汽车电子控制理论与设计控制基础

合集下载

汽车电工电子技术第三章 汽车电路基础

汽车电工电子技术第三章 汽车电路基础

工作任务二:掌握汽车风扇的控制原理及电路特点 1.工作描述
小王下课后,和同学来到修配车间当实习修理工,师傅老李叫小王通过测量,掌 握汽车风扇的控制原理及电路特点。
如图3-15,汽车风扇开关在LO位置 和M1位置时不能正常工作,但是在 M2和HI位置时能正常工作。
消费者认为是风扇电机的开关 问题,更换开关后,没有消除故障 现象。
第3章 汽车电路基础
❖ 学习意义 ❖ 完成本章学习后,你将能够知道汽车电路由哪几部分组成, ❖ 电路是如何控制的,使你能够更快更有效的诊断和检修电路。
❖ 学习目标
---能区别电路基本组成:电源,负载,保护装置 和接地 ---能区别不同类型的电路和电路的控制方法 ---知道电路是怎样进行正常工作的 ---应用电压,电流和电阻的关系诊断电路的故障
上述求和时,需要任意指定一个回路的 绕行方向,对于电动势,绕行方向与电 动势方向相同时,电动势取正号,反之 取负号。电阻上电流方向与回路绕行方 向一致时,电阻压降取正号,反之取负 号。 以图3-17电路说明基夫尔霍电压 定律。沿着回路abcdea绕行方向,有
能力
专业 能力
工作 方法
合作 能力
交流 能力
评价
分数
4.学习体会
序号 1 2 3 4
问题
解答
汽车电器电路的特点是什 么?
汽车电路由哪几部分组成?
汽车的各个部分的作用是 什么?
你还有哪些要求与设想?
3.2 欧姆定律(OHMS LAW)
3.2.1 部分电路欧姆定律 1.表述:
不含电源的一段电路称为部分 电路,流过导体的电流与这段导 体两端的电压成正比,与导体的 电阻成反比。这个结论称为欧姆 定律。见图3-3。 2.数学表达式:

《汽车电子控制技术》复习资料 (1)

《汽车电子控制技术》复习资料 (1)

一. 说明汽油发动机电控的作用是什么?空燃比一定要控制在14.7吗,为什么?(20)答:电控的作用是提升发动机的动力性、经济性、排放性;不一定要控制在14.7;14.7仅仅是理论空燃比,即从理论上,每克汽油完全燃烧需要14.7克空气。

事实上,选择多少的空燃比,是需要根据一定的需求进行微调的。

例如当需要大功率比如超车、上坡等工况时,需要空燃比小于14.7,约为12~13;当需要经济性好、油耗最低时,则空燃比应当选择在16左右,大于14.7,这也为当今大多数汽油发动机采用。

(如下答亦可:汽油机运行的工况复杂、多变,各工况对空燃比A/F的要求也不同。

使汽油机在运行的任何时刻都具有最佳的空燃比,以保证获得最佳的动力性、经济性及排放性能,是追求的目标。

)二. 说明热线式空气流量传感器的工作原理,绘出原理图说明测量方法。

(15)答:给放置于流道中的热线(白金丝制成)通以电流I,则它就成为一个发热体。

热线周围通过空气,热量被空气吸收,热线本身变冷,流量越大,带走的热量越大。

若电流I及电压U不变,即加给热线的电功率(发热量)不变,则空气的质量流量G越大,热线的温度TH越低,即热线与空气之间的温差(TH-TA)越大。

若控制电流I,使(TH-TA)保持恒定,则空气的质量流量G越大,需要提供的电流I就越大。

因此,测得电流I的变化,即可得知空气质量流量的变化。

三. 举一例子说明怠速控制执行器是如何工作的?(20)答:怠速控制的实质就是通过怠速执行器调节进气量、同时配合喷油量及点火提前角的控制,改变怠速工况燃料消耗所发出的功率,以稳定或改变怠速转速。

