的最大值和最小值分别为、,那么.根据这一结论求出的取值范围().A.B.C.D.【答案】B【解析】函数在区间上最大值为1,最小值为,即,所以,,即取值范围为,选B.【考点】新定义概念与函数的最值.7.设函数,其中,为正整数,,,均为常数,曲线在处的切线方程为.(1)求,,的值;(2)求函数的最大值;(3)证明:对任意的都有.(为自然对数的底)【答案】(1);(2);(3)见解析.【解析】(1)在切点处的的函数值,就是切线的斜率为,可得;根据切点适合切线方程、曲线方程,可得,.(2)求导数,求驻点,讨论区间函数单调性,确定最值.(3)本小题有多种思路,一是要证对任意的都有只需证;二是令,利用导数确定,转化得到.令,证明.(1)因为, 1分所以,又因为切线的斜率为,所以 2分,由点(1,c)在直线上,可得,即 3分4分(2)由(1)知,,所以令,解得,即在(0,+上有唯一零点 5分当0<<时,,故在(0,)上单调递增; 6分当>时,,故在(,+上单调递减; 7分在(0,+上的最大值=== 8分(3)证法1:要证对任意的都有只需证由(2)知在上有最大值,=,故只需证 9分,即① 11分令,则,①即② 13分令,则显然当0<t<1时,,所以在(0,1)上单调递增,所以,即对任意的②恒成立,所以对任意的都有 14分证法2:令,则. 10分当时,,故在上单调递减;而当时,,故在上单调递增.在上有最小值,.,即. 12分令,得,即,所以,即.由(2)知,,故所证不等式成立. 14分【考点】导数的几何意义,直线方程,应用导数研究函数的单调性、最(极)值、证明不等式,转化与化归思想,分类讨论思想,应用导数研究恒成立问题.8.对实数a与b,定义新运算“⊗”:.设函数f(x)=(x2﹣2)⊗(x﹣x2),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.B.C.D.【答案】B【解析】∵,∴函数f(x)=(x2﹣2)⊗(x﹣x2)=,由图可知,当c∈函数f(x)与y=c的图象有两个公共点,∴c的取值范围是,故选B.9.设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(i)T={f(x)|x∈S};(ii)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2),那么称这两个集合“保序同构”,以下集合对不是“保序同构”的是()A.A=N*,B=NB.A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10}C.A={x|0<x<1},B=RD.A=Z,B=Q【答案】D【解析】对A选项,存在满足条件,故是“保序同构”. 对B选项,存在满足条件,故是“保序同构”.对C选项,存在满足条件,故是“保序同构”.选D.【考点】1、新定义;2、函数.10.设函数f(x)=x3cosx+1.若f(a)=11,则f(-a)=.【答案】-9【解析】f(a)+f(-a)=a3cosa+1+(-a)3cos(-a)+1=2,而f(a)=11,故f(-a)=2-f(a)=2-11=-9.11.对实数a和b,定义运算“⊗”:a⊗b=设函数f(x)=(x2-1)⊗(x-x2),x∈R.若函数y=f(x)-c恰有两个不同的零点,则实数c的取值范围是()A.(-∞,-1)∪(-,0)B.{-1,-}C.(-1,-)D.(-∞,-1)∪[-,0)【答案】A【解析】由x2-1≤x-x2得-≤x≤1,∴f(x)=函数f(x)的图象如图所示,由图象知,当c<-1或-<c<0时,函数y=f(x)-c恰有两个不同的零点.12.如果f()=,则当x≠0且x≠1时,f(x)=()A.B.C.D.-1【答案】B【解析】令=t,t≠0且t≠1,则x=,∵f()=,∴f(t)=,化简得:f(t)=,即f(x)=(x≠0且x≠1).13.设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=________.【答案】2【解析】设e x=t,则x=ln t(t>0),∴f(t)=ln t+t,∴f′(t)=+1,∴f′(1)=2.14.是R上以2为周期的奇函数,当时,则在时是()A.减函数且B.减函数且C.增函数且D.增函数且【答案】D【解析】因为是R上的奇函数,故,由复合函数单调性知,当时为增函数,故此时;当时,为增函数,又因为是以2为周期的,故在上函数性质和取值完全一样,即时,为增函数,选D.【考点】函数奇偶性、函数单调性.15.直线是函数的切线,则实数.【答案】1【解析】先对函数求导,即,由于切线方程为,所以,,解得:,因此,切点为(2,)或(-2,-),代入切线方程,可得= 1.【考点】函数的导数求法,函数导数的几何意义.16.已知函数若直线与函数的图象有两个不同的交点,则实数的取值范围是 .【答案】.【解析】如下图所示,作出函数的图象如下图所示,当直线与函数的图象有两个不同的交点,则.【考点】分段函数的图象、函数的零点17.设函数.(1)若x=时,取得极值,求的值;(2)若在其定义域内为增函数,求的取值范围;(3)设,当=-1时,证明在其定义域内恒成立,并证明().