初中三角函数知识点总结及典型习题)

合集下载

初三数学三角函数(含答案)

初三数学三角函数(含答案)

初中数学三角函数1、勾股定理:直角三角形两直角边 a 、b 的平方和等于斜边c 的平方。

a 2b 2c 24、任意锐角的正切值等于它的余角的余切值; 任意锐角的余切值等于它的余角的正切值。

tan A cot B cot A tan Bcot-1 ~3~6、 正弦、余弦的增减性:当0°w < 90°时,sin 随 的增大而增大,cos 随 的增大而减小7、 正切、余切的增减性:当0° < <90°时,tan 随 的增大而增大,cot 随 的增大而减小。

1、解直角三角形的定义:已知边和角(两个,其中必有一边)一所有未知的 边和角。

依据:①边的关系: a 2b 2c 2;②角的关系:A+B=90 °;③边角关系:三角函数的定义。

(注意:尽量避免使用中间数据和除法)2、应用举例:(1)仰角:视线在水平线上方的角; 俯角:视线在水平线下方的角(2)坡面的铅直高度 h 和水平宽度I 的比叫做坡度(坡比)。

用字母i 表示,即i y 。

坡度一 般写成1: m 的形式,如i 1:5等。

把坡面与水平面的夹角记作 (叫做坡角),那么h + i tan 。

l3、 从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。

如图 3, OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。

4、 指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。

如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30° (东北方向), 南 偏东45° (东南方向),南偏西60° (西南方向), 北偏西60° (西北方向)。

铅垂线*视线 ‘ 仰角水平线俯角1*视线初三数学三角函数综合试题一、填空题: 1、在 Rt △ ABC 中/C = 90°, a = 2, b = 3,则 cosA =_, sinB =_ , tanB = ___ 2、直角三角形 3、已知tan ABC 的面积为24cm 2,直角边AB 为6cm , / A 是锐角,则sinA = =—, 是锐角,贝U sin 12 + ) + cos 2(40 ° 4、 cos 2(50° — _______ ? 5、 如图1,机器人从A 点,沿着西南方向,行了个4,:2单位,至U 达 60°的方向上,贝U 原来 )—tan(30)tan(60 ° + 到原点O 在它的南偏东 保留根号).A 的坐标为B 点后观察 _ (结果 NMNC 0(2)10cm 周长为36cm 则一底角的正切值为_、3的山坡走了 50米,则他离地面 米高。

初中三角函数知识点总结

初中三角函数知识点总结

锐角三角函数1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

222a b c +=2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):定 义表达式 取值范围关 系(A+B=90)正弦 斜边的对边A A ∠=sin1sin 0<<A(∠A 为锐角)B A cos sin =B A sin cos =1cos sin 22=+A A余弦 斜边的邻边A A ∠=cos1cos 0<<A(∠A 为锐角)正切的邻边的对边A tan ∠∠=A A0tan >A(∠A 为锐角)B A cot tan = B A tan cot =AA cot 1tan =(倒数) 1cot tan =⋅A A余切 的对边的邻边A A A ∠∠=cot0cot >A(∠A 为锐角)3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)三角函数 0° 30° 45° 60° 90° αsin αcosαtan - αcot-6、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。

7、正切、余切的增减性:当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。

)90cot(tan A A -︒=)90tan(cot A A -︒= B A cot tan =B A tan cot =)90cos(sin A A -︒=)90sin(cos A A -︒= B A cos sin =B A sin cos =A 90B 90∠-︒=∠︒=∠+∠得由B A 对边邻边 斜边 A C Bb ac A90B 90∠-︒=∠︒=∠+∠得由B A1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

