高三数学函数与方程试题
基本初等函数、函数与方程 专项练习-2023届高三数学二轮专题复习(含解析)

冲刺2023年高考二轮 基本初等函数、函数与方程(原卷+答案)1.函数y =log 2(4+3x -x 2)的一个单调增区间是( ) A .⎝ ⎛⎭⎪⎫-∞,32 B .⎣⎢⎡⎭⎪⎫32,+∞ C .⎝ ⎛⎭⎪⎫-1,32 D .⎣⎢⎡⎭⎪⎫32,4 2.已知函数f (x )=⎩⎨⎧ax 2-x -14,x ≤1log a x -1,x >1,是R 上的单调函数,则实数a 的取值范围为( )A .⎣⎢⎡⎭⎪⎫14,12B .⎣⎢⎡⎦⎥⎤14,12 C .⎝ ⎛⎦⎥⎤0,12 D .⎝ ⎛⎭⎪⎫12,1 3.若不等式x 2-log a x <0在⎝⎛⎭⎪⎫0,12 内恒成立,则a 的取值范围是( )A .116 ≤a <1B .116 <a <1 C .0<a ≤116 D .0<a <1164.若函数f (x )=x +ax -1在(0,2)上有两个不同的零点,则a 的取值范围是( )A .⎣⎢⎡⎦⎥⎤-2,14B .⎝ ⎛⎭⎪⎫-2,14C .⎣⎢⎡⎦⎥⎤0,14D .⎝ ⎛⎭⎪⎫0,145.中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =W log 2⎝ ⎛⎭⎪⎫1+S N .它表示,在受噪音干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中SN 叫作信噪比.当信噪比比较大时,公式中真数里面的1可以忽略不计.按照香农公式,增加带宽,提高信号功率和降低噪声功率都可以提升信息传递速度,若在信噪比为1 000的基础上,将带宽W 增大到原来的2倍,信号功率S 增大到原来的10倍,噪声功率N 减小到原来的15 ,则信息传递速度C 大约增加了( )(参考数据:lg 2≈0.3) A .87% B .123% C .156% D .213%6.已知函数f (x )=⎩⎪⎨⎪⎧||log 2x ,x >0,-x 2-4x +4,x <0. 若函数g (x )=f (x )-m 有四个不同的零点x 1,x 2,x 3,x 4,则x 1x 2x 3x 4的取值范围是( )A .(0,4)B .(4,8)C .(0,8)D .(0,+∞)7.已知函数f (x )是定义在R 上的奇函数,满足f (x +2)=f (-x ),且当x ∈[0,1]时,f (x )=log 2(x +1),则函数y =f (x )-x 3的零点个数是( )A .2B .3C .4D .5 8.为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量y (mg/m 3)与时间t (h )的函数关系为y =⎩⎪⎨⎪⎧kt ,0<t <12,1kt ,t ≥12, (如图所示)实验表明,当药物释放量y <0.75(mg/m 3)时对人体无害.(1)k =________;(2)为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过________分钟人方可进入房间.9.函数f (x )=⎩⎪⎨⎪⎧x 3+2,x ≤0x -3+e x,x >0 的零点个数为________. 10.已知函数f (x )=⎩⎪⎨⎪⎧4x -1,x ≤1log 2x ,x >1 ,若1<f (a )≤2,则实数a 的取值范围为________.11.已知函数f (x )=⎩⎪⎨⎪⎧10x -2-102-x ,x ≤2||x -3-1,x >2,则不等式f (x )+f (x -1)<0的解集为________.12.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -1),x ∈R .若函数y =f (x )-c 恰有两个零点,则实数c 的取值范围是________.13.已知f (x )是定义在R 上的偶函数,f ′(x )是f (x )的导函数,当x ≥0时,f ′(x )-2x >0,且f (1)=3,则f (x )>x 2+2的解集是( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(0,1)D .(-∞,-1)∪(0,1)14.定义在R 上的偶函数f (x )满足f (2-x )=f (2+x ),且当x ∈[0,2]时,f (x )=⎩⎨⎧2x-1,0≤x ≤12sin π2x -1,1<x ≤2,若关于x 的方程m ln ||x =f (x )至少有8个实数解,则实数m 的取值范围是( )A .⎣⎢⎡⎭⎪⎫-1ln 6,0 ∪⎝ ⎛⎦⎥⎤0,1ln 5B .⎣⎢⎡⎦⎥⎤-1ln 6,1ln 5 C .⎝ ⎛⎭⎪⎫-1ln 6,0 ∪⎝ ⎛⎭⎪⎫0,1ln 5 D .⎝ ⎛⎭⎪⎫-1ln 6,1ln 5参考答案1.解析:函数y =log 2(4+3x -x 2)的定义域为(-1,4). 要求函数y =log 2(4+3x -x 2)的一个单调增区间, 只需求y =4+3x -x 2的增区间,只需x <32 . 所以-1<x <32 .所以函数y =log 2(4+3x -x 2)的一个单调增区间是⎝ ⎛⎭⎪⎫-1,32 .故选C.答案:C2.解析:当函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调递减函数,所以⎩⎪⎨⎪⎧0<a <112a ≥1a -54≥-1,解得14 ≤a ≤12 ,因为a >0且a ≠1,所以当x ≤1时,f (x )不可能是增函数, 所以函数f (x )在R 上不可能是增函数, 综上:实数a 的取值范围为⎣⎢⎡⎦⎥⎤14,12 ,故选B.答案:B3.解析:当a >1时,由x ∈⎝ ⎛⎭⎪⎫0,12 ,可得log a x <0,则-log a x >0,又由x 2>0,此时不等式x 2-log a x <0不成立,不合题意; 当0<a <1时,函数y =log a x 在⎝ ⎛⎭⎪⎫0,12 上单调递减,此时函数y =-log a x 在⎝ ⎛⎭⎪⎫0,12 上单调递增,又由y =x 2在⎝ ⎛⎭⎪⎫0,12 上单调递增,要使得不等式x 2-log a x <0在⎝ ⎛⎭⎪⎫0,12 内恒成立,可得⎝ ⎛⎭⎪⎫12 2-log a 12 ≤0,解得116 ≤a <1.故选A.答案:A4.解析:函数f (x )=x +ax -1在(0,2)上有两个不同的零点等价于方程x +ax -1=0在(0,2)上有两个不同的解,即a =-x 2+x 在(0,2)上有两个不同的解.此问题等价于y =a 与y =-x 2+x (0<x <2)有两个不同的交点.由下图可得0<a <14 .故选D. 答案:D5.解析:提升前的信息传递速度C =W log 2S N =W log 21 000=3W log 210=3Wlg 2≈10W ,提升后的信息传递速度C ′=2W log 210S 15N =2W log 250SN =2W log 250 000=2W ·4+lg 5lg 2 =2W ·5-lg 2lg 2 ≈94W 3 ,所以信息传递速度C 大约增加了C ′-CC =943W -10W 10W ≈2.13=213%.故选D.答案:D6.解析:函数g (x )有四个不同的零点等价于函数f (x )的图象与直线y =m 有四个不同的交点.画出f (x )的大致图象,如图所示.由图可知m ∈(4,8).不妨设x 1<x 2<x 3<x 4,则-4<x 1<-2<x 2<0,且x 1+x 2=-4.所以x 2=-x 1-4,所以x 1x 2=x 1(-x 1-4)=-(x 1+2)2+4∈(0,4),则0<x 3<1<x 4,因为||log 2x 3 =||log 2x 4 ,所以-log 2x 3=log 2x 4,所以log 2x -13 =log 2x 4,所以x 3·x 4=1,所以x 1·x 2·x 3·x 4=x 1·x 2∈(0,4).故选A. 答案:A7.解析:由f (x +2)=f (-x )可得f (x )关于x =1对称, 由函数f (x )是定义在R 上的奇函数,所以f (x +2)=f (-x )=-f (x )=-[-f (x -2)]=f (x -2), 所以f (x )的周期为4,求函数y =f (x )-x 3的零点问题即y =f (x )-x 3=0的解, 即函数y =f (x )和y =x 3的图象交点问题,根据f (x )的性质可得如图所示图形,结合y =x 3的图象,由图象可得共有3个交点,故共有3个零点,故选B. 答案:B8.解析:(1)由题图可知,当t =12 时,y =1,所以2k =1,所以k =2. (2)由(1)可知,y =⎩⎪⎨⎪⎧2t ,0<t <12,12t ,t ≥12,当t ≥12 时,y =12t ,令y <0.75,得t >23 ,所以在消毒后至少经过23 小时,即40分钟人方可进入房间.答案:(1)2 (2)409.解析:当x ≤0时,令x 3+2=0,解得x =3-2 ,3-2 <0,此时有1个零点;当x >0时, f (x )=x -3+e x ,显然f (x )单调递增,又f ⎝ ⎛⎭⎪⎫12 =-52 +e 12 <0,f (1)=-2+e>0,由零点存在定理知此时有1个零点;综上共有2个零点.答案:210.解析:若a ≤1,则f (a )=4a -1,故1<4a -1≤2,解得12 <a ≤log 43,故12 <a ≤log 43;若a >1,则f (a )=log 2a ,故1<log 2a ≤2,解得2<a ≤4; 综上:12 <a ≤log 43或2<a ≤4. 答案:⎝ ⎛⎦⎥⎤12,log 43 ∪(2,4]11.解析:①当x ≤2时,x -1≤1,∵f (x )=10x -2-102-x 在(-∞,2]上单调递增,∴f (x )≤f (2)=0,又f (x -1)≤f (1)<f (2)=0, ∴f (x )+f (x -1)<0恒成立;②当2<x ≤3时,1<x -1≤2,f (x )=||x -3 -1=2-x <0, 又f (x -1)≤f (2)=0,∴f (x )+f (x -1)<0恒成立;③当3<x ≤4时,2<x -1≤3,f (x )=||x -3 -1=x -4,f (x -1)=||x -4 -1=3-x ;∴f (x )+f (x -1)=-1<0恒成立;④当x >4时,x -1>3,f (x )=||x -3 -1=x -4,f (x -1)=||x -4 -1=x -5,∴f (x )+f (x -1)=2x -9<0,解得x <92 ,∴4<x <92 ; 综上所述:不等式f (x )+f (x -1)<0的解集为⎝ ⎛⎭⎪⎫-∞,92 .答案:⎝ ⎛⎭⎪⎫-∞,92 12.解析:因为a ⊗b =⎩⎨⎧a ,a -b ≤1,b ,a -b >1.,所以f (x )=(x 2-2)⊗(x -1)=⎩⎨⎧x 2-2,-1≤x ≤2x -1,x <-1或x >2 ,由图可知,当-2<c ≤-1或1<c ≤2时,函数f (x )与y =c 的图象有两个公共点,∴c 的取值范围是(-2,-1]∪(1,2]. 答案:(-2,-1]∪(1,2] 13.解析:令g (x )=f (x )-x 2, 因为f (x )是定义在R 上的偶函数, 所以f (-x )=f (x ),则g (-x )=f (-x )-(-x )2=g (x ), 所以函数g (x )也是偶函数, g ′(x )=f ′(x )-2x ,因为当x ≥0时,f ′(x )-2x >0,所以当x ≥0时,g ′(x )=f ′(x )-2x ≥0, 所以函数g (x )在(0,+∞)上递增, 不等式f (x )>x 2+2即为不等式g (x )>2, 由f (1)=3,得g (1)=2, 所以g (x )>g (1),所以||x >1,解得x >1或x <-1,所以f (x )>x 2+2的解集是(-∞,-1)∪(1,+∞). 故选B. 答案:B14.解析:因为f (2-x )=f (2+x ),且f (x )为偶函数, 所以f (x -2)=f (x +2),即f (x )=f (x +4), 所以函数f (x )是以4为周期的周期函数,作出y=f(x),y=m ln x在同一坐标系的图象,如图,因为方程m ln ||x=f(x)至少有8个实数解,所以y=f(x),y=m ln |x|图象至少有8个交点,根据y=f(x),y=m ln |x|的图象都为偶函数可知,图象在y轴右侧至少有4个交点,由图可知,当m>0时,只需m ln 5≤1,即0<m≤1ln 5,当m<0时,只需m ln 6≥-1,即-1ln 6≤m<0,当m=0时,由图可知显然成立,综上可知,-1ln 6≤m≤1ln 5.故选B.答案:B。
高三数学函数与方程试题答案及解析

高三数学函数与方程试题答案及解析1.已知函数,若存在唯一的零点,且,则的取值范围是A.B.C.D.【答案】C【解析】试题分析:根据题中函数特征,当时,函数显然有两个零点且一正一负; 当时,求导可得:,利用导数的正负与函数单调性的关系可得:和时函数单调递增; 时函数单调递减,显然存在负零点; 当时,求导可得:,利用导数的正负与函数单调性的关系可得:和时函数单调递减; 时函数单调递增,欲要使得函数有唯一的零点且为正,则满足:,即得:,可解得:,则.【考点】1.函数的零点;2.导数在函数性质中的运用;3.分类讨论的运用2.已知实数、、满足,,则的最大值为为_______.【答案】【解析】因为,所以,所以,所以,由,解得,故实数的最大值为.【考点】一元二次方程的根的判别式,容易题.3.给出定义:若m-<x≤m+(其中m为整数),则m叫做离实数x最近的整数,记作{x}=m,在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题:①函数y=f(x)的定义域为R,值域为[0,];②函数y=f(x)在[-,]上是增函数;③函数y=f(x)是周期函数,最小正周期为1;④函数y=f(x)的图象关于直线x= (k∈Z)对称.其中正确命题的序号是________.【答案】①③④【解析】m=1时,x∈(,],f(x)=|x-1|=f1(x),m=2时,x∈(,],f(x)=|x-2|=f2(x),显然,f2(x)的图象是由f1(x)的图象右移1个单位而得,一般地,m=k时,x∈(,],f(x)=|x-k|=fk (x),m=k+1时,x∈(,],f(x)=|x-k-1|=fk+1(x),f k+1(x)的图象是由fk(x)的图象右移1个单位而得,于是可画出f(x)的图象如下:4.若函数f(x)=x3-ax2(a>0)在区间上是单调增函数,则使方程f(x)=1 000有整数解的实数a的个数是________.【答案】4【解析】令f′(x)=3x2-2ax>0,则x>或x<0.由f(x)在区间上是单调增函数知⊆,从而a∈(0,10].由f(x)=1 000得a =x-,令g(x)=x-,则g(x)在(0,+∞)上单调递增,且与x轴交于点(10,0),在同一直角坐标系中作出函数g(x)与y=a(0<a≤10)的大致图像(如图所示).当a=10时,由f(x)=1 000得x3-10x2-1 000=0.令h(x)=x3-10x2-1 000,因为h(14)=-216<0,h(15)=125>0,所以方程x3-10x2-1 000=0在区间(14,15)上存在根x0,因此从图像可以看出在(10,x]之间f(x)=1000共有4个整数解.5.已知函数f(x)=2x,x∈R.当m取何值时方程|f(x)-2|=m有一个解?两个解?【答案】两个解【解析】解:令F(x)=|f(x)-2|=|2x-2|,G(x)=m,画出F(x)的图像如图所示.由图像看出,当m=0或m≥2时,函数F(x)与G(x)的图像只有一个交点,原方程有一个解;当0<m<2时,函数F(x)与G(x)的图像有两个交点,原方程有两个解.6.设,则函数的零点位于区间()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)【答案】C【解析】,选C.【考点】零点的定义.7.已知函数,若函数恰有两个不同的零点,则实数的取值范围为.【答案】【解析】,的解为,时,,当时,,从而在区间和上是减函数,在区间和上是减函数,,当时,.如图是的图象,,,方程的解就是函数的图象与直线的交点的横坐标,当或或时,有两个交点,即方程有两个解,或称有两个零点,或或.【考点】函数的零点,函数的图象与性质,直线与曲线相交.8.已知函数f(x)=||x-1|-1|,若关于x的方程f(x)=m(m∈R)恰有四个互不相等的实根x1,x2,x 3,x4,则x1x2x3x4的取值范围是________.【答案】(-3,0)【解析】f(x)=||x-1|-1|=方程f(x)=m的解就是y=f(x)的图象与直线y=m交点的横坐标,由图可知,x2=-x1,x3=2+x1,x4=2-x1,且-1<x1<0.设t=x1x2x3x4=(-2)2-4,则t=(-2)2-4,易得-3<t<0.9.对于实数a和b,定义运算“”:a b=设f(x)=(2x-1)(x-1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则x1、x2、x3的取值范围是________.