1.5带电体系的静电能

合集下载

带电体系的静电能

带电体系的静电能
亦即能量 定域 于 电场之 中。 关键 词 :带 电体 系;静 电 能;做 功
中图分 类号 :0 4 . 41 1

文献 标识码 :A
文章编 号 :1 O — 6 2 2 0 )O —o 5 — o 8 1 9( 0 7 3 0 3 3 O
个 带 电体 系 的能量可 分为势 能和 动 能 。在 静 电学 中 ,由于 电荷 之 间处于相 对静 止状 态 ,无 需讨 论
或 Байду номын сангаас
q uz = 1 : -
_q q 2 l
由于这类 做功 改变 了体系 的静 电能 ,属于两 个 电荷 之 间相互 作用 能 的变 化 ,因而又 可 以用体 系的相 互作 用能来表示 ,即
Wm :


: (2ul+q u2 q 2 2 1 () ) 4
q刀 0
这一相互 作用 能 的积 累显 然 是 由外 力做功或 第一 个 电荷 的 电场 力做负 功转变 而来 的 ,故 这也 是体系 静 电能的另一 个称呼 。 3多个点 电荷 系统 的相互作 用 能 .
收 稿 日期 : 2 0 - l_ l 06- 2 3
作者简介:张进明 ( 91 ) 16- ,河北涿鹿人 ,张家口职业技术学院教育教学研 究室,副主任,副教授。
5 3
维普资讯
邢台职业技术学院学报
qz t 1 ql u z= q2
20 0 7年 第 3期
由上所 述不 难理解 ,电场 力做 功 与体系 的 电势 能完全 遵 守“ 能原 理” 功 而互 相转 化 ,若用 W 琳表示 外
力做功,其转换关系就是 h w =一 ( =一 q UA—UB =一 uA ) q B=q UB

1.5 电势能 电势 电势差

1.5 电势能 电势 电势差
回顾: 一. 点电荷之间的相互作用力
q1q2 F k 2 r
二. 电场的性质及电场方向的规定 ——正电荷受力方向 三. 电场强度的计算和理解、点电荷的电场强度
F E q 四. 电场力的计算
q Ek 2 r
F qE
四. 静电场线的两个约定 五. 静电场线的性质 1. 非闭合有向曲线,始于正电荷或无穷远,终于 负电荷或无穷远 2. 假想曲线 3. 电场线不会相交
二. 电势的物理意义及计算
单位正电荷在静电场中某点具有的电势能,称为静 电场中该点的电势 ——1. 标量;2. 单位:V(伏特)
EP 定义式: q
决定式: E dl

EP q
电荷在静电场中具有 的 电势能:不仅与电场 本 身性质有关,也与放 入

A
电势是反映静电场 本身性质的物理量
若只有静电场力、重力、弹簧弹力做功,对于电荷 和弹簧组成的系统:只存在电势能、重力势能、弹 性势能、动能之间转化,总能量守恒
例. 空间存在一水平向右的匀强电场,场强为E,一 质量为m,带电量为+q的小木块由静止从斜面底端 开始沿斜面向上运动至顶端,木块与斜面间动摩擦 因素为 ,斜面长为l,倾角为 , 求: 1. 过程中,电场力做的功? 2. 运动至顶端时,木块的速度?
பைடு நூலகம்
第四节
电势能 电势 电势差
一. 电势能的引入及计算 二. 电势的物理意义及计算 三. 电势高低的判断 四. 什么是电势差 五. 静电场中电场力做功的计算 六. 静电场中运动电荷的能量转化
两点间的电势差也就是:通常所说两点间的电压
U AB AB A B
五. 静电场中电场力做功的计算 1. 若为匀强电场: WqE qEd 2. 一般情况:

电磁学第三版思考题与习题解答

电磁学第三版思考题与习题解答

电磁学第三版(梁灿彬)思考题与习题解答第一章 静电场的基本规律思考题1.1答案: (1) ×,正的试探电荷; (2) √ ;(3)× 在无外场是,球面上E⃗ 大小相等。