三角函数知识点及典型例题

三角函数知识点及典型例题

三角函数知识点及典型例题三角函数知识点及典型例题§1.1.1、任意角1、正角、负角、零角、象限角的概念.2、与角α终边相同的角的集合:{}|360,S k k Z ββα==+?∈.§1.1.2、弧度制1、把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 rl =α.3、弧长公式: R4、扇形面积公式: S=21 lr=21αr 2.§1.2.1、任意角的三角函数1、设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么:xyx y ===αααtan ,cos ,sin . 2、设点()00,y x A 为角α终边上任意一点,那么:(设2020y x r +=)_______sin r y =α,________cos rx=α,_____tan x y =α.3、αsin ,αcos ,αtan 在四个象限的符号一正二正弦三切四余和三角函数线的画法. 4、诱导公式一:()()()_tan _2tan _cos _2cos _sin _2sin απααπααπα=+=+=+kk k (Z k ∈)5、特殊角0°,30°,45°,60°,90°,180°,270°的三角函数值. §1.2.2、同角三角函数的基本关系式1、平方关系:22sin cos 1αα+=.2、商数关系:sin tan cos ααα=. §1.3、三角函数的诱导公式1、诱导公式二:()()()._tan _tan _,cos _cos _,sin _sin ααπααπααπ=+-=+-=+2、诱导公式三:()()()._tan _tan _____,cos _cos _,sin _sin αααααα-=-=--=-3、诱导公式四:()()()._tan _tan _,cos _cos _,sin _sin ααπααπααπ-=--=-=-4、诱导公式五:._sin _2cos _,cos _2sin ααπααπ=??-=-5、诱导公式六:._sin _2cos _,cos _2sin ααπααπ-=??+=+ §1.4.1、正弦、余弦函数的图象1、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性. 3、会用五点法作图.§1.4.2、正弦、余弦函数的性质1、周期函数定义:对于函数()x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()()x f T x f =+,那么函数()x f 就叫做周期函数,非零常数T 叫做这个函数的周期.§1.4.3、正切函数的图象与性质 1、记住正切函数的图象:2、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性. §1.5、函数()?ω+=x A y sin 的图象1、能够讲出函数x y sin =的图象和函数()b x A y ++=?ωsin 的图象之间的平移伸缩变换关系.2、对于函数:()()0,0sin >>++=ω?ωA b x A y 有:振幅A ,周期ωπ2=T ,初相?,相位?ω+x ,频率πω21==f .第三章、三角恒等变换两角和与差的正弦、余弦、正切公式cos()cos cos sin sin αβαβαβ-=+cos()cos cos sin sin αβαβαβ+=-sin()αβ+=sin cos cos sin αβαβ+sin()sin cos cos sin αβαβαβ-=-tan()αβ-tan tan 1tan tan αβαβ-=+ . tan()αβ+tan tan 1tan tan αβαβ+=-二倍角的正弦、余弦、正切公式1、_cos sin 2_2sin ααα=,变形:cos α=ααsin 22sin .2、22cos2cossin ααα=-22cos 1α=-212sin α=-变形1:21cos 2cos 2αα+=,变形2:21cos 2sin 2αα-=. 3、22tan tan 21tan ααα=- 1、注意正切化弦、平方降次. 解三角形 1、正弦定理R CcB b A a 2sin sin sin === 2、余弦定理a A bc c b cos 222-+=变形 cosA=bca cb 2222-+b B ac c a cos 2222-+=变形 cosB=acb c a 2222-+c C ab b a cos 2222-+=变形cosC=abc b a 2222-+3、三角形面积公式: S =21absinC=21bcsinA=21acsinB 课本题(必修4)1.(P 11 习题13)若扇形的周长为定值l ,则该扇形的圆心角为多大时,扇形的面积最大?22.(P 23 练习4)已知sin (4π-x )=-51,且0<x<="">623.( P 24 习题9(2))设tan α=-21,计算αααα22cos 2cos sin sin 1--。

三角函数定义知识点及例题[练习与答案]超强推荐

三角函数定义知识点及例题[练习与答案]超强推荐

三角函数的定义专题关键词: 三角函数的定义 终边 弧长公式 扇形面积 同角的基本关系 学习目标: 理解角的概念,掌握同角三角函数基本关系☆ 对角的概念的理解:(1)无界性 R ∈α 或 ),(+∞-∞ (2)周期性(3)终边相同的角的表示:(1)α终边与θ终边相同(α的终边在θ终边所在射线上)⇔2()k k αθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角不一定相等.如与角1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。

(答:25-;536π-)(2)α终边与θ终边共线(α的终边在θ终边所在直线上) ⇔()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称⇔2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称⇔2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称⇔2()k k απθπ=++∈Z .(6)α终边在x 轴上的角可表示为:,k k Z απ=∈;α终边在y 轴上的角可表示为:,2k k Zπαπ=+∈;α终边在坐标轴上的角可表示为:,2k k Zπα=∈.如α的终边与6π的终边关于直线x y =对称,则α=____________。

(答:Zk k ∈+,32ππ)☆ 角与角的位置关系的判断 (1) 终边相同的角 (2) 对称关系的角(3) 满足一些常见关系式的两角例如:若α是第二象限角,则2α是第_____象限角 :一、三)☆ 弧长公式:||l R α=,扇形面积公式:211||22S lR R α==,1弧度(1rad)57.3≈.例如:已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。

(答:22cm )☆ 三角函数的定义:高中阶段对三角函数的定义与初中的定义从本质上讲不同。

但既有联系,又有区别。

定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是220r x y =+>,那么sin ,cos y x r r αα==,()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec r x α=()0x ≠,()csc 0r y y α=≠。

三角函数_知识点(含例题)

三角函数_知识点(含例题)

