非渐开线齿轮
(完整版)齿轮的发展史

据史料记载,远在公元前400~200年的中国古代就巳开始使用齿轮,在我国山西出土的青铜齿轮是迄今巳发现的最古老齿轮,作为反映古代科学技术成就的指南车就是以齿轮机构为核心的机械装置。
17世纪末,人们才开始研究,能正确传递运动的轮齿形状。
18世纪,欧洲工业革命以后,齿轮传动的应用日益广泛;先是发展摆线齿轮,而后是渐开线齿轮,一直到20世纪初,渐开线齿轮已在应用中占了优势。
早在1694年,法国学者Philippe De La Hire首先提出渐开线可作为齿形曲线。
1733年,法国人M.Camus提出轮齿接触点的公法线必须通过中心连线上的节点。
一条辅助瞬心线分别沿大轮和小轮的瞬心线(节圆)纯滚动时,与辅助瞬心线固联的辅助齿形在大轮和小轮上所包络形成的两齿廓曲线是彼此共轭的,这就是Camus定理。
它考虑了两齿面的啮合状态;明确建立了现代关于接触点轨迹的概念。
1765年,瑞士的L.Euler提出渐开线齿形解析研究的数学基础,阐明了相啮合的一对齿轮,其齿形曲线的曲率半径和曲率中心位置的关系。
后来,Savary进一步完成这一方法,成为现在的Eu-let-Savary方程。
对渐开线齿形应用作出贡献的是Roteft WUlls,他提出中心距变化时,渐开线齿轮具有角速比不变的优点。
1873年,德国工程师Hoppe提出,对不同齿数的齿轮在压力角改变时的渐开线齿形,从而奠定了现代变位齿轮的思想基础。
19世纪末,展成切齿法的原理及利用此原理切齿的专用机床与刀具的相继出现,使齿轮加工具军较完备的手段后,渐开线齿形更显示出巨大的优走性。
切齿时只要将切齿工具从正常的啮合位置稍加移动,就能用标准刀具在机床上切出相应的变位齿轮。
1908年,瑞士MAAG研究了变位方法并制造出展成加工插齿机,后来,英国BSS、美国AGMA、德国DIN相继对齿轮变位提出了多种计算方法。
为了提高动力传动齿轮的使用寿命并减小其尺寸,除从材料,热处理及结构等方面改进外,圆弧齿形的齿轮获得了发展。
齿轮机构的齿廓啮合基本规律特点和类型

齿轮机构的齿廓啮合基本规律特点和类型齿轮机构是一种重要的传动机构,用于将转动的运动和转矩传递的机械元件。
齿轮的齿廓啮合是齿轮机构工作的核心部分,其基本规律、特点和类型对于齿轮机构的设计和应用具有重要的参考价值。
一、基本规律1.齿廓规律:齿廓规律描述了齿轮齿廓线的几何形状。
常见的齿廓规律有圆弧齿廓、渐开线齿廓和非渐开线齿廓等。
(1)圆弧齿廓:圆弧齿廓是通过圆弧曲线来描述齿槽的齿轮齿廓。
圆弧齿廓的优点是简单,易于加工,但啮合时存在齿间间隙和传动误差。
(2)渐开线齿廓:渐开线齿廓是常用的齿廓规律,可以在齿轮齿廓上实现圆顶啮合,具有传动平稳、效率高、传动误差小等优点。
常见的渐开线齿廓包括标准渐开线、修形渐开线和端面渐开线等。
(3)非渐开线齿廓:非渐开线齿廓是指不能用一个等角参数来描述的齿廓,例如双曲线齿廓和伞齿轮齿廓等。
非渐开线齿廓的优点是能够实现更大的传动比和更平滑的啮合过程。
2.齿廓规律的选择:选择合适的齿廓规律可以提高齿轮机构的传动效率和运动平稳性。
在选择齿廓规律时,需要考虑以下因素:(1)传动要求:根据齿轮机构的传动要求,选择适合的齿廓规律。
例如,要求传动平稳和效率高的应选用渐开线齿廓,要求传动比大且运动平稳的应选用非渐开线齿廓。
(2)制造和加工因素:考虑齿轮的加工工艺和精度要求,选择适合加工的齿廓规律。
例如,圆弧齿廓适合用铣床加工,而渐开线齿廓适合用滚齿机加工。
二、特点1.几何特点:齿廓啮合过程中,齿轮的齿廓线和花键的啮合点始终保持一定的关系,包括齿廓的曲率半径和齿廓线与法线的夹角等特征。