1.2 答案: 利用对称性分析,垂直轴的分量相互抵消。

1.3答案:(1)× 没有净电荷 ;(2)×; (3)×;(4)√;(5)×;(6)×;(7)×。

1.4答案:无外场时,对球外而言是正确的。

1.5答案:(1)无关 (2) 有关 (3)不能(导体球)、可以(介质球)。

场强叠加原理应用到有导体的问题时,要注意,带电导体单独存在时,有一种电荷分布,它们会产生一种电场;n 个带电导体放在一起时,由于静电感应,导体上的电荷分布发生变化,这时,应用叠加原理应将各个导体发生变化的电荷分布“冻结”起来,然后以“冻结”的电荷分布单独存在时产生的电场进行叠加。

1.6答案:(a 图) 能 ,叠加法(补偿法); (b 图) 不能 。

1.7答案:222121q q φφφφεε-==+,;113131+ -q q φφφφεε==,;134410+0 -q φφφφε==,。

1.8答案:(1)× ;(2)×; (3)×;(4)×;(5)√;(6)×。

1.9答案:n VE en∂=-∂ ,例如匀强电场;E 大,电势的变化率就大,并非一定121122010101.+.=4424R q E dl E dl rR R R πεπεπεπε∞⎝⎰⎰.0E dl =,0n VE e n∂=-=∂。

1.14证明:设s 面上有场强平行于分量,补上另一半球后球内各点的总场强应为零,可见s 面上不能有场强的平行分量,s 面上只有场强垂直分量,故s 面上应为等势面。

习题1.2.1解:(1)设一个电量为q 1,则q 2=4q 1,由公式12204q q F r πε=可以得到: ()2122041.64 5.010q πε-=⨯解之得: q 1=±3.3×10−7(C), q 2=1.33× 10−6(C) (2)当r=0.1时,所受排斥力为:12204q q F r πε==0.4(N ) 1.2.2解:设其中一个电荷电量为q ,则另一个电荷电量为Q -q ,由库仑力 ()2q Q q F k r -= 可知,当()220dF k Q q dq r =-=,即:2Qq = 时两电荷间的斥力最大,所以两者电量均为2Q。

静电能

静电能

§ 1.8 静电能 ELECTROSTATIC ENERGE (教材 P101)1.静电互作用能电荷之间的相互作用必然伴随着能量转移,由于电荷的相互作用通过电场传递,因此,能量转移必然通过电场对电荷作功来实现.我们在1.5节已经指出,静电场的保守性质,决定了它是有势场。

任何两点之间的电势差,等于电场力(或克服电场力)将单位正电荷从一点移至另一点所作的功,这功将转化为单位正电荷静电势能的改变量.因此,电势零点一经确定,任何一点的电势U ,就相当于单位正电荷在该点具有的静电势能.电势函数 U (x,y,z)在空间的分布构成标量场。

让我们设想,在其它电荷产生的外电场E 中,某点P的电势为U(x,y,z)= U(x),我们以黑体字母x 表示该点的位置矢量.当电场力(或克服电场力)将点电荷q从电势零点移至P点,电荷q就具有了势能:(1.8-1)这能量显然反映着外电场与电荷q 的相互作用,因此,这是电场与电荷q 的相互作用能。