一、三角函数_____目录:1、任意角的三角函数;2、同角三角函数的基本关系式及诱导公式;3、三角函数的图象与性质;4、函数y=A sin(ωx+φ)的图象及三角函数模型的简单应用;5、两角和与差的正弦、余弦和正切公式;6、简单的三角恒等变换;7、正弦定理和余弦定理;8、正弦定理和余弦定理应用举例;1、任意角的三角函数;自主梳理1.任意角的概念角可以看成平面内一条射线OA绕着端点从一个位置旋转到另一个位置OB所成的图形.旋转开始时的射线OA叫做角的________,射线的端点O叫做角的________,旋转终止位置的射线OB叫做角的________,按______时针方向旋转所形成的角叫做正角,按______时针方向旋转所形成的角叫做负角.若一条射线没作任何旋转,称它形成了一个________角.(1)象限角使角的顶点与原点重合,角的始边与x轴的非负半轴重合,角的终边落在第几象限,就说这个角是__________角.(2)象限界角(即终边在坐标轴上的角)终边在x轴上的角表示为____________________;终边在y轴上的角表示为__________________________________________;终边落在坐标轴上的角可表示为____________________________.(3)终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合______________________或__________________________,前者α用角度制表示,后者α用弧度制表示.(4)弧度制把长度等于________长的弧所对的__________叫1弧度的角.以弧度作为单位来度量角的单位制,叫做________,它的单位符号是________,读作________,通常略去不写.(5)度与弧度的换算关系360°=______ rad;180°=____ rad;1°=________ rad;1 rad=_______________≈57.30°.(6)弧长公式与扇形面积公式l=________,即弧长等于_________________________________________________.S扇=________=____________.2.三角函数的定义任意角的三角函数定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么①____叫做α的正弦,记作sin α,即sin α=y;②____叫做α的余弦,记作cos α,即cos α=x;③________叫做α的正切,记作tan α,即tan α=yx(x≠0).(1)三角函数值的符号各象限的三角函数值的符号如下图所示,三角函数正值歌:一全正,二正弦,三正切,四余弦.(2)三角函数线下图中有向线段MP,OM,AT分别表示__________,__________________和____________.探究点一 角的概念例1 (1)如果角α是第三象限角,那么-α,π-α,π+α角的终边落在第几象限; (2)写出终边落在直线y =3x 上的角的集合;(3)若θ=168°+k ·360° (k ∈Z ),求在[0°,360°)内终边与θ3角的终边相同的角.变式迁移1 若α是第二象限的角,试分别确定2α,α2的终边所在位置.探究点二 弧长与扇形面积 例2 (2014·金华模拟)已知一个扇形的圆心角是α,0<α<2π,其所在圆的半径是R . (1)若α=60°,R =10 cm ,求扇形的弧长及该弧所在弓形的面积;(2)若扇形的周长是一定值C (C >0),当α为多少弧度时,该扇形有最大面积?变式迁移2(1)已知扇形的周长为10,面积为4,求扇形中心角的弧度数;(2)已知扇形的周长为40,当它的半径和中心角取何值时,才能使扇形的面积最大?最大面积是多少?探究点三 三角函数的定义例3 已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值.变式迁移3 已知角α的终边经过点P (-4a,3a ) (a ≠0),求sin α,cos α,tan α的值.2、同角三角函数的基本关系式及诱导公式;1.同角三角函数的基本关系(1)平方关系:____________________.(2)商数关系:______________________________. 2.诱导公式(1)sin(α+2k π)=________,cos(α+2k π)=__________,tan(α+2k π)=__________,k ∈Z .(2)sin(π+α)=________,cos(π+α)=________,tan(π+α)=________. (3)sin(-α)=________,cos(-α)=__________,tan(-α)=________.(4)sin(π-α)=__________,cos(π-α)=__________,tan(π-α)=________.(5)sin ⎝⎛⎭⎫π2-α=________,cos ⎝⎛⎭⎫π2-α=________. (6)sin ⎝⎛⎭⎫π2+α=__________,cos ⎝⎛⎭⎫π2+α=____________________________________. 3.诱导公式的作用是把任意角的三角函数转化为锐角三角函数,一般步骤为:上述过程体现了化归的思想方法.探究点一 利用同角三角函数基本关系式化简、求值例1 已知-π2<x <0,sin x +cos x =15.(1)求sin 2x -cos 2x 的值;(2)求tan x2sin x +cos x 的值.变式迁移1 已知sin(3π+α)=2sin ⎝⎛⎭⎫3π2+α,求下列各式的值. (1)sin α-4cos α5sin α+2cos α;(2)sin 2α+sin 2α.探究点二 利用诱导公式化简、求值例2 (2014·合肥模拟)已知sin ⎝⎛⎭⎫α+π2=-55,α∈(0,π). (1)求sin ⎝⎛⎭⎫α-π2-cos ⎝⎛⎭⎫3π2+αsin (π-α)+cos (3π+α)的值;(2)求cos ⎝⎛⎭⎫2α-3π4的值.变式迁移2 设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝⎛⎭⎫3π2+α-sin 2⎝⎛⎭⎫π2+α (1+2sin α≠0),则f ⎝⎛⎭⎫-23π6=________. 探究点三 综合应用例3 在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2co s(π-B ),求△ABC 的三个内角.变式迁移3 (2014·安阳模拟)已知△ABC 中,sin A +cos A =15,(1)求sin A ·cos A ;(2)判断△ABC 是锐角三角形还是钝角三角形; (3)求tan A 的值.3、三角函数的图象与性质;1.三角函数的图象和性质 函数 y =sin xy =cos xy =tan x图象定义域 值域 周期性 奇偶性单调性在______________________上增,在__________________________________上减在__________________________上增,在______________________________上减在定义域的每一个区间________________________________内是增函数2.正弦函数y =sin x当x =____________________________________时,取最大值1; 当x =____________________________________时,取最小值-1. 3.