这些几何特点决定了齿轮的啮合性能和传动特性。
2.运动特点:齿轮机构的齿廓啮合过程中,齿轮的运动特点包括啮合速度、传动比和传动误差等。
齿轮的啮合速度是指齿轮工作时齿廓线移动的速度,而传动比是指输入轴和输出轴的转速之比。
传动误差则是齿轮啮合过程中由于齿廓不完美造成的传动误差,会导致振动和噪声。
三、类型1.直齿轮:直齿轮是最常见的齿轮类型,其齿廓线是直线,适用于输送大扭矩或平稳传动的场合。
3《液压传动》液压泵

19
17
1)原因:径向液压力分布不均 啮合力 2)危害:轴承磨损、刮壳。 3)措施:缩小压油口,增加径 向间隙。 ※ 压油口缩小后,安装时注意不 能反转。
18
作用在泵轴上的径向力,能使轴弯曲,从而引起齿顶与泵壳体 相接触,从而降低了轴承的寿命,这种危害会随着齿轮泵压力的提 高而加剧,所以应采取措施尽量减小径向不平衡力,其方法如下: (1) 缩小压油口的直径,使压力油仅作用在一个齿到两个齿的范围 内,这样压力油作用于齿轮上的面积减小,因而径向不平衡力也就 相应地减小。 (2)增大泵体内表面与齿轮齿顶圆 的间隙,使齿轮在径向不平衡力作用 下,齿顶也不能和泵体相接触。 (3)开压力平衡槽,如图所示, 开两个压力平衡槽1和2分别与低、高 压油腔相通,这样吸油腔与压油腔相 对应的径向力得到平衡,使作用在轴 承上的径向力大大地减小。但此种方 法会使泵的内泄漏增加,容积效率降 低,所以目前很少使用此种方法。
9
一、齿轮泵的工作原理 齿轮泵的工作原理
齿轮1、2的齿廓线(面)与壳体内 表面及前后端盖构成若干密封容积, 啮合线将高、低压腔隔离开来。 当齿轮按图示方向旋转时,下侧的轮 齿逐渐脱离啮合,其密封容积逐渐增 大,形成局部真空,油液在大气压力 的作用下从吸油口进入下部低压腔; 随着齿轮的转动,齿轮的齿谷把油液 从下侧带到上侧密封容积中,轮齿在 上侧进入啮合时,使上侧密封容积逐 渐减小,油液从上侧油高压腔将油液 排出。当齿轮泵不断地旋转时,齿轮 泵不断地吸油和排油
10
二、齿轮泵的排量和流量 1.排量与流量: 对于由一对齿数相等的齿轮组成的外啮 排量与流量: 合齿轮泵,其主轴旋转一周所排出的液体体积等于两齿轮轮齿 体积之和。对于标准齿轮而言,轮齿体积与齿谷容积是相同的。 这样,齿轮泵的几何排量等于一个齿轮的轮齿体积和齿谷容积 之和。考虑到齿顶间隙的液体从排液腔仍被带回到吸油腔,不 参与排液,则齿轮泵的几何排量等于以齿顶圆为外径、以 (Z- 2)m的圆为内径、高为齿轮宽度B的圆筒体积
齿轮的发展史

据史料记载,远在公元前400~200年的中国古代就巳开始使用齿轮,在我国山西出土的青铜齿轮是迄今巳发现的最古老齿轮,作为反映古代科学技术成就的指南车就是以齿轮机构为核心的机械装置。
17世纪末,人们才开始研究,能正确传递运动的轮齿形状。
18世纪,欧洲工业革命以后,齿轮传动的应用日益广泛;先是发展摆线齿轮,而后是渐开线齿轮,一直到20世纪初,渐开线齿轮已在应用中占了优势。
早在1694年,法国学者Philippe De La Hire首先提出渐开线可作为齿形曲线。
1733年,法国人M.Camus提出轮齿接触点的公法线必须通过中心连线上的节点。
一条辅助瞬心线分别沿大轮和小轮的瞬心线(节圆)纯滚动时,与辅助瞬心线固联的辅助齿形在大轮和小轮上所包络形成的两齿廓曲线是彼此共轭的,这就是Camus定理。
它考虑了两齿面的啮合状态;明确建立了现代关于接触点轨迹的概念。
1765年,瑞士的L.Euler提出渐开线齿形解析研究的数学基础,阐明了相啮合的一对齿轮,其齿形曲线的曲率半径和曲率中心位置的关系。
后来,Savary进一步完成这一方法,成为现在的Eu-let-Savary方程。