(举例可以举真空控制式、步进电机型、旋转滑阀型、直线电磁阀型、开关型任何一种均可)四. 汽油机燃油泵安全控制是怎样实现的?绘图并加以说明。

(20)答:(只要大致画出示意图即可)当发动机熄火,燃油泵停止送油时,单向阀立即关闭、保持泵和压力调节器之间的燃油具有一定的压力,使起动变得容易。

汽车电子控制技术第一章绪论

汽车电子控制技术第一章绪论

二、汽车电子控制技术的发展史
2.第二阶段(20世纪70年代末到90年代中期):微型计算机控制 阶段 采用微处理器及单片机来完成信息的检测和处理,使得控
制系统具有了数字化和智能化的特征。该阶段的特点是,有了 一定综合性的控制系统,引入了自动控制理论,微处理器的应 用使得电子装置体积显著缩小,可靠性显著提高。
分立式半导体元件开始用于汽车交流发电机整流器、起动 电机、转速表等。主要集中于个别部件的开发,改善了汽车单个 零件的性能。1953年苏联率先在汽车上采用了二极管整流的交 流发电机,揭开了汽车电子发展的序幕。该阶段的特点是用分立 电子元件或集成电路组成电子控制器进行控制。主要电子产品 有电子电压调节器、电子式点火控制器、电子闪光器、电子式 间歇刮水控制器、晶体管收音机、数字时钟等。共同问题是价 格昂贵,可靠性差,复杂的电路使得维修费用很高,没有得到推广 应用。
二、汽车电子控制技术的发展史
3.第三阶段(20世纪90年代中期至今):集成网络化层次阶段 采用先进的微电子技术、车载网络技术、集成智能功率
器件、智能传感器、大容量电可擦可编程只读存储器 (EEPROM)或快速擦写只读编程器(FLASHROM),专用集成电路 等,形成了车上的分布式、网络化的电子控制系统。整个车被 联成一个多ECU、多节点的有机整体,控制系统的功能进一步 加强,使得其性能也更加完善。
汽车电子控制技术与系统的综合性能,直接影响整车的动 力性、燃油经济性、制动性、舒适性、通过性、平顺性、转 向性、操纵稳定性以及排放性能。能源危机、排放尾气大气 污染、交通事故、交通拥挤等问题,促进了汽车电子控制技 术的发展。
第二节 汽车电子控制技术的 发形成和发展过程分为以下三个阶段。 1.第一阶段(20世纪50年代初到70年代末):萌芽及初级阶段

汽车电子控制系统

汽车电子控制系统
• 网络防盗器除了有比电子防盗器更强的功能外, 还能把盗情发送到车主的手机上,并具备锁死 发动系统的能力
• GPS卫星定位防盗器功能就更强了,几乎综合 了所有的防盗功能,并能用卫星准确定位在5米 范围内,也就是眼前。其传感器有采用无线传 感的,很难破坏。
雷达防撞系统
• 该系统有多种形式。有的在汽车行驶中, 当两车的距离小到安全距离时,即自动报 警,若继续行驶,则会在即将相撞的瞬间, 自动控制汽车制动器将汽车停住;有的是 在汽车倒车时,显示车后障碍物的距离, 有效地防止倒车事故发生。
• 其功用是采集曲轴转动角 度和发动机转速信号,并 输入电子控制单元(ECu), 以便确定点火时刻和喷油 时刻。
进气温度及压力传感器
• 它将进气岐管压装在进气管上或空气流 量计内。
• 检测发动机的进气温度和 感应进气岐管内的真空变 化,将进气温度转变为电 压信号输入给ECU做为喷 油修正的信号。
• 它采用负温度系数的热敏 电阻作为感应元件,ECM 通过设计在自身内部的一 个电阻为冷却剂温度传感 器提供一个5V的参考信号, 并测量该电阻的压降。
氧传感器
• 氧传感器安装在排气管中, 用以检测排气中氧的浓度, 并向ECU发出反馈信号, 再由ECU控制喷油器喷油 量的增减,从而将混合气 的空燃比控制在理论值附 近。
通信系统
• 这方面真正使用且采用最多的是汽车电话, 在美国、日本、欧洲等发达国家较普及。 目前的水平在不断地提高,除车与路之间, 车与车之间,车与飞机等交通工具之间的 通话外,还可通过卫星与国际电话网相联, 实现行驶过程中的国际间电话通信,实现 网络信息交换,图像传输等。
五、附属装置
• 全自动空调EA/C • 自动座椅 • 音响/音像
四、信息通讯系统