余弦函数y =cos x当x =__________________________时,取最大值1; 当x =__________________________时,取最小值-1.4.y =sin x 、y =cos x 、y =tan x 的对称中心分别为____________、___________、______________.5.y =sin x 、y =cos x 的对称轴分别为______________和____________,y =tan x 没有对称轴.探究点一 求三角函数的定义域例1 (2014·衡水月考)求函数y =2+log 12x +tan x 的定义域.变式迁移1 函数y =1-2cos x +lg(2sin x -1)的定义域为________________________.探究点二 三角函数的单调性例2 求函数y =2sin ⎝⎛⎭⎫π4-x 的单调区间.变式迁移2 (2014·南平月考)(1)求函数y =sin ⎝⎛⎭⎫π3-2x ,x ∈[-π,π]的单调递减区间; (2)求函数y =3tan ⎝⎛⎭⎫π6-x 4的周期及单调区间.探究点三 三角函数的值域与最值例3 已知函数f (x )=2a sin(2x -π3)+b 的定义域为[0,π2],函数的最大值为1,最小值为-5,求a 和b 的值.变式迁移3 设函数f (x )=a cos x +b 的最大值是1,最小值是-3,试确定g (x )=b sin(ax +π3)的周期.4、函数y =A sin(ωx +φ)的图象及三角函数模型的简单应用1.用五点法画y =A sin(ωx +φ)一个周期内的简图用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个特征点.如下表所示.XΩx +φy =A sin(ωx +φ)0 A 0 -A2.图象变换:函数y =A sin(ωx +φ) (A >0,ω>0)的图象可由函数y =sin x 的图象作如下变换得到:(1)相位变换:y =sin x →y =sin(x +φ),把y =sin x 图象上所有的点向____(φ>0)或向____(φ<0)平行移动__________个单位.(2)周期变换:y =sin (x +φ)→y =sin(ωx +φ),把y =sin(x +φ)图象上各点的横坐标____(0<ω<1)或____(ω>1)到原来的________倍(纵坐标不变).(3)振幅变换:y =sin (ωx +φ)→y =A sin(ωx +φ),把y =sin(ωx +φ)图象上各点的纵坐标______(A >1)或______(0<A <1)到原来的____倍(横坐标不变).3.当函数y =A sin(ωx +φ) (A >0,ω>0),x ∈(-∞,+∞)表示一个振动量时,则____叫做振幅,T =________叫做周期,f =______叫做频率,________叫做相位,____叫做初相.函数y =A cos(ωx +φ)的最小正周期为____________.y =A tan(ωx +φ)的最小正周期为________.例1 已知函数y =2sin ⎝⎛⎭⎫2x +π3. (1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象;(3)说明y=2sin ⎝⎛⎭⎫2x +π3的图象可由y =sin x 的图象经过怎样的变换而得到.变式迁移1 设f (x )=12cos 2x +3sin x cos x +32sin 2x (x ∈R ).(1)画出f (x )在⎣⎡⎦⎤-π2,π2上的图象; (2)求函数的单调增减区间;(3)如何由y =sin x 的图象变换得到f (x )的图象?探究点二 求y =A sin(ωx +φ)的解析式例2 已知函数f (x )=A sin(ωx +φ) (A >0,ω>0,|φ|<π2,x ∈R )的图象的一部分如图所示.求函数f (x )的解析式.变式迁移2 (2014·宁波模拟)已知函数f (x )=A sin(ωx +φ) (A >0,ω>0,|φ|<π2)的图象与y轴的交点为(0,1),它在y 轴右侧的第一个最高点和第一个最低点的坐标分别为(x 0,2)和(x 0+2π,-2).(1)求f (x )的解析式及x 0的值;(2)若锐角θ满足cos θ=13,求f (4θ)的值.探究点三 三角函数模型的简单应用例3 已知海湾内海浪的高度y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作y =f (t ).下表是某日各时刻记录的浪高数据:t 0 3 6 9 12 15 18 21 24 y 1.5 1.0 0.5 1.0 1.5 1.0 0.5 0.99 1.5经长期观测,y =f (t )的曲线可近似地看成是函数y =A cos ωt +b .(1)根据以上数据,求函数y =A cos ωt +b 的最小正周期T ,振幅A 及函数表达式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8∶00至晚上20∶00之间,有多少时间可供冲浪者进行运动?变式迁移3 交流电的电压E (单位:伏)与时间t (单位:秒)的关系可用E =2203sin ⎝⎛⎭⎫100πt +π6表示,求: (1)开始时的电压;(2)最大电压值重复出现一次的时间间隔;(3)电压的最大值和第一次取得最大值时的时间.5、两角和与差的正弦、余弦和正切公式;自主梳理1.(1)两角和与差的余弦cos(α+β)=_____________________________________________, cos(α-β)=_____________________________________________. (2)两角和与差的正弦sin(α+β)=_____________________________________________, sin(α-β)=_____________________________________________. (3)两角和与差的正切tan(α+β)=_____________________________________________, tan(α-β)=_____________________________________________.(α,β,α+β,α-β均不等于k π+π2,k ∈Z )其变形为:tan α+tan β=tan(α+β)(1-tan αtan β), tan α-tan β=tan(α-β)(1+tan αtan β). 2.辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ), 其中⎩⎪⎨⎪⎧cos φ= ,sin φ= ,tan φ=ba,角φ称为辅助角.探究点一 给角求值问题(三角函数式的化简、求值) 例1 求值: (1)[2sin 50°+sin 10°(1+3tan 10°)]2sin 280°; (2)sin(θ+75°)+cos(θ+45°)-3·cos(θ+15°).变式迁移1 求值:(1)2cos 10°-sin 20°sin 70°;(2)tan(π6-θ)+tan(π6+θ)+3tan(π6-θ)tan(π6+θ).探究点二 给值求值问题(已知某角的三角函数值,求另一角的三角函数值)例2 已知0<β<π4<α<3π4,cos ⎝⎛⎭⎫π4-α=35, sin ⎝⎛⎭⎫3π4+β=513,求sin(α+β)的值.变式迁移2 (2014·广州模拟)已知tan ⎝⎛⎭⎫π4+α=2,tan β=12.(1)求tan α的值;(2)求sin (α+β)-2sin αcos β2sin αsin β+cos (α+β)的值.探究点三 给值求角问题(已知某角的三角函数值,求另一角的值)例3 已知0<α<π2<β<π,tan α2=12,cos(β-α)=210.(1)求sin α的值; (2)求β的值.变式迁移3 (2014·岳阳模拟)若sin A =55,sin B =1010,且A 、B 均为钝角,求A +B的值.6、简单的三角恒等变换;1.