对渐开线齿形应用作出贡献的是Roteft WUlls,他提出中心距变化时,渐开线齿轮具有角速比不变的优点。
1873年,德国工程师Hoppe提出,对不同齿数的齿轮在压力角改变时的渐开线齿形,从而奠定了现代变位齿轮的思想基础。
19世纪末,展成切齿法的原理及利用此原理切齿的专用机床与刀具的相继出现,使齿轮加工具军较完备的手段后,渐开线齿形更显示出巨大的优走性。
切齿时只要将切齿工具从正常的啮合位置稍加移动,就能用标准刀具在机床上切出相应的变位齿轮。
1908年,瑞士MAAG研究了变位方法并制造出展成加工插齿机,后来,英国BSS、美国AGMA、德国DIN相继对齿轮变位提出了多种计算方法。
为了提高动力传动齿轮的使用寿命并减小其尺寸,除从材料,热处理及结构等方面改进外,圆弧齿形的齿轮获得了发展。
齿轮、蜗杆传动复习题

二、选择题 1、齿轮轮齿加工成鼓形,主要考虑载荷系数中 D。 A、KA B、KV C、Kα D、Kβ
2、通常齿面接触应力为 A。 A、脉动循环 B、对称循环 C、静应力 A D、不定
3、按齿面接触强度设计齿轮时,应将 A、 H 1 与
中较小者代入设计公式。
H2
B、 F 1 与 F 2
C、 YF 1 与 YF 2
D、 F 1 YF 1 与 F 2 YF 2
4、闭式软齿面塑性材料齿轮的计算准则是C。 A、先按弯曲疲劳强度设计,再按接触疲劳强度校核 B、只按弯曲疲劳强度设计 C、先按接触疲劳强度设计,再按弯曲疲劳强度校核 D、只按接触疲劳强度设计 5、在齿轮结构中与轴配合的部分叫B。 A、轮幅 B、轮毂 C、轮缘 D、幅板
(1) H 1 与 H 2
(2) H 1 与 H 2
(3) F 1 与 F 2
答: (1)不相等,因为齿面节线处所产生的最大接触应力小于齿轮的许用接触应 力; (2)不相等,两齿轮的许用接触应力分别与各自的材料,热处理的方法及应 力循环次数有关,一般不相等; (3)不相等,在齿根弯曲疲劳强度计算中,由于 Z1Z2,配对齿轮的齿形系数,应力校正系数均不相等。
11、为了提高齿轮齿根弯曲强度应 C。 A、增大模数 C、增加齿数 B、增大分度圆直径 D、减少齿宽
12、对齿轮轮齿经硬化处理,齿轮的齿顶进行适当修缘,可以 B。 A、减少载荷分布不均 C、提高轮齿的弯曲强度 B、减少动载荷 D、使齿轮易于啮合
13、采用含有油性和极压添加剂的润滑剂,主要是为了减少 A。 A、粘着磨损; C、表面疲劳磨损; B、磨粒磨损; D、腐蚀磨损。
14、一对相互啮合的齿轮,其齿面接触应力 D。 A、小齿轮大 B、大齿轮大 D、相等
齿轮基础知识

变位齿轮
变位齿轮的作用
1)防止根切:如前所述,若滚齿切制的标准齿轮齿数小于17,则会发生根切现象,
影响实际使用。
2)调节中心距:标准齿轮中心距用a表示,若实际需要的中心距(用A表示)A<a时, 就根本无法安装;若A>a,可以安装,却产生大的侧隙,重合度也降低,都影响了传动的平 稳性。 3)增强齿轮强度:一对啮合的标准齿轮,由于小齿轮齿根厚度薄,参与啮合的次数 又较多,因此强度较低,容易损坏,影响了齿轮传动的承载能力。 4)减小齿轮传动的结构尺寸,减轻重量:在传动比一定的情况下,可是小齿轮齿数
变位齿轮
变位齿轮
变位齿轮与标准齿轮相比,其模数、齿数、 压力角均无变化;但是正变位时,齿廓曲线段离 基圆较远,齿顶圆和齿根圆也相应增大,齿根高 减小,齿顶高增大,分度圆齿厚与齿根圆齿厚都 增大,但齿顶容易变尖;负变位时,齿廓曲线段 离基圆较近,齿顶圆和齿根圆也相应减小,齿根 高增大,齿顶高减小,分度圆齿厚和齿根圆齿厚 都减小。
介绍一种最常见的齿轮
标准渐开线圆柱直齿外齿轮
什么叫渐开线?