《汽车电器与电子控制技术》课程教学大纲

《汽车电器与电子控制技术》课程教学大纲

汽车电器与电子控制技术》课程教学大纲版本号:020232026课程英文名称:AutomotiveElectronicsandElectronicControlTechnology课程总学时:40讲课:32实验:8上机:适用专业:车辆工程、交通运输大纲编写(修订)时间:2017.5一、大纲使用说明(一)课程的地位及教学目标本课程为理论性兼有实践性的专业课程,是车辆工程专业、能源与动力工程学生学习汽车维修工程、内燃机电子控制技术的基础。

通过本课程的学习,可以使学生掌握汽车电子技术的基本理论、机构和应用,适应社会和行业的要求,为从事汽车电器与电子技术和汽车整车设计的研究、教学和实践应用奠定基础。

逐渐培养学生形成独立思考的学习习惯和工程人员严谨认真的工作作风。

使学生基本掌握汽车电器设备结构、原理和应用,掌握汽车现代电子控制系统的基本理论、结构原理和简单的检测方法及手段,培养电路分析的能力。

(二)知识、能力及技能方面的基本要求1、了解汽车与电子技术发展的关系,掌握电子控制系统的组成和基本工作原理,了解电子控制系统的共性和汽车电子控制系统的特点。

2、掌握发动机电子控制燃油供给系统的结构、原理和应用,掌握不同机构和类型的燃油供给系统的特点和工作方式,了解部分典型结构的结构和工作原理。

3、掌握汽车点火系统的分类、结构和原理,了解传统点火系统和现代电子点火系统中主要零部件的结构及工作原理。

4、掌握电子控制汽车制动防抱死系统基础理论和基本原理,了解典型防抱死系统的结构和工作方式,掌握简单的制动效能的计算。

5、掌握汽车驱动控制的基本原理和控制方法,了解汽车驱动系统与电子控制汽车制动防抱死系统相比较各自的特点。

6、掌握汽车自动变速器的分类、结构和原理,了解液力变矩器、行星齿轮变速器、电子控制机构的结构、作用和特点,可以进行简单的性能分析。

7、了解汽车空调、安全气囊、导航系统等汽车电子控制辅助系统的结构和基本原理,及辅助系统的使用对汽车主要性能的影响。

汽车电工电子基础高职学习资料

汽车电工电子基础高职学习资料

执行器
根据接收到的传感器信号,经过处理后发出控制指令,控制执行器的动作,如发动机控制单元、自动变速器控制单元等。
控制单元
负责各电子元件之间的信号传输,确保电路的通断和连接的可靠性。
连接线路与插接器
汽车电子元件的种类与作用
观察元件是否有明显的物理损伤或异常现象,如破损、松动等。
外观检查
使用万用表测量元件的电阻值,判断其是否正常。
05
汽车电工电子实验与实践
实验台
示波器
信号发生器
万用表
汽车电工电子实验设备与工具
01
02
03
04
提供汽车电工电子实验所需的电源、信号源、测量仪表等设备,方便学生进行实验操作。
用于测量和观察信号波形,是汽车电工电子实验中常用的测量仪器。
用于产生各种波形信号,如正弦波、方波、三角波等,以便学生进行实验测试。
实验总结与建议
学生需要对实验进行总结,并提出改进建议,以便更好地完成实验任务。
汽车电工电子实验报告撰写
感谢观看
THANKS
用于测量电压、电流、电阻等电学参数,是汽车电工电子实验中必不可少的测量工具。
学生需要根据实验要求搭建电路,并进行调试,以完成实验任务。
电路搭建与调试
学生需要掌握常用元器件的识别和检测方法,如电阻、电容、电感等。
元器件识别与检测
学生在实验过程中需要具备电路故障排查的能力,能够根据现象分析问题并解决。
详细描述
汽车电工电子的定义与特点
汽车电工电子在汽车行业中扮演着至关重要的角色,它广泛应用于汽车的设计、制造、维修和保养等环节。
总结词
在汽车设计阶段,电工电子技术用于确定最佳的电气和电子系统配置,以满足车辆性能和安全要求。在制造过程中,电工电子技术用于自动化生产线和测试设备,以确保产品质量和可靠性。在维修和保养环节,电工电子技术用于诊断和修复电气和电子故障,提高维修效率和质量。