二倍角的正弦、余弦、正切公式 (1)sin 2α=________________;(2)cos 2α=______________=________________-1=1-________________;(3)tan 2α=________________________ (α≠k π2+π4且α≠k π+π2).2.公式的逆向变换及有关变形(1)sin αcos α=____________________⇒cos α=sin 2α2sin α;(2)降幂公式:sin 2α=________________,cos 2α=________________; 升幂公式:1+cos α=________________,1-cos α=_____________; 变形:1±sin 2α=sin 2α+cos 2α±2sin αcos α=________________________. 探究点一 三角函数式的化简例1 求函数y =7-4sin x cos x +4cos 2x -4cos 4x 的最大值和最小值.变式迁移1 (2014·泰安模拟)已知函数f (x )=4cos 4x -2cos 2x -1sin ⎝⎛⎭⎫π4+x sin ⎝⎛⎭⎫π4-x .(1)求f ⎝⎛⎭⎫-11π12的值; (2)当x ∈⎣⎡⎭⎫0,π4时,求g (x )=12f (x )+sin 2x 的最大值和最小值.探究点二 三角函数式的求值例2 已知sin(π4+2α)·sin(π4-2α)=14,α∈(π4,π2),求2sin 2α+tan α-1tan α-1的值.变式迁移2 (1)已知α是第一象限角,且cos α=513,求sin (α+π4)cos (2α+4π)的值.(2)已知cos(α+π4)=35,π2≤α<3π2,求cos(2α+π4)的值.探究点三 三角恒等式的证明 例3 (2014·苏北四市模拟)已知sin(2α+β)=3sin β,设tan α=x ,tan β=y ,记y =f (x ). (1)求证:tan(α+β)=2tan α;(2)求f(x)的解析表达式;(3)若角α是一个三角形的最小内角,试求函数f(x)的值域.变式迁移3求证:sin 2x(sin x+cos x-1)(sin x-cos x+1)=1+cos x sin x.7、正弦定理和余弦定理;1.三角形的有关性质(1)在△ABC 中,A +B +C =________; (2)a +b ____c ,a -b <c ;(3)a >b ⇔sin A ____sin B ⇔A ____B ;(4)三角形面积公式:S △ABC =12ah =12ab sin C =12ac sin B =_________________;(5)在三角形中有:sin 2A =sin 2B ⇔A =B 或________________⇔三角形为等腰或直角三角形;sin(A +B )=sin C ,sin A +B 2=cos C2.2.正弦定理和余弦定理 定理 正弦定理 余弦定理内容 ________________=2Ra 2=____________,b 2=____________,c 2=____________.变形形式①a =__________, b =__________, c =__________; ②sin A =________, sin B =________, sin C =________; ③a ∶b ∶c =__________;④a +b +c sin A +sin B +sin C =asin Acos A =________________;cos B =________________;cos C =_______________. 解决的问题①已知两角和任一边,求另一角和其他两条边. ②已知两边和其中一边的对角,求另一边和其他两角.①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两个角. 探究点一 正弦定理的应用例1 (1)在△ABC 中,a =3,b =2,B =45°,求角A 、C 和边c ; (2)在△ABC 中,a =8,B =60°,C =75°,求边b 和c .变式迁移1 (1)在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________;(2)在△ABC 中,若a =50,b =256,A =45°,则B =________.探究点二 余弦定理的应用 例2 (2014·咸宁月考)已知a 、b 、c 分别是△ABC 中角A 、B 、C 的对边,且a 2+c 2-b 2=ac .(1)求角B 的大小;(2)若c =3a ,求tan A 的值.变式迁移2 在△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,B =2π3,b =13,a +c =4,求a .探究点三 正、余弦定理的综合应用例3 在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),试判断该三角形的形状.变式迁移3 (2013·天津)在△ABC 中,AC AB =cos Bcos C.(1)证明:B =C ;(2)若cos A =-13,求sin ⎝⎛⎭⎫4B +π3的值.8、正弦定理和余弦定理应用举例;1.仰角和俯角与目标视线同在一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角.(如图所示)2.方位角一般指北方向线顺时针到目标方向线的水平角,如方位角45°,是指北偏东45°,即东北方向.3.方向角:相对于某一正方向的水平角.(如图所示)①北偏东α°即由指北方向顺时针旋转α°到达目标方向. ②北偏西α°即由指北方向逆时针旋转α°到达目标方向. ③南偏西等其他方向角类似. 4.坡角坡面与水平面的夹角.(如图所示)5.坡比坡面的铅直高度与水平宽度之比,即i =hl=tan α(i 为坡比,α为坡角).6.解题的基本思路运用正、余弦定理处理实际测量中的距离、高度、角度等问题,实质是数学知识在生活中的应用,要解决好,就要把握如何把实际问题数学化,也就是如何把握一个抽象、概括的问题,即建立数学模型.探究点一 与距离有关的问题 例1 (2013·陕西)如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B点相距203海里的C点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D点需要多长时间?变式迁移1某观测站C在目标A的南偏西25°方向,从A出发有一条南偏东35°走向的公路,在C处测得与C相距31千米的公路上B处有一人正沿此公路向A走去,走20千米到达D,此时测得CD为21千米,求此人在D处距A还有多少千米?探究点二测量高度问题例2如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.变式迁移2某人在塔的正东沿着南偏西60°的方向前进40米后,望见塔在东北方向,若沿途测得塔的最大仰角为30°,求塔高.探究点三三角形中最值问题例3(2013·江苏)某兴趣小组要测量电视塔AE的高度H(单位:m),示意图如图所示,垂直放置的标杆BC的高度h=4 m,仰角∠ABE=α,∠ADE=β.(1)该小组已测得一组α、β的值,算出了tan α=1.24,tan β=1.20,请据此算出H的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精度.若电视塔实际高度为125 m,试问d为多少时,α-β最大?变式迁移3(2014·宜昌模拟)如图所示,已知半圆的直径AB=2,点C在AB的延长线上,BC=1,点P为半圆上的一个动点,以DC为边作等边△PCD,且点D与圆心O分别在PC的两侧,求四边形OPDC面积的最大值.。