【答案】【解析】由新定义得f(x)=作出函数f(x)的图象,由图可知,当0<m<时,f(x)=m(m∈R)恰有三个互不相等的实数根x1、x2、x3,不妨设x1<x2<x3,易知x2>0,且x2+x3=2×=1,∴x2x3<.令解得x=或x= (舍去),∴<x1<0,∴<x1x2x3<0.10.已知f(x)=2x,g(x)=3-x2,试判断函数y=f(x)-g(x)的零点个数.【答案】两个【解析】在同一坐标系内作出函数f(x)=2x与g(x)=3-x2的图象,两图象有两个交点,∴函数y=f(x)-g(x)有两个零点.11.关于x的方程x3-3x2-a=0有三个不同的实数解,则实数a的取值范围是________.【答案】(-4,0)【解析】由题意知使函数f(x)=x3-3x2-a的极大值大于0且极小值小于0即可,又f′(x)=3x2-6x=3x(x-2),令f′(x)=0,得x1=0,x2=2.当x<0时,f′(x)>0;当0<x<2时,f′(x)<0;当x>2时,f′(x)>0,所以当x=0时,f(x)取得极大值,即f(x)极大值=f(0)=-a;当x=2时,f(x)取得极小值,即f(x)极小值=f(2)=-4-a,所以解得-4<a<0.,12.的零点个数为()A.4B.5C.6D.7【答案】B【解析】∵,∴,图像如图所示,由图像看出与有5个交点,∴的零点个数为5个.【考点】1.函数零点问题;2.函数图像.13.设函数,集合=,设,则A.9B.8C.D.6【答案】A【解析】,注意总共只有7个根,且这些根都为正整数,任一方程的两根之和都为8,所以这些根为1、7,2、6,3、5,4.所以,.【考点】1、函数的零点;2、二次方程根与系数的关系.14.已知关于X的方程的解集为P,则P中所有元素的和可能是()A.3,6,9B.6,9,12C.9,12,15D.6,12,15【答案】B【解析】函数的图像如图所示,直线,当时,;当时,;当时,;当时,;综上可得:P中所有元素的和可能是6,9,12.【考点】1.函数图像;2.中点坐标公式.15.若函数有极值点,且,则关于的方程的不同实根个数是 .【答案】3【解析】函数有极值点,说明方程的两根为,不妨设,即是极大值点,是极小值点,方程的解为或,由于,所以是极大值,有两解,,只有一解.因此共有3解.【考点】函数的极值与方程的解.16.设方程的两个根为,则()A.B.C.D.【答案】D【解析】依题意,,,分别作出函数和函数的图像.则图像中两函数交点的横坐标即方程的两个根.由图可知,两根中一个大于1,一个大于0小于1.不妨设,则,.所以,故.【考点】函数与方程、对数函数与指数函数的图像和性质17.若为偶函数,且当时,,则的零点个数为()A.B.C.D.无穷多个【答案】C【解析】当时,,所以【考点】函数的零点18.设,(1)若的图像关于对称,且,求的解析式;(2)对于(1)中的,讨论与的图像的交点个数.【答案】(1);(2)见解析.【解析】(1)因为函数图象关于对称,故为二次函数且对称轴为∴,又,代入可求得函数解析式;(2)将问题转化为有几个解的问题,令,利用导数讨论其增减区间,当时,与的图像无交点;当时,与的图像有一个交点;当时,与的图像有两个交点.试题解析:(1)∵的图像关于对称∴为二次函数且对称轴为∴又∵∴∴(2)即即令当时∵∴即在递增当时∵∴即在递减,∵当时当时∴①当时,与的图像无交点;②当时,与的图像有一个交点;③当时,与的图像有两个交点.【考点】利用导数研究函数的单调区间、函数与方程思想、函数解析式的求法.19.函数的零点一定位于区间( )A.(1, 2)B.(2, 3)C.(3, 4)D.(4, 5)【答案】B【解析】因为,,所以,根据根的存在性定理可知,函数的零点在区间内.【考点】零点存在性定理.20.设,则函数的零点位于区间()A.(0 ,1)B.(-1, 0) C.(1, 2) D.(2 ,3)【答案】A【解析】因为,由零点存在性定理知,在内有零点,有为单调函数,故存在唯一零点,选A.【考点】零点存在定理.21.设函数(1)设,,证明:在区间内存在唯一的零点;(2) 设,若对任意,有,求的取值范围;(3)在(1)的条件下,设是在内的零点,判断数列的增减性.【答案】(1) 见解析;(2);(3)见解析.【解析】(1) 先根据零点存在性定理判断在在内存在零点,在利用导数说明函数在上是单调递增的,从而说明在区间内存在唯一的零点;(2)此问可用两种解法:第一种,当时,,根据题意判断出在上最大值与最小值之差,据此分类讨论如下:(ⅰ)当;(ⅱ)当;(ⅲ)当,综上可知,;第二种,用表示中的较大者,直接代入计算即可;(3)先设出零点,然后根据在上是递增的得出结论.试题解析:(1),时,∵,∴在内存在零点. 又当时, ,∴在上是单调递增的,所以在内存在唯一零点.(2)当时,,对任意都有等价于在上最大值与最小值之差,据此分类讨论如下:(ⅰ)当,即时, ,与题设矛盾(ⅱ)当,即时, 恒成立(ⅲ)当,即时, 恒成立.综上可知,注:(ⅱ)(ⅲ)也可合并证明如下:用表示中的较大者.当,即时,恒成立 .(3)证法一设是在内的唯一零点,,于是有又由(1)知在上是递增的,故, 所以,数列是递增数列.证法二设是在内的唯一零点则的零点在内,故,所以,数列是递增数列.【考点】1.零点存在性定理;2.利用导数判断函数单调性;3.利用函数单调性判断大小.22.定义在上的函数满足下列两个条件:⑴对任意的恒有成立;⑵当时,;记函数,若函数恰有两个零点,则实数的取值范围是()A.B.C.D.【答案】D【解析】当时,,所以,同理可得,,直线恒过定点,所以函数恰有两个零点时需满足.【考点】1.函数的解析式;2.函数的零点.23.若定义在R上的偶函数满足且时,则方程的零点个数是()A.2个B.3个C.4个D.多于4个【答案】C【解析】试题分析:函数f(x)是以2为周期的周期函数,且是偶函数,根据上的解析式,图象关于y轴对称,可以绘制上的图象,根据周期性,可以绘制上的图象,而是个偶函数,绘制其在y轴右侧图象可知两图象右侧有两个交点,根据对称性可得共有四个交点,故选B.【考点】函数与方程.24.函数所有零点的和等于( )A.6B.7.5C.9D.12【答案】C【解析】函数所有零点转化为两个函数图像的交点的横坐标,画出函数的图像,根据图像可知有6个交点,且两两关于直线对称,故所以零点的和为【考点】函数的零点.25.若函数且有两个零点,则实数的取值范围是.【答案】【解析】构造函数且,要保证两个函数图象有不同的两个交点,则需.【考点】函数的图象.26.已知函数,则关于的方程的实根的个数是___ _【答案】5【解析】根据题意,由于函数,则关于的方程,的实根的个数即为的方程的根的个数,那么结合解析式,由于,而对于,,故可知满足题意的方程的解为5个,故答案为5.【考点】函数与方程点评:主要是考查了函数与方程的根的问题的综合运用,属于中档题。
高三数学函数与方程压轴题训练——抽象函数

高三数学函数与方程压轴题训练——抽象函数抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征式子的一类函数.由于抽象函数表现形式抽象,对学生思维能力考查的起点较高,使得此类问题成为函数内容的难点之一,使多数学生感觉无从下手,望而生畏.事实上,解决此类问题时,只要准确掌握函数的性质,熟知我们所学的基本初等函数,将抽象函数问题转化为具体函数问题,问题就迎刃而解了.[典例]已知函数f (x )(x ∈R)满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则 i =1m(x i +y i )=( )A .0B .mC .2mD .4m[思路点拨](1)由于题目条件中的f (x )没有具体的解析式,仅给出了它满足的性质f (-x )=2-f (x ),即f (x )(x ∈R)为抽象函数,显然我们不可能求出这些点的坐标,这说明这些交点坐标应满足某种规律,而这种规律必然和这两个函数的性质有关.(2)易知函数y =x +1x关于点(0,1)成中心对称,自然而然的让我们有这样的想法:函数f (x )(x ∈R)的图象是否也关于点(0,1)成中心对称?基于这个想法及选择题的特点,那么解题方向不外乎两个:一是判断f (x )的对称性,利用两个函数的对称性求解;二是构造一个具体的函数f (x )来求解.[方法演示]法一:利用函数的对称性由f (-x )=2-f (x ),知f (-x )+f (x )=2,所以点(x ,f (x ))与点(-x ,f (-x ))连线的中点是(0,1),故函数f (x )的图象关于点(0,1)成中心对称.(此处也可以这样考虑:由f (-x )=2-f (x ),知f (-x )+f (x )-2=0,即[f (x )-1]+[f (-x )-1]=0,令F (x )=f (x )-1,则F (x )+F (-x )=0,即F (x )=f (x )-1为奇函数,图象关于点(0,0)对称,而F (x )的图象可看成是f (x )的图象向下平移一个单位得到的,故f (x )的图象关于点(0,1)对称).又y =x +1x =1+1x 的图象也关于点(0,1)对称,所以两者图象的交点也关于点(0,1)对称,所以对于每一组对称点x i +x i ′=0,y i +y i ′=2,所以∑i =1m (x i +y i )=∑i =1m x i +∑i =1my i =0+2×m2=m ,故选B.法二:构造特殊函数由f (-x )=2-f (x ),知f (-x )+f (x )-2=0, 即[f (x )-1]+[f (-x )-1]=0.令F (x )=f (x )-1,则F (x )为奇函数, 即f (x )-1为奇函数,从而可令f (x )-1=x , 即f (x )=x +1,显然该函数满足此条件.此时y =f (x )与y =x +1x 的交点分别为(1,2)和(-1,0),所以m =2,∑i =1m(x i +y i )=1+2+(-1)+0=2,结合选项可知选B. 答案:B [解题师说]1.解决抽象函数问题的2个常用方法2.解决抽象函数问题常用的结论(1)函数y =f (x )关于x =a +b2对称⇔f (a +x )=f (b -x )⇔f (x )=f (b +a -x ).特例:函数y =f (x )关于x =a 对称⇔f (a +x )=f (a -x )⇔f (x )=f (2a -x ); 函数y =f (x )关于x =0对称⇔f (x )=f (-x )(即为偶函数).(2)函数y =f (x )关于点(a ,b )对称⇔f (a +x )+f (a -x )=2b ⇔f (2a +x )+f (-x )=2b . 特例:函数y =f (x )关于点(a,0)对称⇔f (a +x )+f (a -x )=0⇔f (2a +x )+f (-x )=0; 函数y =f (x )关于点(0,0)对称⇔f (x )+f (-x )=0(即为奇函数).(3)y =f (x +a )是偶函数⇔函数y =f (x )关于直线x =a 对称;y =f (x +a )是奇函数⇔函数y=f(x)关于(a,0)对称.(4)对于函数f(x)定义域内任一自变量的值x:①若f(x+a)=-f(x),则T=2a;②若f(x+a)=1f(x),则T=2a;③若f(x+a)=-1f(x),则T=2a;(a>0)④若f(x+a)=f(x+b)(a≠b),则T=|a-b|;⑤若f(2a-x)=f(x)且f(2b-x)=f(x)(a≠b),则T=2|b-a|.[应用体验]1.已知函数f(x)在R上是单调函数,且满足对任意x∈R,都有f(f(x)-2x)=3,则f(3)的值是()A.3B.7C.9 D.12解析:选C由题意,知对任意x∈R,都有f(f(x)-2x)=3,不妨令f(x)-2x=c,其中c是常数,则f(c)=3,所以f(x)=2x+c.再令x=c,则f(c)=2c+c=3,即2c+c-3=0.易得2c与3-c至多只有1个交点,即c=1.所以f(x)=2x+1,所以f(3)=23+1=9.2.已知奇函数f(x)(x∈D),当x>0时,f(x)≤f(1)=2.给出下列命题:①D=[-1,1];②对∀x∈D,|f(x)|≤2;③∃x0∈D,使得f(x0)=0;④∃x1∈D,使得f(x1)=1.其中所有正确命题的个数是()A.0B.1C.2D.3解析:选A由奇函数f(x)(x∈D),当x>0时,f(x)≤f(1)=2,只说明函数有最值,与定义域无关,故①错误;对于②,可能f(3)=-3,|f(3)|=3>2,故②错误;对于③,当0不在D中,且x轴为渐近线时,则不满足③;当y=1为渐近线时,不满足④,因此选A.3.已知定义域为R的函数y=f(x)满足f(-x)=-f(x+4),当x>2时,f(x)单调递增,若x1+x2<4且(x1-2)·(x2-2)<0,则f(x1)+f(x2)的值()A.恒大于0 B.恒小于0C.可能等于0 D.可正可负解析:选B法一:由f(-x)=-f(x+4),得f (-x +2)=-f (x -2+4)=-f (x +2), 即f (x +2)=-f (-x +2), 故函数f (x )的对称中心为M (2,0). 令x =-2,得f (2)=-f (2),解得f (2)=0.又函数f (x )在[2,+∞)上单调递增,画出函数的大致图象如图所示.由(x 1-2)(x 2-2)<0,可得x 1-2与x 2-2异号,即x 1,x 2分布在直线x =2的两侧,不妨设x 1<2<x 2.由x 1+x 2<4,可得(x 1-2)+(x 2-2)<0,即|x 1-2|>|x 2-2|,由函数的对称性,可知必有f (x 1)+f (x 2)<0.法二:由f (-x )=-f (x +4)可知,f (2+x )=-f (2-x ),则函数图象关于点(2,0)中心对称.因为x <2时,f (x )单调递增,所以x >2时,f (x )单调递增.因为x 1+x 2<4且(x 1-2)·(x 2-2)<0,设x 1<2<x 2,则x 2<4-x 1,所以f (x 2)<f (4-x 1).又因为f (4-x 1)=-f (x 1),所以f (x 2)<-f (x 1),即f (x 1)+f (x 2)<0.一、选择题1.函数f (x )对于任意实数x 满足条件f (x +2)=1f (x ),若f (1)=-5,则f (f (5))的值为( )A .5B .-5 C.15D .-15解析:选D ∵函数f (x )对于任意实数x 满足条件f (x +2)=1f (x ),∴f (x +4)=f [(x +2)+2]=1f (x +2)=f (x ),即函数f (x )是以4为周期的周期函数. ∵f (1)=-5,∴f (f (5))=f (f (1))=f (-5)=f (3)=1f (1)=-15.2.已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:选C 由f (x )为奇函数,知g (x )=xf (x )为偶函数. 因为f (x )在R 上单调递增,f (0)=0, 所以当x >0时,f (x )>0,所以g (x )在(0,+∞)上单调递增,且g (x )>0. 又a =g (-log 25.1)=g (log 25.1),b =g (20.8),c =g (3), 20.8<2=log 24<log 25.1<log 28=3, 所以b <a <c .3.已知函数f (x )(x ∈R)满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点分别为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1mx i =( )A .0B .mC .2mD .4m 解析:选B ∵f (x )=f (2-x ), ∴函数f (x )的图象关于直线x =1对称.又y =|x 2-2x -3|=|(x -1)2-4|的图象关于直线x =1对称,∴两函数图象的交点关于直线x =1对称.当m 为偶数时,∑i =1m x i =2×m2=m ;当m 为奇数时,∑i =1mx i =2×m -12+1=m . 4.已知函数f (x )的定义域为R.当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,则f (6)=( ) A .-2 B .-1 C .0D .2解析:选D 由题意知当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,则f (x +1)=f (x ). 又当-1≤x ≤1时,f (-x )=-f (x ), ∴f (6)=f (1)=-f (-1). 又当x <0时,f (x )=x 3-1, ∴f (-1)=-2,∴f (6)=2.5.已知定义在R 上的函数f (x ),对任意x ∈R ,都有f (x +4)=f (x )+f (2)成立,若函数y =f (x +1)的图象关于直线x =-1对称,则f (2 018)的值为( )A .2 018B .