【答案】(1).(2).(3)转化成.所以.通过“放缩”,“裂项求和”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精华练习答案函数三性,两域部分1、【06江苏1】已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a = (A )(A )0 (B )1 (C )-1 (D )±1 2、【08全国II 9】.设奇函数)(x f 在),0(+∞上为增函数,且0)1(=f ,则不等式0)()(<--xx f x f 的解集为(D )(A) ),1()0,1(+∞⋃- (B) )1,0()1,(⋃--∞(C) ),1()1,(+∞⋃--∞(D) )1,0()0,1(⋃-3、【06北京理5】已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨≥⎩ 是(,)-∞+∞上的减函数,那么 a 的取值范围是(C )(A )(0,1) (B )(0,13) (C )17⎡⎢⎣,13⎤⎥⎦ (D )]1,17⎡⎢⎣4、【07广东理】函数f(x)=xlnx (x>0)的单调递增区间是)∞+⎢⎣⎡,1e. 解析:用求导法:.10ln 0)(1ln 1ln )(''ex x x f x x x x x f ≥⇒≥≥=⋅+=,,令+ 5、【05江苏15】答案:⎥⎦⎤⎝⎛⋃⎪⎭⎫⎢⎣⎡-1,430,41 6、【08上海理8】:设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是()()+∞⋃-,10,17、【08广东理19】设A ∈R ,函数试讨论函数F(x)的单调性.【解析】1,1,1()(),1,kx x x F x f x kx kx x ⎧-<⎪-=-=⎨⎪≥⎩21,1,(1)'(),1,k x x F x k x ⎧-<⎪-⎪=⎨⎪≥⎪⎩对于1()(1)1F x kx x x=-<-, 当0k ≤时,函数()F x 在(,1)-∞上是增函数;当0k >时,函数()F x在(,1-∞上是减函数,在(1上是增函数;对于()(1)F x k x =≥,当0k ≥时,函数()F x 在[)1,+∞上是减函数; 当0k <时,函数()F x 在211,14k ⎡⎫+⎪⎢⎣⎭上是减函数,在211,4k ⎡⎫++∞⎪⎢⎣⎭上是增函数。
8【08全国I 19】. (本小题满分12分)已知函数R a x ax x x f ∈+++=,1)(23(1)讨论函数)(x f 的单调区间;(2)设函数)(x f 在区间)31,32(--内是减函数,求a 的取值范围。
【解析】:(I ):R a x ax x x f ∈+++=,1)(23,则123)(2'++=ax x x f当33012434)2(22≤≤≤-=⨯-=∆a a a 即-时,123)(2'++=ax x x f ≥0恒成立,此时()∞∞,+-在)(x f 上单调递增.22434120,a ∆=-⨯=->>当(2a )a 即a<函数'()f x 存在零点,此时()f x 在,33a a --∞∞单调增区间为(-,,(+)(Ⅱ)若函数在区间'221(,)21033ax --++=内是减函数,则说明f(x)=3x 两根在区间2133(-,-)外,因此:,由不等式组''2()031()030f f ⎧-≤⎪⎪⎪-≤⎨⎪∆>⎪⎪⎩,解得2a ≥9、【08年浙江理21】(本题15分)已知a 是实数,函数)()(a x x x -=⎰。
(Ⅰ)求函数)(x ⎰的单调区间;(Ⅱ)设)(a g 为)(x ⎰在区间[]2,0上的最小值。
(i )写出)(a g 的表达式;(ii )求a 的取值范围,使得2)(6-≤≤-a g 。
【解析】(1))(x f 的定义域为:[)+∞,0.)0(2323)('>-=-+=x xax x a x x x f 若0≤a ,则[)..0,0)('∞>+有增区间x f 若.330)(.0)(3;0)(,303,0)(,0'''⎪⎭⎫⎝⎛∞⎥⎦⎤⎢⎣⎡>><<<==>,+,单调递增区间,有单调递减区间时,当当得令a a x f x f ax x f a x ax x f a (2)、i:若0≤a ,)(x f 在[]20,上单调递增,0)0()(==f a g ;若332)3()(2330)(,60aa a f a g a a x f a -==⎥⎦⎤ ⎝⎛⎥⎦⎤⎢⎣⎡<<单调递增,,上单调递减,在,在 若[])2(2)2()(20)(,6a f a g x f a -==≥上单调递减,,在 )0(,0≤a∴ )(a g = )60(,332<<-a aa )6(),2(2≥-a aii:令2)(6-≤≤-a g若0≤a ,无解;若60<<a ,解得63<≤a ;若6≥a ,解得326+≤≤a .∴a 的取值范围为:323+≤≤a .10、【08江西理3】.若函数y =f (x )的值域是【21,3】,则函数F (x )=f (x )+)(1x f 的值域是(B ) A .【21,3】 B .