如果我们对上式求负梯度,我们马上会得到(1.8-2)这正是外电场E 作用于电荷q的库仑力.如果一个体积为V 的电荷体系处于其它电荷的外电场E 中,设这体系的电荷密度函数为r (x) ,某个电荷元dq = r (x) d V 所在处外电场的电势为U(x),则这电荷元与外场的静电互作用能为显然,这电荷体系与外电场的静电互作用能,就是V 内所有电荷元与外电场的静电互作用能之和,它由下述积分给出:(1.8-3)现在,我们考虑两个点电荷之间的静电互作用能.设P1和P2两点分别存在着点电荷q1和q2,两者的距离r12= r21.对于q2,q1的电场就是外电场,它在q2所在点的电势为于是, q1对q2的静电互作用能是同理,对于q1,q2的电场就是外电场,同样可得到q1对q2的静电互作用能我们看到:两个理想点电荷的静电相互作用能与它们的相互距离成反比;而且,W12= W21,即它们的相互作用能存在空间平移对称性——两者互换位置,相互作用能量不变.这从能量守恒定律可以得到解释.根据上面两式,我们现在将两个点电荷的静电互作用能写成:(1.8-4)这里,Ui是一个点电荷在另一个点电荷所在处产生的电势.这结果显然可以推广至 n个点电荷的相互作用能:(1.8-5)其中(1.8-6)是其它点电荷在第 i 个电荷所在处产生的电势之代数和2.外电场对电偶极子的作用(教材 P39 和 P109)当电矩为p = ql 的电偶极子处于外电场E中,它将与外电场发生相互作用而具有一定的势能.由(1.8-1),两个电荷的势能分别是W += qU+W-= -qU-故电偶极子的总势能为(1.8-7)即(1.8-8)其中,q 是电矩矢量p 的方向与外电场E 的方向之间的夹角.显然,q = 0 即当电矩矢量p 的方向与外场E一致的状态,是电偶极子的能量最低状态,因而也是最稳定的状态.而q = p 即p 与外场方向相反的状态,则是电偶极子的能量最高状态,即最不稳定的状态.据(1.8-2)和(1.8-7),电偶极子受到外电场的作用力为(1.8-9)可见,若外电场是均匀场,即当E与坐标无关时,则▽E = 0,于是电偶极子受到的净作用力F =0 .从组成电偶极子的两个电荷+q和-q受到的力来看,分别是 F+ = +qE 和 F-= - qE ,因此,当外电场是均匀的,电偶极子受到的合力F= F++ F-= 0.这告诉我们,处于均匀电场中的电偶极子不会出现平移运动.但是,如果外电场是非均匀场,则▽E ≠0, F ≠0,外场力将把电偶极子拉向场强较高的方向.处于非均匀电场中的电介质(dielectric)小颗粒或轻微物体,将被极化而成为电偶极子,并被吸向场强较高的地方.例如,静电吸尘及静电选矿,就是利用这个原理.从(1.8-8)式我们看到,q≠0的状态,并非电偶极子的稳定状态.事实上,由于F+和F-两者不共线,故必定会对电偶极子形成一个净力矩,并使电偶极子朝着q = 0 即外电场的方向转动.我们记电场作用于电偶极子的力矩矢量为L,L的方向亦即转轴的方向必定垂直于p 和E 线构成的平面.我们设想在这力矩作用下,q 有微小改变δ q ,从而使电偶极子的势能W 减小,即(1.8-10)(“虚功原理”,见教材P110)两边除以δ q ,并取δ q →0的极限,有(1.8-11)将代入并求导数,我们得到(1.8-12 )实际上,转动是朝着q 减小的方向、也就是(1.8-10)式中δq < 0的方向进行的,因此力矩矢量L的绝对值应为(1.8-13)考虑及此,力矩矢量应当为(1.8-14)读者也可以从上图中,通过计算两个电荷相对于中点0 所受的力矩之和,来检验(1.8-14).——动手算一算两个电荷相对于中点0 所受的力矩矢量之和为[例1-18] 两个电偶极子的相互作用能[解] 设两电偶极子的距离为r,电矩为p1的电偶极子处于坐标原点o并沿z轴,电矩为p2的电偶极子与p1的夹角为a ,如图所示. 