-2 018C .0D .4解析:选C 依题意得,函数y =f (x )的图象关于直线x =0对称,因此函数y =f (x )是偶函数,且f (-2+4)=f (-2)+f (2),即f (2)=f (2)+f (2),所以f (2)=0,所以f (x +4)=f (x ),即函数y =f (x )是以4为周期的函数,f (2 018)=f (4×504+2)=f (2)=0.6.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0]上单调递增,若实数a 满足f (2log 3a )>f (-2),则实数a 的取值范围是( )A .(-∞,3)B .(0,3)C .(3,+∞)D .(1,3)解析:选B ∵f (x )是定义在R 上的偶函数,且在区间(-∞,0]上单调递增,∴f (x )在区间[0,+∞)上单调递减.根据函数的对称性,可得f (-2)=f (2),∴f (2log 3a )>f (2).∵2log 3a >0,f (x )在区间[0,+∞)上单调递减,∴0<2log 3a <2⇒log 3a <12⇒0<a < 3.7.设函数y =f (x )(x ∈R)的图象关于直线x =0及直线x =1对称,且x ∈[0,1]时,f (x )=x 2,则f ⎝⎛⎭⎫-32=( ) A.12 B.14 C.34D.94解析:选B 法一:∵函数y =f (x )(x ∈R)的图象关于直线x =0对称, ∴f (-x )=f (x ).∵函数y =f (x )(x ∈R)的图象关于直线x =1对称, ∴f (1-x )=f (1+x ).∴f ⎝⎛⎭⎫-32=f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫1+12=f ⎝⎛⎭⎫1-12=f ⎝⎛⎭⎫12=⎝⎛⎭⎫122=14. 法二:∵函数y =f (x )关于直线x =0对称,则函数f (x )是偶函数,又关于x =1对称,则f (2-x )=f (x ),故f ⎝⎛⎭⎫-32=f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫2-32=f ⎝⎛⎭⎫12=⎝⎛⎭⎫122=14. 8.定义在R 上的函数y =f (x ),满足f (4-x )=f (x ),(x -2)·f ′(x )<0,若x 1<x 2且x 1+x 2>4,则有( )A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .不确定解析:选B 由f (4-x )=f (x ),知函数f (x )关于直线x =2对称.又(x -2)f ′(x )<0,故当x >2时,函数f (x )单调递减;当x <2时,函数f (x )单调递增,所以当x =2时,函数f (x )取得最大值.由x 1<x 2且x 1+x 2>4知x 1离x =2更近,故f (x 1)>f (x 2).9.已知函数y =f (x )的定义域为R ,且满足下列三个条件:①对任意的x 1,x 2∈[4,8],当x 1<x 2时,都有f (x 1)-f (x 2)x 1-x 2>0恒成立;②f (x +4)=-f (x ); ③y =f (x +4)是偶函数.若a =f (8),b =f (11),c =f (2 018),则a ,b ,c 的大小关系为( ) A .a <b <c B .b <c <a C .a <c <bD .c <b <a解析:选B 由①知函数f (x )在区间[4,8]上为单调递增函数;由②知f (x +8)=-f (x +4)=f (x ),即函数f (x )的周期为8,所以c =f (2 018)=f (252×8+2)=f (2),b =f (11)=f (3);由③可知函数f (x )的图象关于直线x =4对称,所以b =f (3)=f (5),c =f (2)=f (6).因为函数f (x )在区间[4,8]上为单调递增函数,所以f (5)<f (6)<f (8),即b <c <a .10.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:选D 因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1). 因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数, 所以f (x )在区间[-2,2]上是增函数, 所以f (-1)<f (0)<f (1), 即f (-25)<f (80)<f (11).11.已知函数f (x )是定义在R 上的偶函数,且f (-x -1)=f (x -1),当x ∈[-1,0]时,f (x )=-x 3,则关于x 的方程f (x )=|cos πx |在-52,12上的所有实数解之和为( )A .-7B .-6C .-3D .-1解析:选A 因为函数f (x )为偶函数,所以f (-x -1)=f (x +1)=f (x -1),所以函数f (x )的周期为2,又当x ∈[-1,0]时,f (x )=-x 3,由此在同一平面直角坐标系内作出函数y =f (x )与y =|cos πx |的图象如图所示.由图象知关于x 的方程f (x )=|cos πx |在⎣⎡⎦⎤-52,12上的实数解有7个.不妨设x 1<x 2<x 3<x 4<x 5<x 6<x 7,则由图得x 1+x 2=-4,x 3+x 5=-2,x 4=-1,x 6+x 7=0,所以方程f (x )=|cos πx |在⎣⎡⎦⎤-52,12上的所有实数解的和为-4-2-1+0=-7.12.已知函数f (x )为定义在R 上的奇函数,当x ≥0时,有f (x +3)=-f (x ),且当x ∈(0,3)时,f (x )=x +1,则f (-2 017)+f (2 018)=( )A .3B .2C .1D .0解析:选C 因为函数f (x )为定义在R 上的奇函数,所以f (-2 017)=-f (2 017), 因为当x ≥0时,有f (x +3)=-f (x ),所以f (x +6)=-f (x +3)=f (x ),所以f (x )的周期为6.又当x ∈(0,3)时,f (x )=x +1, 所以f (2 017)=f (336×6+1)=f (1)=2, f (2 018)=f (336×6+2)=f (2)=3,故f (-2 017)+f (2 018)=-f (2 017)+3=-2+3=1. 二、填空题13.已知函数f (x )的图象关于y 轴对称,且对任意x ∈R 都有f (x +3)=-f (x ),若当x ∈⎝⎛⎭⎫12,32时,f (x )=⎝⎛⎭⎫12x ,则f (2 018)=________. 解析:因为对任意x ∈R 都有f (x +3)=-f (x ),所以f (x +6)=-f (x +3)=f (x ),函数f (x )是周期为6的函数,f (2 018)=f (336×6+2)=f (2).由f (x +3)=-f (x )可得f (-1+3)=-f (-1)=f (2),因为函数f (x )的图象关于y 轴对称,所以函数f (x )是偶函数,f (-1)=f (1)=12,所以f (2 018)=f (2)=-f (1)=-12. 答案:-1214.已知定义在R 上的函数f (x ),对任意的实数x ,均有f (x +3)≤f (x )+3,f (x +2)≥f (x )+2且f (1)=2,则f (2 017)的值为________.解析:∵f (x +3)≤f (x )+3,f (x +2)≥f (x )+2, ∴f (x +1)+2≤f (x +3)≤f (x )+3, ∴f (x +1)≤f (x )+1.又f (x +1)+1≥f (x +2)≥f (x )+2, ∴f (x +1)≥f (x )+1,∴f (x +1)=f (x )+1, 利用叠加法,得f (2 017)=2 018. 答案:2 01815.定义在R 上的函数f (x )满足f (x +6)=f (x ),当x ∈[-3,-1)时,f (x )=-(x +2)2,当x ∈[-1,3)时,f (x )=x ,则f (1)+f (2)+f (3)+…+f (2 018)=________.解析:由题意得f (1)=1,f (2)=2,f (3)=f (-3)=-1,f (4)=f (-2)=0,f (5)=f (-1)=-1,f (6)=f (0)=0,所以数列{f (n )}从第一项起,每连续6项的和为1,则f (1)+f (2)+f (3)+…+f (2 018)=336×1+f (1)+f (2)=339.答案:33916.已知定义在R 上的函数y =f (x )满足条件f ⎝⎛⎭⎫x +32=-f (x ),且函数y =f ⎝⎛⎭⎫x -34为奇函数,给出以下四个命题:①函数f (x )是周期函数;②函数f (x )的图象关于点⎝⎛⎭⎫-34,0对称; ③函数f (x )为R 上的偶函数; ④函数f (x )为R 上的单调函数. 其中真命题的序号为________.解析:f (x +3)=fx +32+32=-f ⎝⎛⎭⎫x +32=f (x ),所以f (x )是周期为3的周期函数,①正确; 函数f ⎝⎛⎭⎫x -34是奇函数,其图象关于点(0,0)对称,则f (x )的图象关于点⎝⎛⎭⎫-34,0对称,②正确;因为f (x )的图象关于点⎝⎛⎭⎫-34,0对称,-34=-x +⎝⎛⎭⎫-32+x 2,所以f (-x )=-f ⎝⎛⎭⎫-32+x ,又f ⎝⎛⎭⎫-32+x =-f -32+x +32=-f (x ), 所以f (-x )=f (x ),③正确;f (x )是周期函数,在R 上不可能是单调函数,④错误. 故真命题的序号为①②③. 答案:①②③。
2021届高三数学(文理通用)一轮复习题型专题训练:函数与方程(二)(含解析)

《函数与方程》(二)考查内容:主要涉及函数零点个数的判断(方程法、数形结合法、图象法、零点存在定理与函数性质结合法)一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数26,0()3ln ,0x x x f x x x ⎧--≤=⎨-+>⎩的零点个数为( )A .3B .2C .1D .02.已知函数ln ,0()2(2),0x x f x x x x ⎧>=⎨-+≤⎩,则函数()3y f x =-的零点个数是( )A .1B .2C .3D .43.函数()ln 1f x x x =-+的零点个数为( ) A .0B .1C .2D .34.已知函数()()y f x x R =∈满足(2)()f x f x +=,且(1,1]x ∈-时,2()f x x =,则4()log ||y f x x =-的零点个数为( ) A .8B .6C .4D .25.函数()sin 1f x x x =-在,22ππ⎛⎫- ⎪⎝⎭上的零点个数为( )A .2B .3C .4D .56.函数()22lg 2||f x x x x =+-的零点的个数为( ) A .2B .3C .4D .67.已知函数23(0),()1(0),x x x x f x e x -⎧-=⎨-+<⎩则方程|()1|2f x c -=-(c 为常数且(1,0)c ∈-)的不同的实数根的个数为( )A .3B .4C .5D .68.已知函数()2e e xx f x ax =--有且只有一个零点,则实数a 的取值范围为( )A .(],0-∞B .[)0,+∞ C .()()0,11,+∞ D .(]{},01-∞9.已知函数23||,3()(3),3x x f x x x -⎧=⎨->⎩,()(3)6g x f x +-=,则函数()()y f x g x =-的零点个数为( )A .0B .4C .3D .210.若函数()2020xlog x x f x a x ⎧=⎨--≤⎩,>,有且只有一个零点,则a 的取值范围是( ) A .(﹣∞,﹣1)∪(0,+∞) B .(﹣∞,﹣1)∪[0,+∞) C .[﹣1,0)D .[0,+∞)11.已知函数()sin ,02224xx f x x π⎧≤≤⎪=⎨⎪<≤⎩,若函数()()1g x f x kx =--恰有三个零点,则实数k 的取值范围为 ( )A .31,44⎡⎤--⎢⎥⎣⎦B .31,44⎛⎤-- ⎥⎝⎦C .41,34⎛⎫-- ⎪⎝⎭D .41,34⎛⎤-- ⎥⎝⎦12.已知函数()()21,1ln 1,1x x f x x x -≤⎧⎪=⎨->⎪⎩,则方程()()1f f x =根的个数为( )A .3B .5C .7D .9二.填空题13.函数()()2ln 14xf x x =⋅+-的零点个数为_______.14.已知函数32,2()(1),2x f x xx x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围是________.15.已知函数32ln(2),2,()68,,x x m f x x x x x m +-<<⎧=⎨-+≥⎩若函数()f x 仅有2个零点,则实数m 的取值范围为______. 16.已知函数,0()(1),0xlnx x f x e x x >⎧=⎨+⎩,若函数()()()F x f x c c R =-∈恰有3个零点,则实数c 的取值范围是__.三.解答题(解答应写出文字说明、证明过程或演算步骤) 17.求函数lg y x =和sin y x =的图像的交点个数.18.讨论a 取不同值时,关于x 的方程2|log |1|2|x a -+=的解的个数.19.已知函数()f x =,()3g x ax =-.(1)设函数()()()()25h x f x g x x =+-+,讨论函数()y h x =在区间[]0,2内的零点个数;(2)若对任意[]0,4x ∈,总存在[]02,2x ∈-,使得()()0g x f x =成立,求实数a 的取值范围.20.已知函数2()7f x x mx m =++-,m R ∈.(1)若()f x 在区间[]2,4上单调递增,求m 的取值范围; (2)求()f x 在区间[]1,1-上的最小值()g m ; (3)讨论()f x 在区间[]3,3-上的零点个数.21.已知函数()22,182,1x a x f x ax x a x ⎧-≤=⎨-+>⎩,其中a R ∈.()1当1a =时,求()f x 的最小值; ()2当2a ≤时,讨论函数()f x 的零点个数.22.已知函数()34ln f x x x x=--. (1)求()f x 的单调区间;(2)判断()f x 在(]0,10上的零点的个数,并说明理由.(提示:ln10 2.303≈)《函数与方程》(二)解析1.【解析】若260x x --=.则2x =-或3x =.又∵0x ≤∴2x =- 若3ln 0x -+=,则3x e =满足0x >,综上,函数()f x 的零点个数为2. 故选:B2.【解析】当0x >时,3|ln |30,ln 3,x x x e -=∴=±∴=或3e -,都满足0x >; 当0x ≤时,222430,2430,20,164230x x x x ---=∴++=>∆=-⨯⨯<,所以方程没有实数根.综合得函数()3y f x =-的零点个数是2.故选:B3.【解析】函数()ln 1f x x x =-+的零点个数等价于函数ln y x =与函数1y x =-的图象的交点个数.在同一坐标系下作出函数ln y x =与1y x =-的图象,如下图:因为1(ln )y x x ''==,曲线ln y x =在点(1,0)处的切线的斜率为:11k x==, 所以曲线ln y x =在点(1,0)处的切线方程为1y x =-,所以可知两函数图象有一个交点,故函数()ln 1f x x x =-+的零点个数为1. 故选:B .4.【解析】因为()()y f x x R =∈为周期为2的函数,通过且(1,1]x ∈-时,2()f x x =,做出函数图象如图所示:4()log ||y f x x =-的零点个数即为()y f x =与4log ||y x =图象交点个数,由图象可知共有6个交点.故选:B.5.【解析】令()sin 10f x x x =-=,显然0x =不是函数的零点,可得1sin x x=. 故作出函数sin y x =和1y x =的图象,如图所示:在(,)22ππ-上有2个交点.故选:A6.【解析】函数()22lg 2||f x x x x =+-的零点个数,即方程22lg 2||x x x =-+的根的个数,考虑()()22lg ,2||g x x h x x x ==-+,定义在()(),00,-∞+∞的偶函数,当0x >时,()()22lg ,2g x x h x x x ==-+,作出函数图象:两个函数一共两个交点,即当0x >时22lg 2||x x x =-+有两根, 根据对称性可得:当0x <时22lg 2||x x x =-+有两根, 所以22lg 2||x x x =-+一共4个根,即函数()22lg 2||f x x x x =+-的零点的个数为4.故选:C7.【解析】由|()1|2f x c -=-,得()1(2)f x c =±-.∵(1,0)c ∈-, ∴1(2)(3,4),1(2)(2,1)c c +-∈--∈--. 