(完整版)汽车电控技术知识点总结

第一篇汽车发动机电控技术第一章电子化与发动机电控技术1.汽车上第一个电子装置:电子管收音机(标志汽车进入了电子化时代)2.汽车电子化可分为四个阶段第一阶段:20世纪50年代初期到1974年,解决了电子装置在汽车上应用的技术难点,是初级阶段。

第二阶段:1974-1982年,以微处理器为控制核心,以完成特定控制内容或功能为基本目的第三阶段:1982-1995年,以微型计算机为控制核心能够同时完成多种控制功能的计算机集中管理系统为基本控制模式。

第四阶段:1995年以后随着CAN总线技术和高速车用微型计算机的应用,汽车电子开始步入只能化控制的技术高点。

第二章汽车发动机电控系统概述1.汽车发动机电控系统的组成:传感器、电控单元(ECU)和执行元件。

2.汽车发动机电控系统的主要控制功能:1)汽油喷射控制:喷油正时控制、喷油持续时间控制、停油控制和电动汽油泵控制停油控制包括减速停油控制、超速停油控制及停油后的恢复供油2)点火控制:点火正时控制、闭合角控制和爆震反馈控制3)怠速控制:包括无负荷怠速控制和有负荷怠速控制4)排气净化控制:空燃比反馈控制、废弃再循环控制、活性炭罐清洗控制和二次空气喷射控制等5)进气控制:进气谐振增压控制、配气定时控制、增压压力控制和进气涡流控制6)故障自诊断控制:包括故障自诊断和带故障运行控制3.汽油发动机电控燃油喷射系统的分类按汽油喷入的位置分:缸内直接喷射方式和进气管喷射方式(进气管喷射方式又分为单点喷射和多点喷射)按汽油喷射的方式分:连续喷射方式和间歇喷射方式(间歇喷射方式分为同时喷射、分组喷射和顺续喷射)按汽油喷射系统喷射方式分:机械控制方式和电控方式(电控方式分电控汽油喷射系统和发动机集中管理系统)按进气量测量方式分:间接测量方式(节流-速度式和速度-密度式)和直接测量方式(体积流量式和质量流量)4缸内直喷实现了分层稀薄燃烧式未来电控汽油发动机的主要技术发展方向现代轿车电控汽油发动机主要采用多点喷射系统体积流量式采用翼片式和卡门涡旋式,质量流量式采用热线式和热模式5.电控汽油喷射的主要优点1)改善了各缸混合气浓度的均匀性2)使汽油机发动机的动力性和经济性有一定的影响3)式汽油发动机有害物排放量显著减少4)改善了汽油发动机过度工况的响应特性5)使汽油发动机在不同地理及气候条件下都能保持良好的排放性能6)提高了汽油发动机高低温启动性能和暖机性能6.顺序喷射中喷油时刻一般为排气行程上止点前60~70度曲轴转角第三章电控汽油喷射系统1.推动汽油发动机电控系统发展的直接原因是法规对汽油发动机排放性能指标的不断提高2.电控汽油喷射系统组成:空气供给系统、燃油供给系统和汽油喷射电子控制系统3.空气供给系统1)空气供给系统组成:空气滤清器、空气量计量装置、节气门体、节气门位置传感器、进气总管和进气歧管等2)直接测量方式采用空气流量计,间接测量方式采用进气歧管绝对压力传感器3)空气流量计:翼片式、卡门涡旋式、热线式和热模式4)翼片式空气流量计组成:测量翼片组件、电位计组件和空气旁通通道原理:发动机工作时具有一定流速的空气推开测量翼片,经主空气道进入发动机气缸,测量翼片被气流推开角度a的大小,与空气流速和扭簧的回复力矩有关,对于某一具体的流量计在空气道几何尺寸一定的情况下,对于每一偏转角a,就有一个确定的主通道流通截面积因此就有一个确定的空气流量值。