【2,310】 C .【25,310】 D .【3,310】11、【08安徽理11】若函数)(x f 、)(x g 分别是R 上的奇函数、偶函数,且满足x ex g x f =-)()(,则有(D ) (A ))0()3()2(g f f << (B ))2()3()0(f f g <<(C ))3()0()2(f g f << (D ))3()2()0(f f g << 12、【08辽宁理12】设f(x)是连续的偶函数,且当x >0时f(x)是单调函数,则满足f(x)=f 3()4x x ++的所有x 之和为(C )(A )-3 (B )3 (C )-8 (D )8 13、【07江苏理】设)12lg()(a xx f +-=是奇函数,则使f (x )<0的x 的取值范围是(A ) A. )(0,1- B. )(1,0 C. )(0,∞- D. )()(∞+⋃∞-,10,14、【08江苏14】.13)(3+-=x ax x f 对于[]1,1-∈x 总有0)(≥x f 成立,则a =415、【08湖南14】.已知函数f (x )1).a ≠ (1)若a >1,则f(x)的定义域是⎥⎦⎤ ⎝⎛∞-3,a ;(2)若f (x )在区间(]0,1上是减函数,则实数a 的取值范围是()(]3,10, ∞-. 16、【08四川理】.若函数2)()(μ--=x e x f (e 是自然对数的底数)的最大值是m ,且f(x)是偶函数,则m+μ=1 17、【07上海理】已知函数xax x f +=2)( ,0(≠x 常数)R a ∈. (1) 讨论函数f(x)的奇偶性,并说明理由;(2) 若函数f(x)在[)+∞∈,2x 上是增函数,求a 的取值范围.解:(1)当0=a 时,2)(x x f =,对任意(0)(0)x ∈-∞+∞ ,,,)()()(22x f x x x f ==-=-, )(x f ∴为偶函数.当0≠a 时,2()(00)af x x a x x=+≠≠,, 取1±=x ,得 (1)(1)20(1)(1)20f f f f a -+=≠--=-≠,, (1)(1)(1)f f f f ∴-≠--≠,,∴ 函数)(x f 既不是奇函数,也不是偶函数.(2)解法一:设122x x <≤, 22212121)()(x a x x a x x f x f --+=-[]a x x x x x x x x -+-=)()(21212121,要使函数)(x f 在[2)x ∈+∞,上为增函数,必须0)()(21<-x f x f 恒成立. 121204x x x x -<> ,,即)(2121x x x x a +<恒成立.又421>+x x ,16)(2121>+∴x x x x . a ∴的取值范围是(16]-∞,. 解法二:当0=a 时,2)(x x f =,显然在[2)+∞,为增函数. 当0<a 时,反比例函数x a 在[2)+∞,为增函数,xa x x f +=∴2)(在[2)+∞,为增函数. 当0>a 时,同解法一.二次函数部分1、【08江西理12】.已知函数f (x )=2mx 2-2(4-m )x +l ,g (x )=mx ,若对于任一实数x ,f (x )与g (x )的值至少有一个为正数,则实数m 的取值范围是(B)A .(0,2)B .(0,8)C .(2,8)D .(-∞,0) 2、【08浙江理15】已知t 为常数,函数t x x y --=22在区间【0,3】上的最大值为2,则t=1。
3、【05全国I 】已知二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3). (I ) 若方程f (x )+6a =0有两个相等的根,求f (x )的表达式; (II ) 若f (x )的最大值为正数,求a 的取值范围. 解:(1)()[]535651)(.1510145,094)4209)42(06)(3)42(2)3)(1()(0),3)(1(2)(3102)(22222---=∴=-=∴=--=⋅--∆∴=++-=+++-=---=∴<--=+∴>+x x x f a a a a a a a a x a ax a x f a x a ax x x x a x f a x x a x x f x x f (舍去)或即+(=有两个相等的根得由且,解集为(2)由由,21)(,014)21(3)21(2)(max 222aax f a a a a a a x a a x a ax x f +-=<++-+-=++-=aa a 142++>0a<0解得)0,32()32,(,03232+-+或- ---∞∈∴<<--<a a a4、【08安徽理】7a<0是方程0122=++x ax 至少有一个负数根的(B )(A) 必要不充分条件 (B)充分不必要条件 (C)充分必要条件 (D )既不充分也不必要条件 5、【07广东理】已知a 是实数,函数a x ax x f --+=322)(2,如果函数)(x f y =在区间[]1,1-上有零点,求实数a 的取值范围.解:当a=0时,函数为f (x)=2x -3,其零点x=23不在区间【-1,1】上。