作出函数()f x 和1(2)y c =±-的图象如图所示,易知它们的图象共有4个不同的交点,即方程|()1|2f x c -=-(c 为常数且(1,0)c ∈-)有4个不同的实数根.故选:B8.【解析】(0)1100f =--=,则可知0x =一定是函数()f x 的一个零点0x ≠时,可得:1x x e a x e -=,令1(),()x x e a g x h x x e -==,21()x x xe e g x x '-+=,令()1x x u x xe e =-+, ()xu e x x '=,可得函数()u x 在0x =时取得极小值即最小值 ,()()00u x u ∴≥=.())'0(0g x x ∴>≠.∴函数()g x 在(,0)-∞和(0,)+∞上单调递增,此时,()0g x >恒成立,对于()xa h x e =, 0a <时 , 函数()g x 与()h x 没有交点,如下图,满足条件0a =时 , 函数()g x 与()h x 没有交点,如下图,满足条件1a =时 , 函数1()x h x e=, 经过()0,1, 与函数()g x 的图象没有交点, 如下图,满足条件 .0a >, 且1a ≠时 , 函数()h x 与函数()g x 的图象有交点,如下图,不满足条件,舍去 .综上可得:实数a 的取值范围为{}(],01-∞⋃,故选:D .9.【解析】由()6(3)g x f x =--,知()()()(3)6y f x g x f x f x =-=+--. 令()()(3)F x f x f x =+-,则(3)(3)()F x f x f x -=-+, 所以(3)()F x F x -=,即()F x 的图象关于直线32x =对称.当302x时,()()(3)33(3)3F x f x f x x x =+-=-+--=; 当0x <时,2221()()(3)3(33)32F x f x f x x x x x x ⎛⎫=+-=++--=++=++⎪⎝⎭114.作出()F x 的图象可知,函数()6F x =的解有2个,所以函数()()y f x g x =-的零点个数2个.故选:D10.【解析】当x >0时,因为log 21=0,所以有一个零点,所以要使函数()2020x log x x f x a x ⎧=⎨--≤⎩,>,有且只有一个零点,则当x ≤0时,函数f (x )没有零点即可,当x ≤0时,0<2x ≤1,∴﹣1≤﹣2x <0,∴﹣1﹣a ≤﹣2x ﹣a <﹣a ,所以﹣a ≤0或﹣1﹣a >0,即a ≥0或a <﹣1.故选:B11.【解析】当24x <≤时,y =,则0y ≤,等式两边平方得2268y x x =-+-,整理得()2231x y -+=,所以曲线)24y x =<≤表示圆()2231x y -+=的下半圆,如下图所示:由题意可知,函数()y g x =有三个不同的零点,等价于直线1y kx =+与曲线()y f x =的图象有三个不同交点,直线1y kx =+过定点()0,1P ,当直线1y kx =+过点()4,0A 时,则410k +=,可得14k =-; 当直线1y kx =+与圆()2231x y -+=相切,且切点位于第三象限时,k0<,1=,解得34k =-.由图象可知,当3144k -<≤-时,直线1y kx =+与曲线()y f x =的图象有三个不同交点.因此,实数k 的取值范围是31,44⎛⎤-- ⎥⎝⎦. 故选:B.12.【解析】令()u f x =,先解方程()1f u =. (1)当1u ≤时,则()211f u u =-=,得11u =;(2)当1u >时,则()()ln 11f u u =-=,即()ln 11u -=±,解得211u e=+,31u e =+. 如下图所示:直线1u =,11u e=+,1u e =+与函数()u f x =的交点个数为3、2、2, 所以,方程()1f f x ⎡⎤=⎣⎦的根的个数为3227++=.故选:C. 13.【解析】令()()2ln 140xf x x =⋅+-=,则()24ln 122x x x -+==, 在同一直角坐标系中作出函数()ln 1y x =+与22xy -=的图象,如图:由图象可知,函数()ln 1y x =+当1x →-时,()ln 1y x =+→+∞则与22xy -=的图象有必有两个交点, 所以方程()24ln 122xxx -+==有两个不同实根,所以函数()()2ln 14x f x x =⋅+-的零点个数为2.故答案为:2.14.【解析】作出函数()f x 的图象,如图所示,由图象可知,当01k <<时,函数()f x 与y k =的图象有两个不同的交点, 此时,方程有两个不同实根,所以所求实数k 的取值范围是(0,1).故答案为:(0,1) 15.【解析】对于函数3268y x x x =-+,23128y x x '=-+,令0y '=,解得23x =±,故当,2x ⎛∈-∞- ⎝⎭时,0y '>;当22x ⎛∈ ⎝⎭时,0y '<;当2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,0y '>; 令ln(2)0x +=,解得1x =-;令32680x x x -+=,解得0x =,2x =或4x =. 作出ln(2)y x =+,3268y x x x =-+的大致图像:观察可知,若函数()f x 仅有2个零点,则24m <≤,故实数m 的取值范围为(]2,4. 16.【解析】当0x >时,函数()f x lnx =单调递增;当0x ≤时,()(1)xf x e x =+,则()(2)x f x e x '=+2x <-时,()0f x '<,20x -<时,()0f x '>,故当0x ≤时,()f x 在(,2)-∞-上单调递减,在(2,0)-上单调递增,所以()f x 在2x =-处取极小值,极小值为2(2)f e --=-;当1x <-时,()(1)0xf x e x =+< 作出函数()f x 的图象如图:函数()()()F x f x c c R =-∈恰有3个零点,等价于函数()f x 与y c =的图象有且仅有3个交点,由图可知,20e c --<<,故答案为:()20,e -- 17.【解析】由1y lgx ==解得10x =,又sin y x =的值域为[]1,1-, 且y lgx =在定义域上单调递增,作出函数sin y x =与y lgx =的图象如图: 由图象可知两个图象的交点个数为3个,18.【解析】令2()|log |1|2|f x x =-+,作出函数()f x 的图象,如图所示,所求问题可转化为函数()f x ,与直线y a =交点的个数问题. 当0a <时,()y f x =与y a =无交点,所以原方程无解; 当0a =时,()y f x =与y a =有两个交点,原方程有2个解; 当0a >时,()y f x =与y a =有四个交点,原方程有4个解.19.【解析】(1)因为()()()()()22511h x fx g x x x a x =+-+=+-+,令()0h x =,则()2110x a x +-+=,当=0x 时,则10=,不符合条件,当0x ≠时,则11a x x-=+ 作函数1y a =-与()102y x x x=+<≤的图象,由图可知:①当12a -<时,即1a >-时,两图象无公共点,则()h x 在区间[]0,2内无零点;②当12a -=时或512a ->时,即32a <-或1a =-时,两图象仅有一个公共点, 则()h x 在区间[]0,2内仅有一个零点; ③当5212a <-≤时,即312a -≤<-时,两图象有两个公共点, 则()h x 在区间[]0,2内有两个零点.(2)当[]0,4x ∈时,[]20,16x ∈,则[]299,25x +∈,所以()f x 的值域是[]3,5; 当[]02,2x ∈-时,设函数()0g x 的值域是M ,依题意,[]3,5M ⊆,①当0a =时,()03g x =-不合题意;②当0a >时,()()[]2,223,23M g g a a =-=---⎡⎤⎣⎦, 由()()2523g g ⎧≥⎪⎨-≤⎪⎩ ,得2352330a a a -≥⎧⎪--≤⎨⎪>⎩,解得4a ≥; ③当0a <时,()()[]2,223,23M g g a a =-=---⎡⎤⎣⎦,由()()2523g g ⎧-≥⎪⎨≤⎪⎩,得2352330a a a --≥⎧⎪-≤⎨⎪<⎩,解得4a ≤-; 综上得,实数a 的取值范围是(][),44,-∞-⋃+∞.20.【解析】(1)由题意,函数2()()7f x x mx m m R =++-∈开口向上,对称轴的方程为2m x =-,若使得函数()f x 在[]2,4上单调递增,则满足122m -≤,解得4m ≥-,即实数m 的取值范围[4,)-+∞.(2)①当112m -≤-即2m ≥时,函数()y f x =在区间[]1,1-单调递增, 所以函数()y f x =的最小值为()()16g m f =-=-;②当1112m -<-<,即22m -<<时, 函数()y f x =在区间11,2m ⎡⎤--⎢⎥⎣⎦单调递减,在区间1,12m ⎡-⎤⎢⎥⎣⎦上单调递增, 所以函数()y f x =的最小值为21()724m g m f m m ⎛⎫=-=-+- ⎪⎝⎭; ③当112m -≥即2m ≤-时,函数()y f x =在区间[]1,1-单调递减, 所以函数()y f x =的最小值为()()126g m g m ==-, 综上可得,函数的最小值为226,27(),2246,2m m m m g m m m -≤-⎧⎪+-⎪=--<<⎨⎪-≥⎪⎩. (3)因为函数()y f x =的对称轴方程为12x m =-,且24280m m ∆=-+>恒成立, ①当()()133232203420m f m f m ⎧-<-<⎪⎪-=-≥⎨⎪=+≥⎪⎩,即112m -≤≤时, 函数()f x 在区间[]3,3-上有2个零点; ②当()1323220m f m ⎧-≤-⎪⎨⎪-=-≥⎩,此时m 不存在; ③当()1323420m f m ⎧-≥⎪⎨⎪=+≥⎩,此时m 不存在;④当()()330f f -⋅≤,即()()22420m m -+≤,解得m 1≥或12m ≤-时,函数()f x 在区间[]3,3-上有1个零点. 综上可得:当112m -≤≤时,函数()f x 在区间[]3,3-上有2个零点, 当m 1≥或12m ≤-时,函数()f x 在区间[]3,3-上有1个零点. 21.【解析】()1当1a =时,()221,182,1x x f x x x x ⎧-≤=⎨-+>⎩,则当1x ≤时,()f x 在(],1-∞上单调递增,()1f x >-且无最小值;当1x >时,由二次函数()()2282414g x x x x =-+=--知,()f x 在(]1,4上单调递减,在()4,+∞上单调递增,故()()min 414f x f ==-.()2当0a ≤,1x ≤时,()f x 没有零点,当1x >时,()f x 没有零点;当02a <≤,1x ≤时,()f x 有一个零点,当1x >时,()f x 有一个零点.22.【解析】(1)由题意知,()f x 的定义域为()0,∞+,则令2223443()10x x f x x x x -+'=+-==, 解得1x =或3x =,当01x <<或3x >时,()0f x '>,则此时()f x 单调递增; 当13x <<时,()0f x '<,则此时()f x 单调递减.故()f x 的单调递增区间是()0,1和()3,+∞,单调递减区间是()1,3.(2)由函数在()0,1上单调递增,在()1,3上单调递减,则当03x <≤时,()()12f x f ≤=-,故()f x 在(]0,3上无零点;又()324ln30f =-<,当310x <≤时,因为3(10)104ln10100.34 2.3030.488010f =--≈--⨯=>, 又()f x 在(]3,10上单调递增,所以()f x 在(]3,10上仅有一个零点.综上,()f x 在(]0,10上的零点的个数为1.。
高考数学专题《二次函数与一元二次方程、不等式》习题含答案解析

专题2.3 二次函数与一元二次方程、不等式1.(浙江高考真题)已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0 D .a <0,2a +b =0【答案】A 【解析】由已知得f (x )的图象的对称轴为x =2且f (x )先减后增,可得选项. 【详解】由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-2ba=2,∴4a +b =0, 又f (0)>f (1),f (4)>f (1),∴f (x )先减后增,于是a >0, 故选:A.2.(2021·全国高三专题练习(文))已知函数42()f x x x =-,则错误的是( )A .()f x 的图象关于y 轴对称B .方程()0f x =的解的个数为2C .()f x 在(1,)+∞上单调递增D .()f x 的最小值为14-【答案】B 【解析】结合函数的奇偶性求出函数的对称轴,判断A ,令()0f x =,求出方程的解的个数,判断B ,令2t x =,2211()()24g t t t t =-=--,从而判断C ,D 即可.【详解】42()f x x x =-定义域为R ,显然关于原点对称,又()()4242()f x x x x x -=---=-()f x =,所以()y f x =是偶函数,关于y 轴对称,故选项A 正确. 令()0f x =即2(1)(1)0x x x +-=,解得:0x =,1,1-,函数()f x 有3个零点,故B 错误;练基础令2t x =,2211()()24g t t t t =-=--,1x >时, 函数2t x =,2()g t t t =-都为递增函数,故()f x 在(1,)+∞递增,故C 正确;由12t =时,()g t 取得最小值14-,故()f x 的最小值是14-,故D 正确.故选:B .3.(2021·北京高三其他模拟)设x ∈R ,则“2560x x -+<”是“|2|1x -<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】分别解出两个不等式的解集,比较集合的关系,从而得到两命题的逻辑关系. 【详解】2560x x -+<23x ⇒<<;|2|1x -<13x ⇒<<;易知集合()2,3是()1,3的真子集,故是充分不必要条件. 故选:A.4.(2021·全国高三月考)已知函数2()f x x bx c =-++,则“02b f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”是“方程()0f x =有两个不同实数解且方程(())0f f x =恰有两个不同实数解”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】C 【解析】根据二次函数的图象与性质,求得(())02bf f >,反之若()0f t =有两个正根12t t <,当12max ()t t f x <<,得到方程(())0f f x =恰有四个不同实数解,结合充分条件、必要条件的判定方法,即可求解. 【详解】由2()f x x bx c =-++表示开口向下的抛物线,对称轴的方程为2b x =,要使得方程()0f x =有两个不同实数,只需()02bf >,要使得方程(())0f f x =恰有两个不同实数解,设两解分别为12,x x ,且12x x <, 则满足1max 2()x f x x <<,因为12(,)x x x ∈时,()0f x >,所以(())02b f f >,所以必要性成立; 反之,设()02b t f =>,即()0f t >,当()0f t =有两个正根,且满足12t t <,若12max ()t t f x <<, 此时方程(())0f f x =恰有四个不同实数解,所以充分性不成立.所以“02b f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”是“方程()0f x =有两个不同实数解且方程(())0f f x =恰有两个不同实数解”的必要不充分条件. 故选:C.5.(2021·全国高三专题练习)若当x ∈(1,2)时,函数y =(x -1)2的图象始终在函数y =log a x 的图象的下方,则实数a 的取值范围是___________. 【答案】1<a ≤2. 【解析】在同一个坐标系中画出两个函数的图象,结合图形,列出不等式组,求得结果. 【详解】如图,在同一平面直角坐标系中画出函数y =(x -1)2和y =log a x 的图象.由于当x ∈(1,2)时,函数y =(x -1)2的图象恒在函数y =log a x 的图象的下方,则1log 21aa >⎧⎨⎩,解得1<a ≤2.故答案为:1<a ≤2.6.(2020·山东省微山县第一中学高一月考)若不等式220ax x a ++<对任意x ∈R 恒成立,则实数a 的取值范围是_________.