• 发生线在圆上做无滑动的纯滚动,所走过 的曲线即为渐开线。
渐开线的展成原理
变位齿轮
当齿轮的齿数少于一定数量时,切齿时齿根会被挖出
凹痕,使齿根部位变细,这种现象被称为根切。
为了防止根切现象的发生,产生了变位的想法。 变位除了可以避免根切,还可以起到调节齿轮啮合中 的中心距作用。
• 交错轴斜齿轮
返回
按齿轮传动时轴的相对位置
平行轴
相交轴
交错轴
交错轴
交错轴
交错轴
返回
按轮齿的齿面硬度
• 软齿面齿轮(≤350HB)
• 硬齿面齿轮(>350HB)
齿轮齿条介绍

(3)结论 * 与模数无关,而随齿数的增加而加大; * 当两轮齿数趋于无穷大时, 将趋于理论上的极限值
当
、 时,
由于两轮均变为齿条,将吻合成一体而无法啮合传动,所以这个理论上的极限值是不可 能达到的。
(4)重合度的含义
* 重合度的大小表明两轮啮合过程中同时参与啮合的轮齿对数, 越大,表明同时参与啮合 的齿轮对数越多,传动越平稳,每对轮齿承受的载荷越小。
三、齿廓曲线的选择
1)在给定工作要求的传动比的情况下,只要给出一条齿廓曲线,就可以根据齿廓啮 合基本定理求出与其共轭的另一条齿廓曲线。因此,理论上满足一定传动比规律的共 轭曲线有很多。
2)在生产实践中,选择齿廓曲线时还必须综合考虑设计、制造、安装、使用等方面 的因素。
3)常用的齿廓曲线有:渐开线、摆线、变态摆线、圆弧曲线、抛物线等,本章主要 研究渐开线齿廓的齿轮。
当其作无侧隙啮合传动时,
中心距
顶隙 (2)非标准安装
实际中心距 (理论中心距),节圆和分度圆分离, 3、齿轮齿条啮合传动 (1)标准安装
,齿侧产生间隙。
由于齿轮分度圆齿厚等于槽宽,齿条中线上的齿厚也等于槽宽,即 故当齿轮齿条作无侧隙啮合传动时,齿轮分度圆与节圆重合,齿条中线与节圆重合,
(2)非标准安装
齿轮插刀向着轮坯方向移动,切出轮齿的高度。 (4)让刀运动
切削完成后,轮坯沿径向微量移动,以免返回时插刀刀刃擦伤已成形的齿面,下一次切 削前又恢复到原来的位置。 *当用齿条插刀(梳齿刀)时:
4、基圆内无渐开线
5、渐开线的形状取决于基圆的大小
基圆越小,渐开线越弯曲;基圆越大,渐开线越平直;当基圆半径为无穷大时,渐开线 将成为一条直线。
三、渐开线方程
1、压力角:当用渐开线作齿轮的齿廓时,齿廓上点 K 速度方向 与 K 点法线 BK 之间所夹的 锐角称为渐开线在 K 点的压力角 。
基于少齿数的非对称渐开线齿轮主动设计_田兴

Abstract: In order to improve the gear capacity, asymmetric involute gear based on small teeth was discussed. Tangential modification with rack cutter was used, asymmetric rack cutter with double radii was designed, and total tooth profile equations with modification and no lateral clearance meshing for the asymmetric gear were derived. Undercut phenomenon for asymmetric involute gear with small number of teeth was analyzed. The pressure angle at undercut point with different numbers of teeth was solved. Using the direct design method for asymmetric involute gear with small number of