汽车电工电子基础教案

汽车电工电子基础教案第一章:汽车电工电子概述1.1 教学目标了解汽车电工电子的基本概念和发展历程。

掌握汽车电工电子的组成部分及应用领域。

1.2 教学内容汽车电工电子的定义和发展历程。

汽车电工电子的组成部分:电源、电路、电器设备、控制单元等。

汽车电工电子的应用领域:发动机控制、车身控制、灯光系统等。

1.3 教学方法采用讲解和案例分析相结合的方式,让学生了解汽车电工电子的基本概念和发展历程。

通过图片和实物展示,使学生直观地了解汽车电工电子的组成部分及应用领域。

1.4 教学评估课堂问答:了解学生对汽车电工电子的基本概念和发展历程的掌握情况。

课后作业:要求学生绘制汽车的电路图,以检验学生对汽车电工电子应用领域的理解。

第二章:汽车电源系统2.1 教学目标掌握汽车电源系统的基本原理和组成。

学会诊断和维修汽车电源系统常见故障。

2.2 教学内容汽车电源系统的基本原理:交流发电机、直流发电机、整流器、调节器等。

汽车电源系统的组成:发电机、蓄电池、充电系统、电压调节器等。

诊断和维修汽车电源系统常见故障:发电机故障、蓄电池故障、充电系统故障等。

2.3 教学方法通过讲解和实操相结合的方式,使学生掌握汽车电源系统的基本原理和组成。

安排实验室实践,让学生学会诊断和维修汽车电源系统常见故障。

2.4 教学评估课堂问答:检验学生对汽车电源系统基本原理和组成的理解。

实验室实操:评估学生诊断和维修汽车电源系统常见故障的能力。

第三章:汽车电路系统3.1 教学目标掌握汽车电路系统的基本原理和组成。

学会诊断和维修汽车电路系统常见故障。

3.2 教学内容汽车电路系统的基本原理:电路的组成、电路图的阅读、电路分析方法等。

汽车电路系统的组成:电线、插头、保险丝、继电器、控制单元等。

诊断和维修汽车电路系统常见故障:短路故障、断路故障、电器设备故障等。

3.3 教学方法通过讲解和实操相结合的方式,使学生掌握汽车电路系统的基本原理和组成。

安排实验室实践,让学生学会诊断和维修汽车电路系统常见故障。

车辆电子控制技术(第一章 车辆电子控制系统的基本组成及功能)


1.4 车辆执行器的类型及基本组成
(1) 电气式执行器 (2) 电液式执行器 (3) 气压式执行器
图1.20 电磁喷油(执行)器顺序喷射的控制电路
图1.55 电磁喷油器结构
1—滤网; 2—电接头; 3—磁化线圈; 4—回位弹簧; 5—衔铁; 6—针阀; 7—轴针; 8—密封圈
图1.61 电磁(喷油)执行器电流驱动回路
☆电子电压调节器的其它实用电路:
附3:点火系 ( Ignition System )
概述
一、点火系分类: 蓄电池点火系 磁电机点火系 二、对点火系统的基本要求: 1、足够的点火电压:18000~20000伏 实验知:满负荷、低转速时需8000~10000伏,起动时需17000 伏, 考虑到应留有储备量,一般取18000~20000伏。点火电压太 低,点火可靠性差;太高,则绝缘困难,成本提高,故 V最大 ≤30000伏。 2、足够的火花能量: ≥50mJ(毫焦耳) 火花能量 = 跳火时火花塞电极间的平均电压×跳火平均电流× 跳火持续时间 传统点火系 电子点火系 微电脑点火系
3、点火时刻最佳:即适应发动机的各种工况,自动调节点火时刻, 使发动机功率最大,油耗最低。 最佳的点火提前角(即获得Nmax,gemin时的点火提前角): θ最佳——是能使燃烧最大压力出现在活塞运动到上止点后 的12 °~15 °的点火提前角。 A、转速n ↑ ,最佳点火提前角↑。因缸内的混合气燃烧速率不变,
c
N
b
P N
e
C结 E结
b
C结 E结
e
e
②三极管的开关特性 若能使三极管在截止区和 饱和区交替工作,则它具有 开关特性。 截止条件:
C结反向偏置,E结也反 向偏置。 或者,Ib=0 。 饱和条件: C结和E结都处于正向 偏置。 ★注意:如果Ib≠0 ,则IC 存在,三极管工作于放大区。