【答案】(,1)-∞- 【解析】∵不等式220ax x a ++<对任意x ∈R 恒成立, ∴函数22y ax x a =++的图象始终在x 轴下方,∴2440a a <⎧⎨∆=-<⎩,解得1a <-, 故答案为:(,1)-∞-.7.(2021·全国高三专题练习)已知当()0,x ∈+∞时,不等式9x -m ·3x +m +1>0恒成立,则实数m 的取值范围是________.【答案】(,2-∞+ 【解析】先换元3x =t ,()1,t ∈+∞,使f (t )=t 2-mt +m +1>0在()1,t ∈+∞上恒成立,再利用二次函数图象特征列限定条件,计算求得结果即可. 【详解】令3x =t ,当()0,x ∈+∞时,()1,t ∈+∞,则f (t )=t 2-mt +m +1>0在()1,t ∈+∞上恒成立,即函数在()1,t ∈+∞的图象在x 轴的上方,而判别式()()224144m m m m ∆=--+=--,故2440m m ∆=--<或()0121110m f m m ∆≥⎧⎪⎪≤⎨⎪=-++≥⎪⎩,解得2m <+故答案为:(,2-∞+.8.(2021·浙江高一期末)已知函数2()1(0)f x ax x a =-+≠,若任意1x 、2[1,)x ∈+∞且12x x ≠,都有()()12121f x f x x x ->-,则实数a 的取值范围是___________.【答案】[)1,+∞ 【解析】本题首先可令12x x >,将()()12121f x f x x x ->-转化为()()1122f x x f x x ->-,然后令()()g x f x x =-,通过函数单调性的定义得出函数()g x 在[1,)+∞上是增函数,最后分为0a =、0a ≠两种情况进行讨论,结合二次函数性质即可得出结果. 【详解】因为任意1x 、2[1,)x ∈+∞且12x x ≠,都有()()12121f x f x x x ->-,所以令12x x >,()()12121f x f x x x ->-即()()1212f x f x x x ->-,()()1122f x x f x x ->-,令()()221g x f x x ax x =-=-+,则函数()g x 在[1,)+∞上是增函数, 若0a =,则()21g x x =-+,显然不成立;若0a ≠,则0212a a>⎧⎪-⎨-≤⎪⎩,解得1a ≥,综合所述,实数a 的取值范围是[)1,+∞, 故答案为:[)1,+∞.9.(2021·四川成都市·高三三模(理))已知函数21,0()2,0x x f x x x x --≤⎧=⎨-+>⎩,若()()12f x f x =,且12x x ≠,则12x x -的最大值为________. 【答案】134【解析】由()()12f x f x =得,212221x x x =--,把12x x -转化为212212231x x x x x x -=-=-++,利用二次函数求最值. 【详解】()y f x =的图像如图示:不妨令12x x <,由图像可知,10x ≤,20x >由()()22121221221221f x f x x x x x x x =⇒--=-+⇒=--,由212212231x x x x x x -=-=-++ 当232x =时,12max134x x -=. 故答案为:134. 10.(2021·浙江高一期末)已知函数2()24f x kx x k =-+.(Ⅰ)若函数()f x 在区间[2,4]上单调递减,求实数k 的取值范围; (Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,求实数k 的取值范围. 【答案】(Ⅰ)1(,]4-∞;(Ⅱ)1[,)2+∞ 【解析】(Ⅰ)由题意讨论0k =,0k >与0k <三种情况,求出函数的对称轴,结合区间,列不等式求解;(Ⅱ)利用参变分离法得24k x x≥+在[2,4]上恒成立,令4()f x x x =+,根据单调性,求解出最值,即可得k 的取值范围. 【详解】(Ⅰ)当0k =时,()2f x x =-,在区间[2,4]上单调递减,符合题意;当0k >时,对称轴为1x k,因为()f x 在区间[2,4]上单调递减,所以14k ≥,得14k ≤,所以104k <≤;当0k <时,函数()f x 在区间[2,4]上单调递减,符合题意,综上,k 的取值范围为1(,]4-∞.(Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,即[2,4]x ∀∈,22244x k x x x≥=++恒成立,令4()f x x x=+,可知函数()f x 在[2,4]上单调递增,所以()4f x ≥,所以max 2142x x ⎛⎫ ⎪= ⎪⎪+⎝⎭,所以12k ≥,故k 的取值范围为1[,)2+∞1.(2020·山东省高三二模)已知函数()()21f x x m x m =+--,若()()0f f x 恒成立,则实数m 的范围是( )A .3,3⎡--+⎣B .1,3⎡--+⎣C .[]3,1- D .3⎡⎤-+⎣⎦【答案】A 【解析】()()()()211f x x m x m x m x =+--=-+,(1)1m >-,()()0ff x ≥恒成立等价于()f x m ≥或()1f x ≤-恒成立,即()()21f x x m x m m =+--≥或()()211f x x m x m =+--≤-(不合题意,舍去)恒成立;即01m ∆≤⎧⎨>-⎩,解得(1,3m ∈--+, (2)1m =-恒成立,符合题意; (3)1m <-,()()0ff x ≥恒成立等价于()f x m ≤(不合题意,舍去)或()1f x ≥-恒成立,等价于1m ∆≤⎧⎨<-⎩,解得[)3,1m ∈--. 综上所述,3,3m ⎡∈--+⎣,故选:A.2.(2021·浙江高三二模)已知()22f x x x =-,对任意的1x ,[]20,3x ∈.方程练提升()()()()12f x f x f x f x m -+-=在[]0,3上有解,则m 的取值范围是( )A .[]0,3B .[]0,4C .{}3D .{}4【答案】D 【解析】对任意的1x ,[]20,3x ∈.方程()()()()12f x f x f x f x m -+-=在[]0,3上有解,不妨取取()11f x =-,()23f x =,方程有解m 只能取4,则排除其他答案.【详解】2()(1)1f x x =--,[0,3]x ∈,则min ()1f x =-,max ()3f x =.要对任意的1x ,[]20,3x ∈.方程()()()()12f x f x f x f x m -+-=在[]0,3上都有解, 取()11f x =-,()23f x =,此时,任意[0,3]x ∈,都有()()()()124m f x f x f x f x =-+-=, 其他m 的取值,方程均无解,则m 的取值范围是{}4. 故选:D.3.(2020·浙江省高三二模)已知函数()321,020a x x f x x ax x ⎧-≤⎪=⎨-+->⎪⎩的图象经过三个象限,则实数a 的取值范围是________. 【答案】2a <或3a >. 【解析】当0x ≤时,3()||11f x a x =-≤-,此时函数图象经过第三象限,当02x <<时,2()(1)2f x x a x =-++,此时函数图象恒经过第一象限,当2[(1)]40a =--->且10a +>,即3a >时,函数图像经过第一、四象限,当2x ≥时,2()(1)2f x x a x =---,此时函数图象恒经过第一象限,当(2)0f <,即2a >时,函数图像经过第一、四象限, 综上所述:2a <或3a >.4.(2020·陕西省西安中学高三其他(理))记{},max ,,,m m nm n n m n ≥⎧=⎨<⎩函数{}22()max 44(1),ln (1)f x x ax a x a =-+--<有且只有一个零点,则实数a 的取值范围是_________.【答案】12a < 【解析】令()()2244(1)0g x x ax a x =-+-->,因为1a <,则()2(1)651(5)0ln1g a a a a =-+-=---<=,所以(1)ln10f ==,即1是函数()f x 的零点, 因为函数()g x 的对称轴为122a x =<, 所以根据题意,若函数()f x 有且只有一个零点,则二次函数()g x 没有零点,22(4)16(1)0a a ∆=--<,解得12a <. 故答案为:12a <5.(2021·浙江高三专题练习)已知函数()21,()2f x x x a b a b R =+-+∈,若[1,1]x ∈-时,()1f x ≤,则12a b +的最大值是___________. 【答案】12- 【解析】根据函数()21,()2f x x x a b a b R =+-+∈,分1a >,1a <-和11a -≤≤三种情况讨论,分别求得其最大值,即可求解. 【详解】由题意,函数()21,()2f x x x a b a b R =+-+∈, 当1a >时,()211,[1,1]22f x x x a b x =-++∈-,因为() 1f x ≤,可得(1)11()14f f -≤⎧⎪⎨≥-⎪⎩,所以1122115216a b a b ⎧+≤-⎪⎪⎨⎪+≥-⎪⎩,所以15111622a b -≤+≤-; 当1a <-时,()211,[1,1]22f x x x a b x =+-+∈-,因为()1f x ≤,可得()max 11(1)1122f x f a b ==+-+≤, 所以1122b a ≤-,所以113222a b a +=-≤-;当11a -≤≤时,()21,[1,1]2f x x x a b x =+-+∈-,由()1f x ≤知,()max (1)1112f f x a b =+--+=, 因为11a -≤≤,所以10a --≤,所以()max (1)1112f f x a b =+--+=,所以1122a b +≤-,综上可得,12a b +的最大值是12-.故答案为:12-6.(2021·浙江高三期末)已知函数()()21sin sin ,22bf x x x a a b R =+-+∈,若对于任意x ∈R ,均有()1f x ≤,则+a b 的最大值是___________.【答案】1- 【解析】首先讨论1a ≥、1a ≤-时()f x 的最值情况,由不等式恒成立求+a b 的范围,再讨论11a -<<并结合()f x 的单调情况求+a b 的范围,最后取它们的并集即可知+a b 的最大值. 【详解】当sin a x ≥时,211()(sin )4216a b f x x +=-+-, 当sin a x <时,211()(sin )4216b a f x x -=++-,令sin [1,1]t x =∈-,则()()2211,4216{11(),()4216a b t a t g t b a t a t +⎛⎫-+-≥ ⎪⎝⎭=-++-<∴当1a ≥时,14t =有min 1()216a b g t +=-;1t =-有max 3()22a b g t +=+; 由x ∈R 有()1f x ≤,有131121622a b a b ++-≤-<+≤,故1518a b -≤+≤-; 当1a ≤-时,14t =-有min 1()216b a g t -=-;1t =有max 3()22b a g t -=+; 由x ∈R 有()1f x ≤,有131121622b a b a ---≤-<+≤,故1518b a -≤-≤-,即3a b +≤-; 当11a -<<时,()2211(),(1)4216{11,(1)4216a b t t a g t b a t a t +-+--<<=-⎛⎫++-≤< ⎪⎝⎭, ∴1(1,)4a ∈--:()g t 在(1,)a -上递减,1[,)4a -上递减,1[,1]4-上递增; 11[,]44a ∈-:()g t 在(1,)a -上递减,[,1)a 上递增;1(,1)4a ∈:()g t 在1(1,]4-上递减,1[,)4a 上递增,[,1)a 上递增;∴综上,()g t 在(1,1)-上先减后增,则(1)1(1)1g g ≤⎧⎨-≤⎩,可得1a b +≤-∴1a b +≤-恒成立,即+a b 的最大值是-1. 故答案为:1-.7.(2020·武汉外国语学校(武汉实验外国语学校)高一期中)已知函数2()3(,)f x ax bx a b R =++∈,且()0f x ≤的解集为[1,3].(1)求()f x 的解析式;(2)设()()41xh x f x x =+-,在定义域范围内若对于任意的12x x ,,使得()()12h x h x M -≤恒成立,求M 的最小值.【答案】(1)2()43f x x x =-+;(2)2. 【解析】(1)代入方程的根,求得参数值.(2)使不等式恒成立,根据函数单调性求得函数的最值,从而求得参数的值. 【详解】 解:(1)由题意(1)30(3)9330f a b f a b =++=⎧⎨=++=⎩解得14a b =⎧⎨=-⎩2()43f x x x ∴=-+(2)由题意max ()()min M h x h x -2(),2xh x x R x =∈+ 当0()0x h x ==当10()2x h x x x≠=+, 令2()g x x x=+,当0,()22x g x>,当x =当0,()x g x <≤-x =()(,)g x ∴∈-∞-⋃+∞(),00,(0)44h x x ⎡⎫⎛∈-⋃≠⎪ ⎢⎪⎣⎭⎝⎦综上,()44h x ⎡∈-⎢⎣⎦2442M⎛∴--= ⎝⎭min 2M ∴=8.(2021·浙江高一期末)设函数()()2,f x x ax b a b R =-+∈. (1)若()f x 在区间[]0,1上的最大值为b ,求a 的取值范围; (2)若()f x 在区间[]1,2上有零点,求2244a b b +-的最小值. 【答案】(1)[)1,+∞;(2)45. 【解析】(1)对实数a 的取值进行分类讨论,分析函数()f x 在区间[]0,1上的单调性,求得()max f x ,再由()max f x b =可求得实数a 的取值范围;(2)设函数()f x 的两个零点为1x 、2x ,由韦达定理化简()22222221222222241414144a x x x x x x b b x +-=+⎛⎫=+-- ⎪++⎝⎭,设()22224124g x x =⎛⎫+- ⎪⎝⎭,由[]21,2x ∈结合不等式的基本性质求出()2g x 的最小值,即为所求. 【详解】(1)二次函数()2f x x ax b =-+的图象开口向上,对称轴为直线2a x =. ①当02a≤时,即当0a ≤时,函数()f x 在区间[]0,1上单调递增,则()()max 11f x f a b ==-+; ②当012a <<时,即当02a <<时,函数()f x 在0,2a ⎡⎫⎪⎢⎣⎭上单调递减,在,12a ⎛⎤⎥⎝⎦上单调递增, ()0f b =,()11f a b =-+,所以,(){}max 1,01max ,1,12a b a f x b a b b a -+<<⎧=-+=⎨≤<⎩;③当12a≥时,即当2a ≥时,函数()f x 在区间[]0,1上单调递减,则()()max 0f x f b ==.综上所述,()max 1,1,1a b a f x b a -+<⎧=⎨≥⎩.所以,当()f x 在区间[]0,1上的最大值为b ,实数a 的取值范围是[)1,+∞; (2)设函数()f x 的两个零点为1x 、2x ,由韦达定理可得1212x x ax x b+=⎧⎨=⎩,所以,()()22222222222212121211221212122444424142a b b x x x x x x x x x x x x x x x x x +-=++-=-++=+-+()222222222212222222241414141x x x x x x x x x x ⎛⎫=+-+-≥- ⎪+++⎝⎭, 设()242222222222422222444144141124x x g x x x x x x x =-===++⎛⎫++- ⎪⎝⎭, 由212x ≤≤可得221114x ≤≤,所以,()2222445124g x x =≥⎛⎫+- ⎪⎝⎭.此时,21x =,由212241x x x =+可得115x =. 所以,当115x =,21x =时,2244a b b +-取最小值45. 9.(2020·全国高一单元测试)已知函数f (x )=9x ﹣a ⋅3x +1+a 2(x ∈[0,1],a ∈R ),记f (x )的最大值为g (a ).(Ⅰ)求g (a )解析式;(Ⅱ)若对于任意t ∈[﹣2,2],任意a ∈R ,不等式g (a )≥﹣m 2+tm 恒成立,求实数m 的范围.【答案】(Ⅰ)g (a )=22499,3431,3a a a a a a ⎧-+≤⎪⎪⎨⎪-+>⎪⎩;(Ⅱ)m ≤﹣52或m ≥52.【解析】(Ⅰ)令u =3x ∈[1,3],得到f (x )=h (u )=u 2﹣3au +a 2,分类讨论即可求出, (Ⅱ)先求出g (a )min =g (32)=﹣54,再根据题意可得﹣m 2+tm ≤﹣54,利用函数的单调性即可求出.【详解】解:(Ⅰ)令u =3x ∈[1,3],则f (x )=h (u )=u 2﹣3au +a 2. 