由(1.7-19)我们知道 p1在p2所在处产生的场强为:(1.8-15)而矢量p1可分解成球坐标下的两个分量(两个黄色箭头):(1.8-16)即p1在p2所在处产生的场强E 可写成(1.8-17)据(1.8-7),两者的相互作用能为(1.8-18)大家看到,两个电偶极子的相互作用能量的数值不仅与它们距离r 的3次方成反比,还与两者的相互取向有关.如果我们对上式求负梯度(在球坐标下进行),将给出两者之间的相互作用力,显然,这力与r4成反比.------ 你能否动手计算一下?现在,让我们考察如下比较特殊的几种情形:(1) 当两者共线,例如 p2也处于 z 轴,并且相同的取向,即q = 0 ,a = 0 ,此情形下两者将互相吸引,(1.8-18)给出相互作用能为负值;如果两者共线但取向相反,即q = 0 ,a = p 时, (1.8-18)给出W 将是一个正值,表示两者互相排斥.(2) 当q = p/ 2 ,a = 0 ,即两者平行且方向相同,将互相排斥,此时为正值;如果q = p/ 2 ,a = p ,两者平行但方向相反上式将变为负值,此时两者将互相吸引.上述结果对于我们今后讨论电介质(dielectric)问题显得很重要.由于组成介质的分子一般都是电中性的(总电量为零),而其电荷分布大都偏离球对称性,因此必定会出现分子电多极矩——主要是分子电偶极矩和四极矩,因此,如果从电学的角度看,电介质内部分子之间的相互作用,主要是电偶极矩以及四极矩之间的相互作用.从例1-16和例1-17读者已经看到:电偶极子的电势与 r 的2次方成反比,它们之间的相互作用势能与距离 r 的3次方成反比,电四极子的电势则与 r 的3次方成反比,它们之间的相互作用势能应当与距离 r 的4次方成反比,因此,一般情况下分子之间的电相互作用,主要地是电偶极作用.自习内容教材 P41[例5] P105 [例1] P106 [例2]3.电荷体系的静电能量(自能量) (教材P107)电荷之间存在着相互作用能,意味着带电体自身必然具有一定能量.现在,我们就来考虑任意一个电荷体系的静电能量,亦即它的自能量.我们在前面的(1.8-5)式,已经表示出n 个点电荷的静电互作用能:其中是其它点电荷在第i个电荷qi所在处产生的电势之代数和.应当主意,上式没有包括每一个电荷自身的能量.现在,我们设体积V内连续分布着电荷,电荷密度为r(x),一个很小的体积元dV内的电荷就是dq =r (x) dV .根据电势叠加原理,每一个很小的体积元dV内的电势U (x),应当是dV内部的电荷自己产生的电势Us (x)与dV外部的其它电荷产生的电势Ue(x)之和:U(x) = Us (x)+Ue(x)因此,dV内的电荷所具有的静电能,包含着它内部电荷的互作用能以及它与外部其它电荷的互作用能之和:于是,这带电体的总静电能量就是(1.8-19)积分体积V遍及整个电荷分布区域.4.静电场的能量和能量密度(可参阅教材P207,但讲法不同)大家知道,电荷分布稳定的带电体产生静电场,这电场与带电体不可分割地联系在一起.因此,我们把带电体的静电场叫做它的自有场.现在我们设想,通过某种方法使一个半径为a的薄球壳带上电荷q,例如,利用电源的一个电极与导体球壳接触使之带电,这过程电源作了功,然后将电极拿开,达到稳定平衡状态后,电荷均匀地分布在球壳表面上,电荷密度为如你们所知,这带电球壳的场强分布为( r≥a)E = 0 (r < a)即这球壳的电场连续地分布于整个球外区域.而球壳表面的电势则是一个常数(r = a)由于电荷只是分布于球面上,因此根据(1.8-19),将被积函数对整个球面积分,便给出这球壳的总静电能(1.8-20)一个非常重要的问题是:这个带电体的静电能究竟以什么形式存在?大家已经知道,电荷之间的相互作用是通过电场传递的.如果我们在这带电球壳外部某点放进一个试验电荷q0,它必将受到电场力的作用而改变运动状态,这意味着q从电场中获得了一定的能量!因此电场必定具有能量.让我们假设,电场的能量密度——单位体积内电场的能量为(焦耳/米3 ) (1.8-21)对于这个带电球壳而言,电场是分布在球外区域的。