汽车电子控制技术 PPT课件

有经济性规律、动力性(又称运动型)规律,而且还有一般(日 常)规律、环境温度及随外界条件变化的规律等。
将车速V 和节气门开度α的组合分成一定数量的区域,
每个区域有不同的节气门开启速率程序值。当实际值大于它时, 为动力性规律,反之为经济性规律。
2. 信号输入装置
1) 节气门位置传感器 与发动机控制系统共用。 2) 发动机转速传感器 与发动机控制系统共用。 3) 车速传感器 与发动机转速传感器工作原理相同,有电磁感应式和光电式。 4) 输入轴转速传感器 作用:检测行星齿轮变速器输入轴转速,以更精确地控制换
向,摘下1挡, 进入空挡NR1; (2)使V7换向,选 挡液压缸动作, 使选挡杆从NR1进 入N23位置,挡位 信号接通,表示 选挡到位; (3)使换挡阀V5换 向,换挡液压缸 反向动作,从而 换入2挡;
(4)换挡开关接通, ECU令离合器接合, 发动机自适应地 恢复供油。
3. 发动机执行机构 对于电喷发
发散型在大节气门开度时换挡延迟所引起的输入轴转速 的变化较大、功率利用差,但换挡次数较少、舒适性高。
带强制低挡的发散型换挡规律,使它保持了换挡次数较少、 舒适性高的优点,又克服了发散型的缺点,故它在轿车自动变 速器中应用较多。
收敛型的发动机工作转速低、燃料经济性好、噪声低、行 驶平稳舒适,它适合于功率较低的货车。
或者当车速传感器损坏时,用输入轴转速传感器来控制换 挡。
输入轴转速传感器故障:ECU停止发动机减小转矩控制。 油液温度传感器出现故障:按80℃到100℃作为代替信号 控制。
② 执行机构失效 换挡电磁阀故障:两种处理方法: a、不论有几个阀出故障,ECU均停止所有换挡电磁阀工作,
挡位由操纵手柄决定; b、其中一个失效,其他阀仍工作,仍能自动换挡,但会失
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 E (s) R( s) 1 L( s ) G ( s) L( s ) Td ( s ) N (s) 1 L( s ) 1 L( s ) E ( s) S ( s) R( s) S ( s )G ( s )Td ( s ) C ( s ) N ( s )
动态响应(transient response) 易于控制和调节系统的动态响应。
反馈的概念
反馈:把输出量送回到系统的输入端并与输入信号比较的 过程。若反馈信号是与输入信号相减而使偏差值越来越 小 则称为负反馈 反之 则称为正反馈 显然 负反 小,则称为负反馈;反之,则称为正反馈。显然,负反 馈控制是一个利用偏差进行控制并最后消除偏差的过程, 又称偏差控制 同时 由于有反馈的存在 整个控制过 又称偏差控制。同时,由于有反馈的存在,整个控制过 程是闭合的,故也称为闭环控制。
时域模型 - 微分方程:微分方程的建立及线性化。 复域模型 – 传递函数: 传递函数 借助拉氏变换,给出系统传
递函数。经典控制理论中引用最广泛的一种模型。 典
控制系统方块图:掌握方块图的建立及化简。 状态空间模型 控制系统的内部模型,描述了系统内 状态空间模型: 控制系统的内部模型 描述了系统内
部状态、系统输出与系统输入之间的关系,深入地揭示了 系统的动态特性 是现代控制理论分析 设计系统的基础 系统的动态特性,是现代控制理论分析、设计系统的基础。 掌握系统的状态变量表达式的求取及它与传递函数之间的 关系。 关系
智能控制
是近年来新发展起来的一种控制技术,是人工智能在 控制上的应用。智能控制的概念和原理主要是针对被控对 控制上的应用 智能控制的概念和原理主要是针对被控对 象、环境、控制目标或任务的复杂性提出来的,它的指导 思想是依据人的思维方式和处理问题的技巧 解决那些目 思想是依据人的思维方式和处理问题的技巧,解决那些目 前需要人的智能才能解决的复杂的控制问题。被控对象的 复杂性体现为 模型的不确定性 高度非线性 分布式的传 复杂性体现为:模型的不确定性,高度非线性,分布式的传 感器和执行器,动态突变,多时间标度,复杂的信息模式, 庞大的数据量,以及严格的特性指标等。智能控制是驱动 智能机器自主地实现其目标的过程 智能控制是从“仿人”的概念出发的。其方法包括学 习控制、模糊控制、神经元网络控制和专家控制等方法。
19
主要内容
• • • • • • 引言 反馈控制系统的特性 线性反馈系统的稳定性分析 非线性控制系统的稳定性分析 现代控制系统基础 智能控制系统简介
反馈控制系统的特性
• • • • • • • 误差信号分析 控制系统对参数变化的灵敏度 反馈控制系统对瞬态响应的控制 反馈控制系统的干扰信号 控制系统的稳态误差 反馈的代价 设计举例
最优、随机、自适应 大系统 智能控制 大系统、智能控制 控制 电子计算机 机组自动化 智能机器系统 综合自动化
1 2控制系统基本概念 1.2
• • • • • 控制系统数学模型 线性系统 非线性系统 开环控制与闭环控制系统 反馈的概念
数学模型