当32a≤2,即a ≤43时,g (a )=h (u )min =h (3)=a 2﹣9a +9; 当322a>,即a >43时,g (a )=h (u )min =h (1)=a 2﹣3a +1; 故g (a )=22499,3431,3a a a a a a ⎧-+≤⎪⎪⎨⎪-+>⎪⎩;(Ⅱ)当a≤43时,g (a )=a 2﹣9a +9,g (a )min =g (43)=﹣119;当a 43>时,g (a )=a 2﹣3a +1,g (a )min =g (32)=﹣54;因此g (a )min =g (32)=﹣54;对于任意任意a ∈R ,不等式g (a )≥﹣m 2+tm 恒成立等价于﹣m 2+tm ≤﹣54. 令h (t )=mt ﹣m 2,由于h (t )是关于t 的一次函数,故对于任意t ∈[﹣2,2]都有h (t )≤﹣54等价于5(2)45(2)4h h ⎧-≤-⎪⎪⎨⎪≤-⎪⎩,即2248504850m m m m ⎧+-≥⎨--≥⎩, 解得m ≤﹣52或m ≥52. 10.(2021·全国高一课时练习)已知函数()22(0)f x ax ax b a =-+>,在区间[]0,3上有最大值16,最小值0.设()()f xg x x=. (1)求()g x 的解析式;(2)若不等式()22log log 0g x k x -⋅≥在[]4,16上恒成立,求实数k 的取值范围;【答案】(1)()148g x x x ⎛⎫=+- ⎪⎝⎭(0)x ≠;(2)(,1]-∞. 【解析】(1)由二次函数的性质知()f x 在0,1上为减函数,在()1,3上为增函数,结合其区间的最值,列方程组求,a b ,即可写出()g x 解析式; (2)由题设得222184()4log log k x x≤-+在[]4,16x ∈上恒成立,即k 只需小于等于右边函数式的最小值即可. 【详解】(1)∵()2(1)f x a x b a =-+-(0a >),即()f x 在0,1上为减函数,在()1,3上为增函数.又在[]0,3上有最大值16,最小值0,∴(1)0f b a =-=,(3)316f a b =+=,解得4a b ==, ∴()148g x x x ⎛⎫=+- ⎪⎝⎭(0)x ≠; (2)∵()22log log 0g x k x -≥∴22214log 8log log x k x x ⎛⎫+-≥ ⎪⎝⎭,由[]4,16x ∈,则[]2log 2,4x ∈, ∴222221814()44(1)log log log k x x x ≤-+=-,设21log t x =,11,42t ⎡⎤∈⎢⎥⎣⎦, ∴()24(1)h t t =-在11,42⎡⎤⎢⎥⎣⎦上为减函数,当12t =时,()h t 最小值为1,∴1k ≤,即(,1]k ∈-∞.1.(浙江省高考真题)若函数()2f x =x ax b ++在区间[0,1]上的最大值是M,最小值是m,则M m -的值( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关练真题【答案】B 【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B .2.(2018·浙江高考真题)已知λ∈R,函数f (x )={x −4,x ≥λx 2−4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________. 【答案】 (1,4) (1,3]∪(4,+∞) 【解析】由题意得{x ≥2x −4<0 或{x <2x 2−4x +3<0 ,所以2≤x <4或1<x <2,即1<x <4,不等式f (x )<0的解集是(1,4),当λ>4时,f(x)=x −4>0,此时f(x)=x 2−4x +3=0,x =1,3,即在(−∞,λ)上有两个零点;当λ≤4时,f(x)=x −4=0,x =4,由f(x)=x 2−4x +3在(−∞,λ)上只能有一个零点得1<λ≤3.综上,λ的取值范围为(1,3]∪(4,+∞).3.(北京高考真题)已知0x ≥,0y ≥,且1x y +=,则22x y +的取值范围是_____.【答案】1[,1]2【解析】试题分析:22222(1)221,[0,1]x y x x x x x +=+-=-+∈,所以当01x =或时,取最大值1;当12x =时,取最小值12.因此22x y +的取值范围为1[,1]2.4.(2018·天津高考真题(理))已知0a >,函数222,0,()22,0.x ax a x f x x ax a x ⎧++≤=⎨-+->⎩若关于x 的方程()f x ax=恰有2个互异的实数解,则a 的取值范围是______________.【答案】(48),【解析】分析:由题意分类讨论0x ≤和0x >两种情况,然后绘制函数图像,数形结合即可求得最终结果. 详解:分类讨论:当0x ≤时,方程()f x ax =即22x ax a ax ++=, 整理可得:()21x a x =-+,很明显1x =-不是方程的实数解,则21x a x =-+,当0x >时,方程()f x ax =即222x ax a ax -+-=, 整理可得:()22x a x =-,很明显2x =不是方程的实数解,则22x a x =-,令()22,01,02x x x g x x x x ⎧-≤⎪⎪+=⎨⎪>⎪-⎩, 其中211211x x x x ⎛⎫-=-++- ⎪++⎝⎭,242422x x x x =-++-- 原问题等价于函数()g x 与函数y a =有两个不同的交点,求a 的取值范围. 结合对勾函数和函数图象平移的规律绘制函数()g x 的图象, 同时绘制函数y a =的图象如图所示,考查临界条件, 结合0a >观察可得,实数a 的取值范围是()4,8.5.(2020·江苏省高考真题)已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式; 【答案】(1)()2h x x =; 【解析】(1)由题设有2222x x kx b x x -+≤+≤+对任意的x ∈R 恒成立. 令0x =,则00b ≤≤,所以0b =.因此22kx x x ≤+即()220x k x +-≥对任意的x ∈R 恒成立,所以()220k ∆=-≤,因此2k =. 故()2h x x =.6.(浙江省高考真题(文))设函数2(),(,)f x x ax b a b R =++∈.(1)当214a b时,求函数()f x 在[1,1]-上的最小值()g a 的表达式; (2)已知函数()f x 在[1,1]-上存在零点,021b a ≤-≤,求b 的取值范围.【答案】(1)222,2,4(){1,22,2,24a a a g a a a a a ++≤-=-<≤-+>;(2)[3,9--【解析】 (1)当214a b时,2()()12a f x x =++,故其对称轴为2a x =-. 当2a ≤-时,2()(1)24a g a f a ==++.当22a -<≤时,()()12a g a f =-=.当2a >时,2()(1)24a g a f a =-=-+.综上,222,2,4(){1,22,2,24a a a g a a a a a ++≤-=-<≤-+>(2)设,s t 为方程()0f x =的解,且11t -≤≤,则{s t ast b+=-=.由于021b a ≤-≤,因此212(11)22t ts t t t --≤≤-≤≤++. 当01t ≤≤时,222222t t t b t t --≤≤++, 由于222032t t --≤≤+和212932t t t --≤≤-+所以293b -≤≤-当10t -≤≤时,222222t t t b t t --≤≤++, 由于22202t t --≤<+和2302t t t --≤<+,所以30b -≤<.综上可知,b 的取值范围是[3,9--.。
高三数学函数试题答案及解析

高三数学函数试题答案及解析1.一个平面图由若干顶点与边组成,各顶点用一串从1开始的连续自然数进行编号,记各边的编号为它的两个端点的编号差的绝对值,若各条边的编号正好也是一串从1开始的连续自然数,则称这样的图形为“优美图”.已知如图是“优美图”,则点A,B与边a所对应的三个数分别为________.【答案】3、6、3【解析】观察图中编号为4的边,由于6-2=5-1=4,而数字2已为一端点的编号,故编号为4的边的左、右两端点应为5、1,从而易知编号为1的边的左、右两端点应为4、3.考虑到图中编号为1的边,易知点A对应的数为3,点B对应的数为6.故应填3、6、3.2.对于实数x,符号[x]表示不超过x的最大整数.例如,[π]=3,[-1.08]=-2.如果定义函数f(x)=x-[x],那么下列命题中正确的一个是()A.f(5)=1B.方程f(x)=有且仅有一个解C.函数f(x)是周期函数D.函数f(x)是减函数【答案】C【解析】f(5)=5-[5]=0,故A错误;因为f()=-[]=,f()=-[]=,所以B错误;函数f(x)不是减函数,D错误;故C正确.3. [2012·江苏高考]已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为________.【答案】9【解析】通过值域求a,b的关系是关键.由题意知f(x)=x2+ax+b=(x+)2+b-.∵f(x)的值域为[0,+∞),∴b-=0,即b=.∴f(x)=(x+)2.又∵f(x)<c,∴(x+)2<c,即--<x<-+.∴②-①,得2=6,∴c=9.4.下列函数中,不满足f(2x)=2f(x)的是()A.f(x)=|x|B.f(x)=x-|x|C.f(x)=x+1D.f(x)=-x【答案】C【解析】若f(x)=|x|,则f(2x)=|2x|=2|x|=2f(x);若f(x)=x-|x|,则f(2x)=2x-|2x|=2(x-|x|)=2f(x);若f(x)=-x,则f(2x)=-2x=2f(x);若f(x)=x+1,则f(2x)=2x+1,不满足f(2x)=2f(x).5.(3分)(2011•重庆)已知,则a=()A.1B.2C.3D.6【答案】D【解析】先将极限式通分化简,得到,分子分母同时除以x2,再取极限即可.解:原式==(分子分母同时除以x2)===2∴a=6故答案选D.点评:关于高中极限式的运算,一般要先化简再代值取极限,本题中运用到的分子分母同时除以某个数或某个式子,是极限运算中常用的计算技巧.6.如果函数在上的最大值和最小值分别为、,那么.根据这一结论求出的取值范围().A.B.C.D.【答案】B【解析】函数在区间上最大值为1,最小值为,即,所以,,即取值范围为,选B.【考点】新定义概念与函数的最值.7.设函数,其中,为正整数,,,均为常数,曲线在处的切线方程为.(1)求,,的值;(2)求函数的最大值;(3)证明:对任意的都有.(为自然对数的底)【答案】(1);(2);(3)见解析.【解析】(1)在切点处的的函数值,就是切线的斜率为,可得;根据切点适合切线方程、曲线方程,可得,.(2)求导数,求驻点,讨论区间函数单调性,确定最值.(3)本小题有多种思路,一是要证对任意的都有只需证;二是令,利用导数确定,转化得到.令,证明.(1)因为, 1分所以,又因为切线的斜率为,所以 2分,由点(1,c)在直线上,可得,即 3分4分(2)由(1)知,,所以令,解得,即在(0,+上有唯一零点 5分当0<<时,,故在(0,)上单调递增; 6分当>时,,故在(,+上单调递减; 7分在(0,+上的最大值=== 8分(3)证法1:要证对任意的都有只需证由(2)知在上有最大值,=,故只需证 9分,即① 11分令,则,①即② 13分令,则显然当0<t<1时,,所以在(0,1)上单调递增,所以,即对任意的②恒成立,所以对任意的都有 14分证法2:令,则. 10分当时,,故在上单调递减;而当时,,故在上单调递增.在上有最小值,.,即. 12分令,得,即,所以,即.由(2)知,,故所证不等式成立. 14分【考点】导数的几何意义,直线方程,应用导数研究函数的单调性、最(极)值、证明不等式,转化与化归思想,分类讨论思想,应用导数研究恒成立问题.8.对实数a与b,定义新运算“⊗”:.设函数f(x)=(x2﹣2)⊗(x﹣x2),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.B.C.D.【答案】B【解析】∵,∴函数f(x)=(x2﹣2)⊗(x﹣x2)=,由图可知,当c∈函数f(x)与y=c的图象有两个公共点,∴c的取值范围是,故选B.9.设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(i)T={f(x)|x∈S};(ii)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2),那么称这两个集合“保序同构”,以下集合对不是“保序同构”的是()A.A=N*,B=NB.A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10}C.A={x|0<x<1},B=RD.A=Z,B=Q【答案】D【解析】对A选项,存在满足条件,故是“保序同构”. 对B选项,存在满足条件,故是“保序同构”.对C选项,存在满足条件,故是“保序同构”.选D.【考点】1、新定义;2、函数.10.设函数f(x)=x3cosx+1.若f(a)=11,则f(-a)=.【答案】-9【解析】f(a)+f(-a)=a3cosa+1+(-a)3cos(-a)+1=2,而f(a)=11,故f(-a)=2-f(a)=2-11=-9.11.对实数a和b,定义运算“⊗”:a⊗b=设函数f(x)=(x2-1)⊗(x-x2),x∈R.若函数y=f(x)-c恰有两个不同的零点,则实数c的取值范围是()A.(-∞,-1)∪(-,0)B.{-1,-}C.(-1,-)D.(-∞,-1)∪[-,0)【答案】A【解析】由x2-1≤x-x2得-≤x≤1,∴f(x)=函数f(x)的图象如图所示,由图象知,当c<-1或-<c<0时,函数y=f(x)-c恰有两个不同的零点.12.如果f()=,则当x≠0且x≠1时,f(x)=()A.B.C.D.-1【答案】B【解析】令=t,t≠0且t≠1,则x=,∵f()=,∴f(t)=,化简得:f(t)=,即f(x)=(x≠0且x≠1).13.设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=________.【答案】2【解析】设e x=t,则x=ln t(t>0),∴f(t)=ln t+t,∴f′(t)=+1,∴f′(1)=2.14.是R上以2为周期的奇函数,当时,则在时是()A.减函数且B.减函数且C.增函数且D.增函数且【答案】D【解析】因为是R上的奇函数,故,由复合函数单调性知,当时为增函数,故此时;当时,为增函数,又因为是以2为周期的,故在上函数性质和取值完全一样,即时,为增函数,选D.【考点】函数奇偶性、函数单调性.15.直线是函数的切线,则实数.【答案】1【解析】先对函数求导,即,由于切线方程为,所以,,解得:,因此,切点为(2,)或(-2,-),代入切线方程,可得= 1.【考点】函数的导数求法,函数导数的几何意义.16.已知函数若直线与函数的图象有两个不同的交点,则实数的取值范围是 .【答案】.【解析】如下图所示,作出函数的图象如下图所示,当直线与函数的图象有两个不同的交点,则.【考点】分段函数的图象、函数的零点17.设函数.(1)若x=时,取得极值,求的值;(2)若在其定义域内为增函数,求的取值范围;(3)设,当=-1时,证明在其定义域内恒成立,并证明().【答案】(1).(2).(3)转化成.所以.通过“放缩”,“裂项求和”。
高三数学函数专题经典复习题