teeth, the gearing mesh parameters and the maximum contact ratio were calculated. The results show that the maximum contact ratio can be obtained using the direct design method. The minimum number of gear tooth is 7 when the pinion teeth number is 4. Key words: tangential modification; small number of teeth; direct design; undercutting
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非渐开线齿轮
1. 引言
齿轮是一种用于传递动力和运动的机械装置,常见于各种机械设备中。
其中,渐开线齿轮是最常见的一种类型,其特点是齿廓曲线与半径成正比。
然而,在某些特殊的应用场合中,非渐开线齿轮也被广泛使用。
本文将对非渐开线齿轮进行详细介绍。
2. 非渐开线齿轮的定义与分类
非渐开线齿轮是指其齿廓曲线与半径不成正比的齿轮。
根据不同的曲线形状,非渐开线齿轮可以分为以下几种类型:
2.1. 圆弧型非渐开线齿轮
圆弧型非渐开线齿轮的齿廓曲线由多个圆弧段组成。
这种类型的非渐开线齿轮具有较好的传动性能和噪声特性,在某些高精度要求和低噪声要求的应用中得到广泛应用。
2.2. 曲面型非渐开线齿轮
曲面型非渐开线齿轮的齿廓曲线由一条或多条曲面组成。
这种类型的非渐开线齿轮具有较大的传动比范围和传动效率,适用于高速、大功率传动系统。
2.3. 其他类型的非渐开线齿轮
除了圆弧型和曲面型之外,还存在许多其他类型的非渐开线齿轮,如双曲线型、椭圆型等。
这些非渐开线齿轮在特定的应用场合中具有独特的优势。
3. 非渐开线齿轮的特点与优势
相比于渐开线齿轮,非渐开线齿轮具有以下几个特点和优势:
3.1. 更平稳的传动性能
由于非渐开线齿轮的齿廓曲线不是直接与半径成正比,因此其传动性能更加平稳。
在高速、高精度要求的传动系统中,非渐开线齿轮能够减小振动和噪声,提高传动效率。
3.2. 更大的传动比范围
由于非渐开线齿轮的齿廓曲线不限制于半径成正比的关系,因此其传动比范围更大。
在需要实现较大传动比的应用中,非渐开线齿轮能够提供更多选择。
3.3. 更好的适应性和可调性
由于非渐开线齿轮的齿廓曲线可以根据具体需求进行设计和调整,因此其适应性和可调性更好。
在特殊应用场合中,非渐开线齿轮能够满足多样化的需求。
3.4. 更高的传动效率
由于非渐开线齿轮具有较好的传动性能和平稳性,因此其传动效率相对较高。
在要求高效能转换的传动系统中,非渐开线齿轮能够提供更好的效果。
4. 非渐开线齿轮在实际应用中的案例
非渐开线齿轮在实际应用中有许多成功案例。
以下是其中几个典型案例:
4.1. 汽车变速器
汽车变速器是一种使用非渐开线齿轮实现不同速比转换的装置。
通过采用非渐开线齿轮,汽车变速器能够实现平稳的速度转换和高效的能量传递。
4.2. 工业机械设备
在许多工业机械设备中,非渐开线齿轮被广泛应用于传动系统中。
例如,风力发电机、船舶推进系统等都采用了非渐开线齿轮以提高传动效率和降低噪声。
4.3. 高精度仪器
在高精度仪器中,非渐开线齿轮被用于实现精确的运动控制。
例如,光学仪器、医疗设备等都使用了非渐开线齿轮以满足高精度要求。
5. 结论
非渐开线齿轮作为一种特殊类型的齿轮,在某些特定的应用场合中具有独特的优势和应用价值。
通过对非渐开线齿轮的定义、分类、特点与优势以及实际应用案例的介绍,我们可以更好地了解和理解这种重要的传动装置。
希望本文能够对读者有所启发和帮助。