带电体系的静电能

带电体系的静电能

解:(1)根据空腔导体的静电性质和球对称性,两空腔内表面的 电荷面密度分别是
1


Q1
4R12
和 2


Q2
4R22
又根据电荷守恒定律,导体外表面的的电量Q=Q1+Q2,由于 球对称性,导体外表面的电荷面密度是


Q1 Q2
的电容分别为
C1

0
S d
,
C2

0
S 2d
板极上带电± Q时所储的电能为
W1

1 2
Q2
0C1

1 2
Q2d
0S
,W2

1 2
Q2 2d
0S
故两极板的间距拉开到2d后电容器中电场能量的增量 为
W=W2-W1

1 2
Q2d
0S
(2)设两极板之间的相互吸引力为F ,拉开两极板时 所加外力应等于F ,外力所作的功A=Fd ,所以
(c)圆柱电容器
C

2 0L
ln( R2 )
R1
(F)电容器的联接 (G)电容器的能量
(1)串联
1 1
C i Ci
(2)并联
C Ci
W

Q2

1 CU 2

i
1 QU
2C 2
2
(H) 点电荷系的静电能
1n W 2 i1 qiVi
4.例题
例1.如图所示,一个半径为R的中性导体球,内部有两个球 形空腔,半径分别为R1和R2,在空腔中心分别放置点电 荷Q1和Q2,试求:
F A W Q2
d d 20S
第二章小结

带电体的静电能

带电体的静电能

带电体的静电能1. 点电荷之间的相互作用能(e W ):设两点电荷1q ,2q 。

我们知道1q 通过激发1E 作用于2q (2q 则通过激发2E 作用于1q ),2q 在1E 中具有电势能21W ,1q 在2E 中具有电势能12W ,并有21W =12W 。

即1q ,2q 组成的系统确定的电势能W=12W =21W 是1q ,2q 共有的,称电势能W 是1q ,2q 的相互作用能。

2. 带电体系的自能(s W ):由点电荷i q 组成的点电荷系,它们之间相互作用的相互作用能之和称为该系统的自能。

(对于孤立的由若干个电荷连续分布的带电体组成的系统可看成点电荷系)。

3. 静电能(W ):对于孤立的带电体它的自能就是它的静电能。

但对于(孤立的)由若干个电荷连续分布的带电体组成的系统中的任一个带电体,它不仅具有自能,还具有其它带电体对它的作用能,这两部分能量之和是这个带电体的静电能。

但从整体看,系统的自能就是系统的静电能。

需要注意的是:带电体的静电能并不等于带电体的各部分在电场中具有的电势能之和W '(点电荷系则i iiW q u '=∑,iu 是iq 处其它电荷产生的电势之和,对于连续带电体则过渡到积分:W udq '=⎰,积分包含线、面、体形式),W 与W '存在着简单倍数关系。

4. 带电体的静电能的计算:(1) 点电荷系{}|1,2,...,i q i n =:由静电能W 的定义我们知112ni ij i j iW q u =≠=∑∑,其中iju 是点电荷j q 在i q 处产生的电势。

所以112ni i i W q u ==∑(其中i u 是除i q 其它电荷在i q 处产生的电势之和),即W=12W '。

(2) 单一电荷连续分布的带电体:12W udq =⎰,积分遍及整个带电区域,其中u 为电荷元dq 处的电势,这个电势是由整个带电体产生的,dq 处的电势可以认为不含有dq 的贡献(dq 产生的电势du 较其它电荷元产生的电势来说是一个无穷小量)(3) 若干个电荷连续分布的带电体组成的系统:12W udq =⎰,这时积分遍及所有的带电体。

带电体系的静电能、带电体在外电场中的能量

带电体系的静电能、带电体在外电场中的能量

解:相邻顶点之间的距离为b
面对角线长度为 2b
12对 12对
12e2k / b 12e2k /
1
4 0
2b
体对角线长度为 3b 4对 4e2k / 3b
中心到顶点距离 3b / 2 8对 8(2e2 )k / 3b / 2
总相 互作
用能
we
1
4 0
12e2 (
b
12e2 2b
4e2 3b
32e2 )