三角函数图像与性质-知识点总结及题型归纳讲义

三角函数图像与性质-知识点总结及题型归纳讲义

专题七《三角函数》讲义7.3 三角函数的图像与性质知识梳理.三角函数的图像与性质1.正弦、余弦、正切函数的图象与性质函数y=sin x y=cos x y=tan x 图象定义域R R错误!值域[-1,1][-1,1]R奇偶性奇函数偶函数奇函数单调性在⎣⎡⎦⎤-π2+2kπ,π2+2kπ(k∈Z)上是递增函数,在⎣⎡⎦⎤π2+2kπ,3π2+2kπ(k∈Z)上是递减函数在[2kπ-π,2kπ](k∈Z)上是递增函数,在[2kπ,2kπ+π](k∈Z)上是递减函数在⎝⎛⎭⎫-π2+kπ,π2+kπ(k∈Z)上是递增函数周期性周期是2kπ(k∈Z且k≠0),最小正周期是2π周期是2kπ(k∈Z且k≠0),最小正周期是2π周期是kπ(k∈Z且k≠0),最小正周期是π对称性对称轴是x=π2+kπ(k∈Z),对称中心是(kπ,0)(k∈Z)对称轴是x=kπ(k∈Z),对称中心是⎝⎛⎭⎫kπ+π2,0(k∈Z)对称中心是⎝⎛⎭⎫kπ2,0(k∈Z)题型一. 三角函数图像的伸缩变换1.要得到函数y =3sin (2x +π3)的图象,只需要将函数y =3cos2x 的图象( ) A .向右平行移动π12个单位 B .向左平行移动π12个单位C .向右平行移动π6个单位D .向左平行移动π6个单位2.(2017•新课标Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 23.(2021春•闵行区校级期中)函数y =cos (2x +φ)的图象向右平移π2个单位长度后与函数y =sin (2x +2π3)的图象重合,则|φ|的最小值为 .4.(2016春•南通期末)将函数f(x)=sin(ωx +φ),(ω>0,−π2<φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π4个单位长度得到y =sin x 的图象,则f(π6)= .5.(2015•湖南)将函数f (x )=sin2x 的图象向右平移φ(0<φ<π2)个单位后得到函数g (x )的图象.若对满足|f (x 1)﹣g (x 2)|=2的x 1、x 2,有|x 1﹣x 2|min =π3,则φ=( ) A .5π12B .π3C .π4D .π6题型二. 已知图像求解析式1.图是函数y =A sin (ωx +φ)(x ∈R )在区间[−π6,5π6]上的图象,为了得到这个函数的图象,只要将y =sin x (x ∈R )的图象上所有的点( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变2.已知函数y =sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则( )A .ω=π2,φ=−π4 B .ω=π2,φ=π4C .ω=π,φ=−π4D .ω=π,φ=π43.已知函数f (x )=A cos (ωx +φ)的图象如图所示,f (π2)=−23,则f (0)=( )A .−23B .−12C .23D .124.已知函数f (x )=A tan (ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,下列关于函数g (x )=A cos (ωx +φ)(x ∈R )的表述正确的是( )A .函数g (x )的图象关于点(π4,0)对称B .函数g (x )在[−π8,3π8]递减 C .函数g (x )的图象关于直线x =π8对称D .函数h (x )=cos2x 的图象上所有点向左平移π4个单位得到函数g (x )的图象题型三. 三角函数的性质 考点1.单调性1.函数y =sin (﹣2x +π3)的单调递减区间是( ) A .[k π−π12,k π+5π12],k ∈Z B .[2k π−π12,2k π+5π12],k ∈ZC .[k π−π6,k π+5π6],k ∈ZD .[2k π−π6,2k π+5π6],k ∈Z2.已知函数f(x)=Asin(x +φ)(A >0,−π2<φ<0)在x =5π6时取得最大值,则f (x )在[﹣π,0]上的单调增区间是( ) A .[−π,−5π6] B .[−5π6,−π6] C .[−π3,0]D .[−π6,0]3.已知函数f (x )=sin (2x +π3)在区间[0,a ](其中a >0)上单调递增,则实数a 的取值范围是( ) A .{a |0<a ≤π12} B .{a |0<a ≤π2} C .{a |a =k π+π12,k ∈N *} D .{a |2k π<a ≤2k π+π12,k ∈N *} 4.已知ω>0,函数f (x )=sin (ωx +π4)在区间(π2,π)上单调递减,则实数ω的取值范围是( ) A .[12,54] B .[12,34]C .(0,12]D .(0,2]考点2.周期性、奇偶性、对称性1.已知函数f (x )=cos 2x +sin 2(x +π6),则( )A .f (x )的最小正周期为π,最小值为12B .f (x )的最小正周期为π,最小值为−12C .f (x )的最小正周期为2π,最小值为12D .f (x )的最小正周期为2π,最小值为−122.已知f (x )=sin2x +|sin2x |(x ∈R ),则下列判断正确的是( ) A .f (x )是周期为2π的奇函数 B .f (x )是值域为[0,2]周期为π的函数 C .f (x )是周期为2π的偶函数 D .f (x )是值域为[0,1]周期为π的函数3.将函数y =sin2x −√3cos2x 的图象沿x 轴向右平移a 个单位(a >0)所得图象关于y 轴对称,则a 的最小值是( ) A .712π B .π4C .π12D .π64.已知函数f (x )=a sin x ﹣b cos x (ab ≠0,x ∈R )在x =π4处取得最大值,则函数y =f (π4−x )是( )A .偶函数且它的图象关于点(π,0)对称B .