1.已知函数f (x )=x 2-1x 2+1,则f (2)f ⎝⎛⎭⎫12=________.2.已知f 满足f (ab )=f (a )+f (b ),且f (2)=p ,f (3)=q ,则f (72)=------------.一、选择题1.函数f (x )=3x 21-x +lg(3x +1)的定义域是( )A.⎝⎛⎭⎫-13,+∞B.⎝⎛⎭⎫-13,1 C.⎝⎛⎭⎫-13,13 D.⎝⎛⎭⎫-∞,-13 2.已知f ⎝ ⎛⎭⎪⎫1-x 1+x =1-x 21+x 2,则f (x )的解析式可取为( ) A.x 1+x 2 B .-2x 1+x 2 C.2x 1+x 2 D .-x 1+x 23.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是( )4.设函数f (x )=⎩⎪⎨⎪⎧1-x 2, x ≤1,x 2+x -2, x >1,则f ⎝⎛⎭⎫1f (2)的值为( )A.1516 B .-2716 C.89D .18 5.若函数f (x )=⎩⎨⎧1x,x <0⎝⎛⎭⎫13x,x ≥0则不等式|f (x )|≥13的解集为( )A .(-3,1)B .[-1,3]C .(-1,3]D .[-3,1] 二、填空题6.已知函数f (x )=x 2-2ax +a 2-1的定义域为A,2∉A ,则a 的取值范围是____________. 7.如果f [f (x )]=2x -1,则一次函数f (x )=_____________. 三、解答题9.如右图所示,在边长为4的正方形ABCD 上有一点P ,沿着折线BCDA 由B 点(起点)向A 点(终点)移动,设P 点移动的路程为x ,△ABP 的面积为y =f (x ).(1)求△ABP 的面积与P 移动的路程间的函数关系式; (2)作出函数的图象,并根据图象求y 的最大值.10.已知二次函数f (x )=ax 2+bx +c ,(a <0)不等式f (x )>-2x 的解集为(1,3). (1)若方程f (x )+6a =0有两个相等的实根,求f (x )的解析式; (2)若f (x )的最大值为正数,求实数a 的取值范围.第三部分 函数的值域与最值一、选择题1.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( ) A .{-1,0,3} B .{0,1,2,3} C .{y |-1≤y ≤3} D .{y |0≤y ≤3} 2.函数y =log 2x +log x (2x )的值域是( ) A .(-∞,-1] B .[3,+∞)C .[-1,3]D .(-∞,-1]∪[3,+∞)3.设f (x )=⎩⎨⎧x 2, ||x ≥1x , ||x <1,g (x )是二次函数,若f (g (x ))的值域是[)0,+∞,则g (x )的值域是( )A.(]-∞,-1∪[)1,+∞B.(]-∞,-1∪[)0,+∞ C .[0,+∞) D.[)1,+∞4.设函数f (x )=⎩⎪⎨⎪⎧-1,x >01,x <0,则(a +b )-(a -b )f (a -b )2(a ≠b )的值是( )A .aB .bC .a ,b 中较小的数D .a ,b 中较大的数 5.函数y =a x 在[0,1]上的最大值与最小值的和为3,则a =________.6.若f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2对任意的非负实数x 成立,则f ⎝⎛⎭⎫12010+f ⎝⎛⎭⎫22010+f ⎝⎛⎭⎫32010+…+f ⎝⎛⎭⎫20092010=________. 7.对a ,b ∈R ,记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥bb ,a <b ,函数f (x )=max{|x +1|,|x -2|}(x ∈R )的最小值是________.8.若函数y =f (x )=12x 2-2x +4的定义域、值域都是闭区间[2,2b ],求b 的值.函数的单调性一、选择题1.已知f (x )=⎩⎪⎨⎪⎧(3-a )x -4a ,x <1,log ax , x ≥1,是(-∞,+∞)上的增函数,那么a 的取值范围是( ) A .(1,+∞) B .(-∞,3) C.⎣⎡⎭⎫35,3 D .(1,3)3.设f (x )是连续的偶函数,且当x >0时f (x )是单调函数,则满足f (x )=f ⎝ ⎛⎭⎪⎫x +3x +4的所有x 之和为( )A .-3B .3C .-8D .84.若不等式x 2+ax +1≥0对于一切x ∈⎝⎛⎦⎤0,12成立,则a 的取值范围是( ) A .(0,+∞) B .[-2,+∞) C.⎣⎡⎭⎫-52,+∞ D .(-3,+∞) 5.若函数f (x )=x 2+ax(a ∈R ),则下列结论正确的是( )A .∀a ∈R ,f (x )在(0,+∞)上是增函数B .∀a ∈R ,f (x )在(0,+∞)上是减函数C .∃a ∈R ,f (x )是偶函数D .∃a ∈R ,f (x )是奇函数 二、填空题6.函数y =x 2+2x -3的递减区间是________.7.如果函数f (x )在R 上为奇函数,在(-1,0)上是增函数,且f (x +2)=-f (x ),则f ⎝⎛⎭⎫13,f ⎝⎛⎭⎫23,f (1)从小到大的排列是________.8.已知函数f (x )=3-axa -1(a ≠1). (1)若a >0,则f (x )的定义域是________;(2)若f (x )在区间(]0,1上是减函数,则实数a 的取值范围是________. 三、解答题9.已知函数f (x )在(-1,1)上有定义,当且仅当0<x <1时f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f ⎝ ⎛⎭⎪⎫x +y 1+xy ,试证明:(1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减.一、选择题1.f (x ),g (x )是定义在R 上的函数,h (x )=f (x )+g (x ),则“f (x ),g (x )均为偶函数”是“h (x )为偶函数”的( ) A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件2.若函数f (x ),g (x )分别是R 上的奇函数、偶函数,且满足f (x )-g (x )=e x ,则有( ) A .f (2)<f (3)<g (0) B .g (0)<f (3)<f (2) C .f (2)<g (0)<f (3) D .g (0)<f (2)<f (3)4.已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥04x -x 2,x <0,若f (2-a 2)>f (a ),则实数a 的取值范围是( ) A .(-∞,-1)∪(2,+∞) B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞) 二、填空题5.函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为________.6设奇函数f (x )的定义域为[-5,5].若当x ∈[0,5]时,f (x )的图象如右图所示,则不等式f (x )<0的解是________.7.若f (x )=12x -1+a 是奇函数,则a =____________.三、解答题8.已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2+2x .求函数g (x )的解析式;10.设f (x )是定义在R 上的奇函数,且对任意实数x 恒满足f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2. (1)求证:f (x )是周期函数. (2)当x ∈[2,4]时,求f (x )的解析式. (3)计算f (0)+f (1)+f (2)+…+f (2013).函数的图象一、选择题1.函数y =f (x )的图象与函数g (x )=log 2x (x >0)的图象关于原点对称,则f (x )的表达式为( ) A .f (x )=1log 2x(x >0) B .f (x )=log 2(-x )(x <0) C .f (x )=-log 2x (x >0) D .f (x )=-log 2(-x )(x <0) 2.函数y =e |ln x |-|x -1|的图象大致是( )3.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如下图所示.盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h 1,h 2,h 3,h 4,则它们的大小关系正确的是( )A .h 2>h 1>h 4B .h 1>h 2>h 3C .h 3>h 2>h 4D .h 2>h 4>h 1 4.函数f (x )=2|log 2x |-⎪⎪⎪⎪x -1x 的图象为( )二、填空题6. f (x )是定义域为R 的偶函数,其图象关于直线x =2对称,当x ∈(-2,2)时,f (x )=-x 2+1,则x ∈(-4,-2)时,f (x )的表达式为________.7.已知定义在区间[0,1]上的函数y =f (x )的图象如右图所示,对于满足0<x 1<x 2<1的任意x 1、x 2,给出下列结论: ①f (x 2)-f (x 1)>x 2-x 1;②x 2f (x 1)>x 1f (x 2); ③f (x 1)+f (x 2)2<f⎝⎛⎭⎫x 1+x 22.其中正确结论的序号是________.(把所有正确结论的序号都填上)8.定义在R 上的函数f (x )满足f ⎝⎛⎭⎫x +52+f (x )=0,且函数f ⎝⎛⎭⎫x +54为奇函数,给出下列结论:①函数f (x )的最小正周期是52;②函数f (x )的图象关于点⎝⎛⎭⎫54,0对称; ③函数f (x )的图象关于直线x =52对称;④函数f (x )的最大值为f ⎝⎛⎭⎫52.其中正确结论的序号是________.(写出所有你认为正确的结论的符号)第九部分 一次函数与二次函数一、选择题1.一元二次方程ax 2+2x +1=0(a ≠0)有一个正根和一个负根的充分不必要条件是( ) A .a <0 B .a >0 C .a <-1 D .a >12.设b >0,二次函数y =ax 2+bx +a 2-1的图象为下列之一,则a 的值为( )A .1B .-1 C.-1-52 D.-1+523.已知函数f (x )=ax 2-2ax +1(a >1),若x 1<x 2,且x 1+x 2=1+a ,则( ) A .f (x 1)>f (x 2) B .f (x 1)<f (x 2) C .f (x 1)=f (x 2)D .f (x 1)与f (x 2)的大小不能确定4. 右图所示为二次函数y =ax 2+bx +c 的图象,则|OA |·|OB |等于( ) A.c a B .-c a C .±caD .无法确定5.关于x 的方程()x 2-12-||x 2-1+k =0,给出下列四个命题:①存在实数k ,使得方程恰有2个不同的实根; ②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根. 其中假命题的个数是( )A .0B .1C .2D .3 二、填空题6.若方程4()x 2-3x +k -3=0,x ∈[]0,1没有实数根,求k 的取值范围________.7.如果方程x 2+2ax +a +1=0的两个根中,一个比2大,另一个比2小,则实数a 的取值范围是________. 8.已知f (x )=x 2, g (x )是一次函数且为增函数, 若f [g (x )]=4x 2-20x +25, 则g (x )=____________. 三、解答题9.设二次函数f (x )=x 2+ax +a ,方程f (x )-x =0的两根x 1和x 2满足0<x 1<x 2<1. (1)求实数a 的取值范围; (2)试比较f (0)·f (1)-f (0)与116的大小,并说明理由.10.设函数f (x )=x 2+|x -2|-1,x ∈R . (1)判断函数f (x )的奇偶性; (2)求函数f (x )的最小值.单元测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设集合A 和集合B 都是实数集R ,映射f :A →B 是把集合A 中的元素x 对应到集合B 中的元素x 3-x +1,则在映射f 下象1的原象所组成的集合是( )A .{1}B .{0}C .{0,-1,1}D .{0,1,2}2.若不等式x 2-x ≤0的解集为M ,函数f (x )=ln(1-|x |)的定义域为N ,则M ∩N 为( ) A .[0,1) B .(0,1) C .[0,1] D .(-1,0] 3.函数y =log a (|x |+1)(a >1)的大致图象是( )4.已知函数f (x )=log a x ,其反函数为f -1(x ),若f -1(2)=9,则f (12)+f (6)的值为( )A .2B .1 C.12D.135.函数f (x )=(12)x 与函数g (x )=log 12|x |在区间(-∞,0)上的单调性为( )A .都是增函数B .都是减函数C .f (x )是增函数,g (x )是减函数D .f (x )是减函数,g (x )是增函数6.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x ,x ≤0.若f (a )=12,则a =( )A .-1 B. 2C .-1或 2D .1或- 27.设函数f (x )=-x 2+4x 在[m ,n ]上的值域是[-5,4],则m +n 的取值所组成的集合为( )A .[0,6]B .[-1,1]C .[1,5]D .[1,7]8.方程(12)|x |-m =0有解,则m 的取值范围为( )A .0<m ≤1B .m ≥1C .m ≤-1D .0≤m <19.定义在R 上的偶函数f (x )的部分图象如右图所示,则在(-2,0)上,下列函数中与f (x )的单调性不同的是( )A .y =x 2+1 B .y =|x |+1C .y =⎩⎪⎨⎪⎧2x +1,x ≥0,x 3+1,x <0, D .y =⎩⎪⎨⎪⎧e x ,x ≥0,e -x ,x <010.设a =log 0.70.8,b =log 1.10.9,c =1.10.9,那么( )A .a <b <cB .a <c <bC .b <a <cD .c <a <b11.中国政府正式加入世贸组织后,从2000年开始,汽车进口关税将大幅度下降.若进口一辆汽车20XX 年售价为30万元,五年后(20XX 年)售价为y 万元,每年下调率平均为x %,那么y 和x 的函数关系式为( )A .y =30(1-x %)6B .y =30(1+x %)6C .y =30(1-x %)5D .y =30(1+x %)512.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0](x 1≠x 2),有(x 2-x 1)(f (x 2)-f (x 1))>0,则当n ∈N *时,有( )A .f (-n )<f (n -1)<f (n +1)B .f (n -1)<f (-n )<f (n +1)C .f (n +1)<f (-n )<f (n -1)D .f (n +1)<f (n -1)<f (-n )二、填空题(13.函数f (x )=11-ex 的定义域是________.14.若x ≥0,则函数y =x 2+2x +3的值域是________. 15.设函数y =f (x )是最小正周期为2的偶函数,它在区间[0,1]上的图象为如图所示的线段AB ,则在区间[1,2]上f (x )=______.16.设函数f (x )=⎩⎪⎨⎪⎧1,x >00,x =0-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设f (x )=a ·2x -12x +1是R 上的奇函数.(1)求a 的值;(2)求f (x )的反函数f -1(x ).18.(本小题满分12分)已知函数f (x )=2x -x m ,且f (4)=-72.(1)求m 的值;(2)判断f (x )在(0,+∞)上的单调性,并给予证明.19.(本小题满分12分)已知函数f (x )=3x ,且f (a +2)=18,g (x )=3ax -4x 的定义域为区间[-1,1]. (1)求g (x )的解析式; (2)判断g (x )的单调性.21.(本小题满分12分)设函数f (x )=x 2+x -14.(1)若函数的定义域为[0,3],求f (x )的值域;(2)若定义域为[a ,a +1]时,f (x )的值域是[-12,116],求a 的值.22.(本小题满分12分)已知函数f (x )=(13)x ,函数y =f -1(x )是函数y =f (x )的反函数.(1)若函数y =f -1(mx 2+mx +1)的定义域为R ,求实数m 的取值范围; (2)当x ∈[-1,1]时,求函数y =[f (x )]2-2af (x )+3的最小值g (a ).。
基本初等函数、函数与方程——高三二轮数学复习课时作业

采取保鲜膜封闭保存.已知金针菇失去的新鲜度h与其采摘后时间t(天)满足的函数解
析式为h=mln(t+a)(a>0).若采摘后1天,金针菇失去的新鲜度为40%,采摘后3天,
金针菇失去的新鲜度为80%,那么若不及时处理,采摘下来的金针菇在多长时间后
开始失去全部新鲜度(已知 2≈1.414,结果取一位小数)( C )
A.4.0天
B.4.3天
C.4.7天
D.5.1天
数学(理)
第 22 页
解析 由题意得mmllnn13+ +aa= =00..48, , 两个等式相除得llnn31+ +aa=2, 即ln(3+a)=2ln(1+a),所以(1+a)2=3+a, 因为a>0,所以a=1, 设t天后开始失去全部新鲜度,则mln(t+1)=1, 又mln(1+1)=0.4, 两个等式相除得lnltn+21=01.4, 即2ln(t+1)=5ln 2=ln 32,(t+1)2=32,t+1= 32=4 2≈4×1.414=5.656, 即t=4.656≈4.7.故选C.