dq(U U ) u(t)dq


We
Q
u(t)dq
0
Q q(t) dq 1 Q2
0C
2C
电量 0——>Q
2013/3/13
电容器储能公式的推广
孤立导体
Q=CU
We
1 2
Q2 C
1 CU 2 2
1 QU 2
一组导体1、2、…、n
1
We 2
n i
1 QiUi 2
i
Ui edS
U (r l) U (r) U l l
U(r) l U
U (r l )
U (r )
W ql U P U p E(r) pE cos
2013/3/13
带电体系在外场中受的力或力矩与静电
势能的关系——虚功原理 p271/p61
设处在一定位形的带电体系的电势能为W,当它 的位形发生微小变化
3b
0.344e2
0b
2013/3/13
自能和相互作用能
相互作用能:把每一个带电体看作一个不 可分割的整体,将各带电体从无限远移到 现在位置所做的功等于它们的相互作用能。
自能:把全部电荷从无限分散的情况下聚 集到带电体上的过程中外力克服电场力所 做的功。

静电场的能量

静电场的能量

= W互 + W自
5
W互是带电系统内N个带电体之间的相互作用能, 简称为系统的互能。
W自是每个带电体的静电能之和,简称为自能。
静电能 = 自能 + 相互作用能
⑵ 点电荷的自能
设想点电荷q是由半径为R( R → 0 )的均匀带电
球收缩半径而成,则球内一点产生的电势为
∫ ∫ ∫ U =
∞r r E ⋅ dl =
12
例1 如图所示,在一边长为d的立方体的每个顶 点上放有一个点电荷-e,立方体中心放有一个 点电荷+2e,求此带电系统的相互作用能量 。
解:法一
8个顶点上的负电荷的相 互作用能为12对,即
e2 12
4πε 0 d
6个面上对角顶点负电荷的相 互作用能为12对,即
12 e2 4πε0 2d
−e −e
R 0

Qr 4πε 0 R 3
2

r 2dr
+
ε0 2
∞ R

Q 4πε 0 r 2
2

r 2dr
= 3Q2
20πε 0 R
20
例4 球形电容器的内、外半径分别为R1和R2,所带电荷为Q。 若在两球壳间充以电容率为ε的电介质,求此电容器贮存 的电场能量。
解:由高斯定理, r
w1 = 0 (r < R1)
w4 = 0 (r > R2 )
w2
=
1 ε E2 2
=
32π
q2 2ε0ε r1r 4
(R1 < r < R)
w3
=
32π
q2 2ε 0ε r 2r 4
(R < r < R2 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三 电荷或电荷组在外电场中的能量
• 电荷或电荷组(最简单的是偶极子)在其他带 电体产生的电场(外场)中具有电势能 • 一个电荷在外电场中的电势能
W ( P) qU ( P)
• 电偶极子在外电场中的电势能
W qU(r ) qU(r l )
E
l
U U (r l ) U (r) l l U (r ) U (r l ) U (r ) l U W ql U P U p E(r ) pE cos
1-5 带电体系的静电能
一 点电荷之间的相互作用能
作业:1.5-3
• 定义静电能为零的状态 – 设想带电体系中的电荷可以无限分割为许 多小单元,最初认为它们分散在彼此相距 很远的位置上,规定这种状态下系统的静 电能为零。 • 静电能 – 把体系各部分电荷从无限分散的状态聚集 成现有带电体系时外力抵抗电场力所做的 全部功
n
3、E与U的关系:U pQ
dq U 分布电荷: 4 0 r Q E U E dl
p
1
三、描述静电场性质的基本定理
1、高斯定理: E dl 0
2、环路定理: S
q E dS
0
四 解题方法
a、求解电场分布的常用方法 电势:定义和迭加原理 电场强度:定义,叠加原理,高斯定理和电势梯度
本章小结
一、静电场性质的表现 1、对置于场内带电体有力的作用 2、带电体在场中移动时,电场力对其作功 二、描述静电场的物理量 1、电场强度
点电荷:E
定义: E F q
q
2
4 0r 1 n qi 点电荷组: E r 2 ri 4 0 i 1 i
ˆ r
分布电荷:
系统的静电能
q2 单独存在时 M点的电势
1 q1q2 1 We (q1U 2 q2U1 ) 4 0 r 2 q 单独存在时
在q1处的电势
2
多个点电荷的情形
• 把无限分散的多个点电荷逐个从无穷远移至相应 位置,计算外力所做的功
A'1 0, A'2 q2U12 , A'3 q3 (U13 U 23 ) A'n qn (U1n U 2 n U n 1, n ) A'i qi U ji
四 带电体系在外场中受的力或力矩与静电 势能的关系
• 设处在一定位形的带电体系的电势能为W,当它 的位形发生微小变化 • 电势能将相应地改变W • 电场力做一定的功A • 设系统无能量耗散和补充,能量守恒 A= -W • 电场力的功等于电势能的减少
• 利用上述关系可以给出带电体系的静电能与体系 受力的关系
qi q j rji
qi q j rji
i
j 1
n
qi U ji (1)
i 1 j 1
n
i 1