偶函数且它的图象关于点(3π2,0)对称 C .奇函数且它的图象关于点(3π2,0)对称 D .奇函数且它的图象关于点 (π,0)对称考点3.三角函数性质综合1.(2019•天津)已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g (x )的最小正周期为2π,且g (π4)=√2,则f (3π8)=( )A .﹣2B .−√2C .√2D .22.(2015•天津)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R ,若函数f (x )在区间(﹣ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为 .3.(2014•大纲版)若函数f (x )=cos2x +a sin x 在区间(π6,π2)是减函数,则a 的取值范围是 .4.(2016•新课标Ⅰ)若函数f (x )=x −13sin2x +a sin x 在(﹣∞,+∞)单调递增,则a 的取值范围是( ) A .[﹣1,1]B .[﹣1,13]C .[−13,13]D .[﹣1,−13]5.(2013•安庆二模)已知函数f (x )=sin (ωx +π6),其中ω>0,若f (π6)=f (π3),且f (x )在区间(π6,π3)上有最小值、无最大值,则ω等于( )A .403B .283C .163D .436.(2014•北京)设函数f (x )=A sin (ωx +φ)(A ,ω,φ是常数,A >0,ω>0)若f (x )在区间[π6,π2]上具有单调性,且f (π2)=f(2π3)=﹣f (π6),则f (x )的最小正周期为 .题型四. 三角函数最值1.函数f (x )=15sin (x +π3)+cos (x −π6)的最大值为( ) A .65B .1C .35D .152.函数f (x )=cos (ωx +π3)(ω>0)在[0,π]内的值域为[﹣1,12],则ω的取值范围为( ) A .[32,53]B .[23,43]C .[23,+∞)D .[23,32]3.已知函数f (x )=cos2x +sin x ,则下列说法中正确的是( ) A .f (x )的一条对称轴为x =π4 B .f (x )在(π6,π2)上是单调递减函数C .f (x )的对称中心为(π2,0)D .f (x )的最大值为14.若0<x ≤π3,则函数y =sin x +cos x +sin x cos x 的值域为 .5.已知函数f(x)=2sinωx ⋅cos 2(ωx 2−π4)−sin 2ωx(ω>0)在区间[−2π5,5π6]上是增函数,且在区间[0,π]上恰好取得一次最大值1,则ω的取值范围是( ) A .(0,35]B .[12,35]C .[12,34]D .[12,52)6.已知函数f (x )=cos x •sin (x +π3)−√3cos 2x +√34,x ∈R (1)求f (x )的最小正周期;(2)求f (x )在闭区间[0,π2]上的最大值和最小值及相应的x 值;(3)若不等式|f (x )﹣m |<2在x ∈[0,π2]上恒成立,求实数m 的取值范围.题型五.三角函数零点1.已知函数f (x )=sin ωx −√3cos ωx (ω>0),若方程f (x )=﹣1在(0,π)上有且只有四个实数根,则实数ω的取值范围为 .2.已知函数f (x )=√3sin ωx cos ωx +cos 2ωx −12,(ω>0,x ∈R ),若函数f (x )在区间(π2,π)内没有零点,则ω的取值范围( ) A .(0,512] B .(0,512]∪[56,1112]C .(0,58]D .(0,56]∪[1112,1)3.函数f(x)=2sin(2ωx +π6)(ω>0)图象上有两点A (s ,t ),B (s +2π,t )(﹣2<t <2),若对任意s ∈R ,线段AB 与函数图象都有五个不同交点,若f (x )在[x 1,x 2]和[x 3,x 4]上单调递增,在[x 2,x 3]上单调递减,且x 4−x 3=x 2−x 1=23(x 3−x 2),则x 1的所有可能值是课后作业. 三角函数的图像与性质1.函数f (x )=A sin (ωx +φ)(A >0,ω>0,﹣π<φ<0)的部分图象如图所示,为了得到g (x )=A sin ωx 的图象,只需将函数y =f (x )的图象( )A .向左平移π3个单位长度B .向左平移π12个单位长度 C .向右平移π3个单位长度D .向右平移π12个单位长度2.关于函数y =2sin (3x +π4)+1,下列叙述正确的是( ) A .其图象关于直线x =−π4对称 B .其图象关于点(π12,1)对称 C .其值域是[﹣1,3]D .其图象可由y =2sin (x +π4)+1图象上所有点的横坐标变为原来的13得到 3.已知函数f (x )=(12a −√3)sin x +(√32a +1)cos x ,将f (x )的图象向右平移π3个单位长度得到函数g (x )的图象,若对任意x ∈R ,都有g (x )≤g (π4),则a 的值为 . 4.已知函数f (x )=sin (ωx +φ)(ω>1,0≤φ≤π)是R 上的偶函数,其图象关于点M (3π4,0)对称,且在区间[0,π2]上是单调函数,则ω和φ的值分别为( )A .23,π4B .2,π3C .2,π2D .103,π25.已知函数f (x )=sin (ωx +φ),其中ω>0,|φ|≤π2,−π4为f (x )的零点:且f (x )≤|f (π4)|恒成立,f (x )在区间(−π12,π24)上有最小值无最大值,则ω的最大值是( )A .11B .13C .15D .176.已知函数f (x )=2sin (ωx −π6)sin (ωx +π3)(ω>0),若函数g (x )=f (x )+√32在[0,π2]上有且只有三个零点,则ω的取值范围为( )A .[2,113) B .(2,113) C .[73,103) D .(73,103)。