定义:数学模型是描述系统内部物理量(或变量)之间关系的数学表达式。 建立数学模型的目的 • 是分析和设计控制系统的首要工作(或基础工作)。 • 自控系统的组成可以是电气的、机械的、液压或气动的等等,然而描述这 自控系统的组成可以是电气的 机械的 液压或气动的等等 然而描述这 些系统发展的模型却可以是相同的。通过数学模型来研究自控系统,可以摆 脱各种不同类型系统的外部特征,研究其内在的共性运动规律。 建立方法 • 解析法(机理模型):依据系统及元件各变量之间所遵循的物理、化学定 解析法(机理模型):依据系统及元件各变量之间所遵循的物理 化学定 律,列出各变量之间的数学关系式 • 实验法(实验建模 ):对系统施加典型测试信号(脉冲、阶跃或正弦信 ):对系统施加典型测试信号(脉冲 阶跃或正弦信 号),记录系统的时间响应曲线或频率响应曲线,从而获得系统的传递函数 或频率特性
17
•闭环控制系统
几个名词术语: 扰动(disturbance) 测量噪声( (measurement noise) ) 参数变化(variation of parameters) 稳态误差(steady‐state error) 闭环控制系统的优点: 有效减小系统对过程参数变化的灵敏度。 有效克服扰动对系统的影响。 降低测量噪声的影响。
2.1 误差信号分析
闭环系统有3个输入,1个输出
一、误差信号定义 号 E ( s) R( s) Y ( s)
E ( s)
也称为跟踪误差(tracking error)
假定H(s)=1,单位反馈。则E(s)=Ea(s),由框图可得误差为:
1 G ( s) Gc ( s )G ( s ) N (s) R( s) Td ( s ) 1 Gc ( s )G ( s ) 1 Gc ( s )G ( s ) 1 Gc ( s )G ( s )
经典控制理论只适用于单输入、单输出的线性定常系统,只注重系统 经典控制理论只适用于单输入 单输出的线性定常系统 只注重系统 的外部描述而忽视系统的内部状态。在实际应用中有很大局限性。 随着航天事业和计算机的发展,20世纪60年代初,在经典控制理论的 随着航天事业和计算机的发展 20世纪60年代初 在经典控制理论的 基础上,以线性代数理论和状态空间分析法为基础的现代控制理论迅 速发展起来 速发展起来。 1954年贝尔曼(R.Belman)提出动态规划理论 1956年庞特里雅金(L.S.Pontryagin)提出极大值原理 1956年庞特里雅金(L S Pontryagin)提出极大值原理 1960年卡尔曼(R.K.Kalman)提出多变量最优控制和最优滤波理论 在数学工具、理论基础和研究方法上不仅能提供系统的外部信息(输 在数学工具 理论基础和研究方法上不仅能提供系统的外部信息(输 出量和输入量),而且还能提供系统内部状态变量的信息。它无论对 线性系统或非线性系统,定常系统或时变系统,单变量系统或多变量 系统,都是一种有效的分析方法。 基本方法:状态方程 (时域)
dt 2
(
dy 2 d ) y A sin t dt
显然上面的微分方程不容易求解,系统分析很困难,所以常常需要引入 显然上面的微分方程不容易求解 系统分析很困难 所以常常需要引入 “等效”线性系统来代替非线性系统,这种等效线性系统仅在有限的工作 范围内是正确的。
16
• 开环控制系统
开环系统不带有反馈,输入信号直接产生输出响应 开环系统不带有反馈,输 信号直接产生输出响应。 优点:结构简单,成本低廉,易于实现 缺点 对 动 有抑制 力 缺点:对扰动没基础 研究对象 分析方法 研究重点 核心装置 应用 第一阶段 第 阶段 20世纪40~50年代 经典控制理论 单输入、单输出系统 传递函数、频域法 反馈控制 模拟调节器 单机自动化
第二阶段
20世纪60~70年代 现代控制理论 多输入、多输出系统 状态方程、时域法
第三阶段
20世纪80年代至今 智能控制理论 多层次、多变量系统 智能算子、多级控制
15
非线性系统
– 不满足叠加原理的系统,就是非线性系统。在实际系统中,绝对线性的系 统是不存在的,通常所谓的线性系统也是在一定的工作范围内才保证线性 的,如放大器,在小信号时可能出现“死区”,在大信号时,又可能出现 饱和现象,如图所示即为几种常见的非线性的关系曲线。
– 非线性微分方程 非线性微分方程: d 2 y
7
20世纪70年代开始,现代控制理论继续向深度和广度发 展 出现了一些新的控制方法和理论 展,出现了 些新的控制方法和理论。如: 如: (1)现代频域方法 以传递函数矩阵为数学模型,研究线性定常多变量系统; (2)自适应控制理论和方法 以系统辨识和参数估计为基础,在实时辨识基础上在线确定 最优控制规律; (3)鲁棒控制方法 在保证系统稳定性和其它性能基础上,设计不变的鲁棒控制 在保证系统稳定性和其它性能基础上 设计不变的鲁棒控制 器,以处理数学模型的不确定性。
1 1 控制理论的发展简史 1.1
控制理论的发展可分为四个主要阶段: 第一阶段:经典控制理论(或古典控制理论) 的产生 发 的产生、发展和成熟; 成熟 第二阶段 现代控制理论的兴起和发展 第二阶段:现代控制理论的兴起和发展; 第三阶段:智能控制发展阶段 第 阶段 智能控制发展阶段。
经典控制理论 控制理论的发展初期,是以反馈理论为基础 的自动调节原理 主要用于工业控制 的自动调节原理,主要用于工业控制。