i 1
(2)
Ui:除点电荷i外其它 点电荷单独存在时qi 所在处的电势总和
j 1, j i
1 n We qiU i 2 i1
(3)
二 电荷连续分布情形 的静电能
1 n We qU i i 2 i 1
j 1 i 1
代表第j 个电荷在 第i 个电 荷所在位 置Pi处产 生的电势
U ji U j ( Pi )
Pi

qi E j dl 4 0 rij 1
n i 1
点电荷 组的总 功应为
A' A'1 A'2 A'3 A'n A'i 1 n i 1 qi q j qi U ji 4 0 i 1 j 1 rji i 1 j 1
两个点电荷的情形
• 先移动q1 到M点:外力不做功 • 再移动q2 到N点:外力做功
A '
N
q1
q2
M
N
q1 单独存在时 N的点电势
F 12 dl q2 E1 dl q2U1
N
交换移动次序可得
N
N A '' F 21 dl q1 E 2 dl qU 2 1 1 q1q2 q2U1 q1U 2 A' A' ' q1 单 独 存 在 时 q2处的电势 4 0 r
平移Байду номын сангаас
• 设想带电体系有一微小位移l
A F l Fl l W
l 0
转动
W Fl l
• 设带电体系绕某一方向的轴有微小角位移
A L W
W 0 L
和l都是虚设的,可称为虚位移和虚角位移
U i U ( Pi ) 1 4 0
j 1, j i

n
qj rji
Ui:除点电荷i外其它 点电荷单独存在时qi 所在处的电势总和
1 n A ' qU i i 2 i 1
点电荷组的静电势能的几种不同形式
We
We
1 4 0
1 8 0
q
i 1
n
n
i 1
n i 1
(1)
形式对称的表达式
• 可以证明,静电能值与电荷移动的次序无关
1 1 qi q j q jU ij qiU ji (q jU ij qiU ji ) q jU ij qiU ji 2 4 0 rij
1 n n 1 n n qi q j A ' qi U ji ji r 2 i 1 j 1, j i 8 0 i 1 1, j ji
1 dq E r3 r 4 0
dq e dV dq e dS
连续电荷体分布: 面分布: 线分布:
2、电势U
dq e dl q 定义: U pq E dl
p
点电荷: U
q 4 0
qi 点电荷组 U r 4 0 i 1 i 1
• 假定电荷体密度为 e ,把连续分布的带电体分 割成许多电荷元,其电量qi=eVi,则有
总静电能 不是相互 作用能
1 We e ViU i 2 i
Vi 0
带电体各部分电荷 在积分处的总电势
1 We eUdV 2 V 1 1 线电荷:We eUdl;面电荷:We eUd S 2 2
b、常用公式 1、电偶极子的场强: 延长线上:E 中垂面上:E
4 0
1
2p r3
1 4 0
p r3
λ 2、均匀带电无限长细棒场强。 E 2πε0 r qZ 3、均匀带电细环轴上的场强: E 4 0 ( R 2 Z 2 )3/ 2
4、均匀带电无限大平面外场强: E 2 0
q ˆ 5、均匀带电球壳场强: E 4 r 2 r 0
r>R
r<R
E=0
五 带电体系的静电能
六 带电体在电场中受的力及其运动
相关文档
最新文档