数学(理)
第 23 页
12.(2022·广东茂名二模)双碳,即碳达峰与碳中和的简称,2020年9月中国明确
提出2030年实现“碳达峰”,2060年实现“碳中和”.为了实现这一目标,中国加
大了电动汽车的研究与推广,到2060年,纯电动汽车在整体汽车中的渗透率有望超
过70%,新型动力电池随之也迎来了蓬勃发展的机遇.Peukert于1898年提出蓄电池
第 16 页
数学(理)
第 17 页
9.(2022·辽宁沈阳二模)2021年10月12日,习近平总书记在《生物多样性公约》
第十五次缔约方大会领导人峰会视频讲话中提出:“绿水青山就是金山银山.良好
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学函数与方程试题1.要制作一个容器为4,高为的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元)【答案】88【解析】假设底面长方形的长宽分别为, . 则该容器的最低总造价是.当且仅当的时区到最小值.【考点】函数的最值.2.若函数f(x)=x3-3x+a有三个不同的零点,则实数a的取值范围是________.【答案】(-2,2)【解析】由f(x)=x3-3x+a,得f′(x)=3x2-3,令f′(x)=3x2-3=0,得x=±1,由图象可知f(x)的极大值为f(-1)=2+a,f(x)的极小值为f(1)=a-2,要使函数f(x)=x3-3x+a有三个不同的零点,则有f(-1)=2+a>0,f(1)=a-2<0,即-2<a<2,所以实数a的取值范围是(-2,2).3.已知函数,,的零点分别为,则()A.B.C.D.【答案】D【解析】令,,分别得,,,则分别为函数的图象与函数,,的图象交点的横坐标,在同一平面直角坐标系下作出它们的图象,易得,,,故选.【考点】函数图象、零点的概念.4.已知函数,若关于的方程有两个不同的实根,则实数的取值范围是()A.B.C.D.【答案】B【解析】因为关于的方程有两个不同的实根,即有两个不同的实根.等价于函数与函数有两个交点.如图可得.【考点】1.含绝对值的函数的图象.2.函数与方程问题.3.数形结合的数学思想.5.是定义在上的奇函数,其图象如图所示,令,则下列关于函数的叙述正确的是()A.若,则函数的图象关于原点对称B.若,则方程有大于2的实根C.若,则方程有两个实根D.若,则方程有两个实根【答案】B【解析】还是奇函数,当时,不是奇函数,其图象不可能关于原点对称,A错;如,则函数的极小值小于,时,把图象向上平移2个单位,的极小值小于0,方程仍然有三个根,C错,极大值为,当时,的极大值小于0,方程只有一个根,D错,故选B.【考点】函数图象变换,函数的零点.6.已知函数,若关于的方程有三个不同的实根,则实数的取值范围是.【答案】【解析】如图,直线y=x-a与函数的图象在处有一个切点,切点坐标为(0,0),此时;直线与函数的图象有一个切点,切点坐标是,此时相应,观察图象可知,方程有三个不同的实根时,实数的取值范围是.【考点】1函数图像;2数形结合及转化思想。
7.已知函数f(x)=||x-1|-1|,若关于x的方程f(x)=m(m∈R)恰有四个互不相等的实根x1,x2,x 3,x4,则x1x2x3x4的取值范围是________.【答案】(-3,0)【解析】f(x)=||x-1|-1|=方程f(x)=m的解就是y=f(x)的图象与直线y=m交点的横坐标,由图可知,x2=-x1,x3=2+x1,x4=2-x1,且-1<x1<0.设t=x1x2x3x4=(-2)2-4,则t=(-2)2-4,易得-3<t<0.8.已知函数f(x)=2x-3x,则函数f(x)的零点个数________.【答案】2【解析】(解法1)令f(x)=0,则2x=3x,在同一坐标系中分别作出y=2x和y=3x的图象,由图知函数y=2x和y=3x的图象有2个交点,所以函数f(x)的零点个数为2.(解法2)由f(0)>0,f(1)<0,f(3)<0,f(4)>0,…,所以有2个零点,分别在区间(0,1)和(3,4)内9.已知函数f(x)= (k∈R),若函数y=|f(x)|+k有三个零点,则实数k的取值范围是()A.k≤2B.-1<k<0C.-2≤k<-1D.k≤-2【答案】D【解析】由y=|f(x)|+k=0得|f(x)|=-k≥0,所以k≤0,作出函数y=|f(x)|的图像,要使函数y=-k与y=|f(x)|的图像有三个交点,则有-k≥2,即k≤-2.10.函数f(x)=x-sin x在区间[0,2π]上的零点个数为().A.1B.2C.3D.4【答案】B【解析】在同一坐标系内作出函数y=x及y=sin x在[0,2π]上的图象,发现它们有两个交点,即函数f(x)在[0,2π]上有两个零点.11.我国西部某省4A级风景区内住着一个少数民族村,该村投资了800万元修复和加强民俗文化基础设施,据调查,修复好村民俗文化基础设施后,任何一个月内(每月按30天计算)每天的旅游人数与第x天近似地满足(千人),且参观民俗文化村的游客人均消费近似地满足(元).(1)求该村的第x天的旅游收入(单位千元,1≤x≤30,)的函数关系;(2)若以最低日收入的20%作为每一天的计量依据,并以纯收入的5%的税率收回投资成本,试问该村在两年内能否收回全部投资成本?【答案】(1);(2)能收回投资.【解析】(1)函数应用题关键是找到等量关系,函数关系,不等关系,列出相应的式子就可解题,一般情况下,这些关系式在题中都有提示,但有时我们也要注意生活中的常识,如本题中某天的旅游收入应该等于这天的人均消费乘以这天的旅游人数,即,此题中含绝对值符号,我们在求时,可分类讨论,用分段函数形式表示;(2)关键是求的最小值,如最小值为,我们只要再计算,如果这个值不小于800万元,就能收回全部投资成本,否则就不能,而的最小值要分段求,一个用基本不等式,一个用函数的单调性,分别救出后比较,取较小的一个即可.试题解析:(1)依据题意,有=(2) 当,时,(当且仅当时,等号成立) .因此,(千元) .当,时, .考察函数的图像,可知在上单调递减,于是,(千元) .又,所以,日最低收入为1116千元.该村两年可收回的投资资金为=8035.2(千元)=803.52(万元) .因803.52万元800万元,所以,该村两年内能收回全部投资资金.【考点】(1)分段函数解析式;(2)分段函数的最值问题.12.的零点个数为()A.4B.5C.6D.7【答案】B【解析】∵,∴,图像如图所示,由图像看出与有5个交点,∴的零点个数为5个.【考点】1.函数零点问题;2.函数图像.13.定义在上的函数,且在上恒成立,则关于的方程的根的个数叙述正确的是( ).A.有两个B.有一个C.没有D.上述情况都有可能【答案】A【解析】显然是偶函数,且在递增.在上恒成立,所以的图象至少向左平移2个单位,即,所以,方程的根有2个.【考点】函数与方程.14.方程的实数解的个数为___________.【答案】【解析】由题意可令函数和,分别作图如下,不难发现它们有三个交点,则方程有三个实数解.【考点】1.函数的图象;2.函数与方程的关系15.存在实数x,使,则a的取值范围是_________【答案】【解析】存在实数x,使,即方程有解,,解得或.【考点】逻辑用语,一元二次方程的解.16.函数在区间上有两个零点,则的取值范围是.【答案】【解析】令,要使函数在区间上有两个零点需满足,即,所以的取值范围是.【考点】函数零点存在定理、导数在判断函数单调性中的应用.17.已知函数(为常数,为自然对数的底数)的图象在点处的切线与该函数的图象恰好有三个公共点,则实数的取值范围是【答案】【解析】函数在点处的切线的方程为,因此原条件转化为直线与曲线有两个公共点,即方程有两个小于1的根,设,则有,解得实数的取值范围是实数的取值范围是【考点】导数的几何意义、函数与方程、一元二次方程根的分布.18.设函数,记,若函数至少存在一个零点,则实数的取值范围是.【答案】【解析】令设,令,,发现函数在上都单调递增,在上都单调递减,于是函数在上单调递增,在上单调递减,所以当时,所以函数有零点需满足,即.【考点】导数、函数的零点、函数的单调性19.设函数,则其零点所在的区间为()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)【答案】C【解析】因为,,,,,且,所以,函数的零点在区间(1,2)内.【考点】函数零点的判定20.已知函数则函数的零点个数为()A.B.C.D.【答案】C【解析】;或,所以函数的零点个数为3个.【考点】零点的求法.21.已知是定义域为实数集的偶函数,,,若,则.如果,,那么的取值范围为( )A.B.C.D.【答案】B【解析】∵,,,则,∴定义在实数集上的偶函数在上是减函数.∵, ∴, 即.∴或解得或.∴.故选B..【考点】函数的奇偶性、单调性.22.定义在上的偶函数,且对任意实数都有,当时,,若在区间内,函数有4个零点,则实数的取值范围是.【答案】【解析】根据题意,由于定义在上的偶函数,且对任意实数都有,函数周期为2,且根据f(-x)=f(x)=f(2+x),可知周期为4,那么根据题意,当时,,作图可知,使得在区间内,函数有4个零点,等价于y=f(x),y=k(x-1),则可知满足题意的参数k的范围是,故答案为。
【考点】函数的性质,函数零点点评:主要是考查了函数的周期性以及函数零点的运用,属中档题。
x+x-4的零点为n,则23.若a>l,设函数f(x)=a x+x -4的零点为m,函数g(x)= loga的最小值为A.1B.2C.4D.8【答案】A【解析】作三个函数的图像如下,由于函数f(x)=a x+x -4的零点为m,则,化为,所以函数f(x)的零点m就是函数交点的横坐标。
同理:函数g(x)的零点n就是交点的横坐标。
求得直线的交点为,由于函数的图像关于对称,则,即,所以,,。
故选A。
【考点】函数的零点点评:当函数的零点无法直接求出时,需通过画出函数的图像来求解。
24.函数f(x)=的零点所在的一个区间是A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)【答案】B【解析】解:∵函数f(x)=2x+3x是R上的连续函数,且单调递增,f(-1)=2-1+3×(-1)=-<0,f(0)=20+0=1>0,∴f(-1)f(0)<0.∴f(x)=2x+3x的零点所在的一个区间为(-1,0),故答案为(-1,0).选B.【考点】函数零点点评:本题主要考查函数零点的概念与零点定理的应用,属于容易题。
25.已知函数则下列关于函数的零点个数的判断正确的是A.当时,有3个零点;当时,有2个零点B.当时,有4个零点;当时,有1个零点C.无论为何值,均有2个零点D.无论为何值,均有4个零点【答案】B【解析】分四种情况讨论.(1)时,,∴,此时的零点为;(2)时,,∴,则时,有一个零点,,没有零点,(3)时,,则时,有一个零点,时,没有零点,(4)若时,,则时,有一个零点,时,没有零点,综上可知,当时,有个零点;当0时,有个零点。
【考点】本小题主要考查函数的零点个数的判断.点评:本小题考查函数的零点的个数,考查学生分类讨论思想和数形结合思想的应用.26.若关于的方程有四个不相等的实根,则实数的取值范围是()A.B.C.D.【答案】D【解析】令,则需要有两个不等正根,在同一平面直角坐标系中画出函数的图像,由图像知:当直线介于图中两条直线之间时(一条过原点,一条相切)满足题意,把原点代入得k=0;令,则,所以实数的取值范围是。