经典控制理论的基本特征
(1)主要用于线性定常系统的研究,即用于常系数线性微分方程 描述的系统的分析与综合; (2)只用于单输入,单输出的反馈控制系统; 只用于单输入 单输出的反馈控制系统 (3)只讨论系统输入与输出之间的关系,而忽视系统的内部状态, 是 种对系统的外部描述方法。 是一种对系统的外部描述方法。 基本方法:根轨迹法,频率法,PID调节器 (频域)

1868年,马克斯威尔(J.C.Maxwell)提出了低阶系统的稳定性代 数判据 。 1875年和1896年,数学家劳斯(Routh)和赫尔威茨(Hurwitz)分 别独立地提出了高阶系统的稳定性判据 即Routh和Hurwitz判据。 别独立地提出了高阶系统的稳定性判据,即 判据 1938-1945年,奈奎斯特(H.Nyquist)提出了频率响应理论 1948 年,伊万斯( W.R.Evans )提出了根轨迹法。至此,控制理论 发展的第一阶段基本完成,形成了以频率法和根轨迹法为主要方法 的经典控制理论。
系 系统模型间的关系 型间 系
线性系统
– 能够用线性数学模型(线性的代数方程、微分方程、差分方程等)描 述的系统 称为线性系统 这类系统的基本特性 即输出响应特性 述的系统,称为线性系统。这类系统的基本特性,即输出响应特性、 状态响应特性、状态转移特性等均满足线性关系。 – 对于控制系统而言 对于控制系统而言,由线性元件构成的系统为线性系统 由线性元件构成的系统为线性系统 线性系统 其运动方 线性系统,其运动方 程一般为线性微分方程。若其各项系数为常数,则称为线性定常系 线性定常系 统。 – 在动态研究中,如果系统在多个输入作用下的输出等于各输入单独 作用下的输出和(可加性) 并且当输入增大倍数时 输出相应增 作用下的输出和(可加性),并且当输入增大倍数时,输出相应增 大同样的倍数(均匀性),就满足叠加原理,因而系统可以看成线 性系统 – 非线性系统:描述系统的数学模型是非线性微分方程,其特性是不 能应用叠加原理。
相关文档
最新文档