(完整版)初中三角函数知识点总结及典型习题含答案)

(完整版)初中三角函数知识点总结及典型习题含答案)

( 1)2009
3
10. 计算:
2. 原式 = 2
3 3
2
3 1 1=0. 3
依据:①边的关系: a 2 b2 c2 ;②角的关系: A+B=90°;③边角关系:三角函数的定义。 ( 注意:
尽量避免使用中间数据和除法 ) 2、应用举例: (1) 仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
铅垂线
视线
仰角 俯角
水平线
h
i h:l
视线
α
l
(2) 坡面的铅直高度 h 和水平宽度 l 的比叫做坡度 ( 坡比 ) 。用字母 i 表示,即 i 的形式,如 i 1:5 等。
80 .
3
BC CD BD 240 80=160. 答:这栋大楼的高为 160 米.
8. 如图所示,城关幼儿园为加强安全管理,决定将园内的滑滑板的倾斜角由 45°降为 30°,已知 原滑滑板 AB的长为 4 米,点 D、B、C在同一水平面上.
(1)改善后滑滑板会加长多少米? (2)若滑滑板的正前方能有 3 米长的空地就能保证安全,原滑滑板的前方有 6 米长的空地,像这 样改造是否可行?请说明理由. (参考数据: 2 1.141, 3 1.732 , 6 2.449 ,以上结果均保留到小数点后两位. )
线,∠ ABC=150°, BC的长是 8m,则乘电梯从点 B到点 C上升的高度 h
是( B )
CD
A. 8 3 m
3
B
.4 m
1
h
C. 4 3 m
D
.8 m
A
B
B
4. 河堤横断面如图所示,堤高 BC=5米,迎水坡 AB的坡比是 1: 3 (坡比是坡

《任意角的三角函数》知识点总结及典型例题

《任意角的三角函数》知识点总结及典型例题

任意角的三角函数模块一、角的概念及其推广要点一、角的相关概念 (1)角的概念角可以看成是由平面内一条射线(起始边)绕着端点旋转到一个新的位置(终边)所形成的图形。

(2)角的分类⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角要点二、终边相同角 (1)终边相同角的定义设α表示任意角,所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为{},360|Z k k S ∈︒⋅+==αββ。

集合S 的每一个元素都与α的终边相等,当0=k 时,对应元素为α。

(2)注意①相等的角终边一定相同,但终边相同的角不一定相等;终边相同的角有无数个,它们相差︒360的整数倍。

②角的集合表示形式是不唯一的。

要点三、象限角与轴线角(1)象限角定义:角α顶点与原点重合,角的始边与x 轴非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为: 第二象限角的集合为:第四象限角的集合为:终边落在x 轴正半轴上角的集合: 终边落在x 轴负半轴上角的集合: 终边在x 轴上的角的集合为: 终边落在y 轴正半轴上角的集合: 终边落在y 轴负半轴上角的集合: 终边在y 轴上的角的集合为: 终边落在坐标轴上角的集合:(2)注意:终边落在同一条直线上的角相差︒180的整数倍,终边落在同一条射线上的角相差︒360的整数倍。

要点四、区间角、区域角区间角是介于两个角之间的角的集合,区域角是介于某两角终边之间的角的集合。

区域角是无数个区间角的集合。

注意:锐角都是第一象限角,但第一象限角不都是锐角;小于90°的角不都是锐角,它还包括零角和负角,只有小于90°的正角才是锐角。

考点一、求终边相同的角的集合例1.(1)写出所有与︒-650终边相同的角的集合,并在︒︒360~0范围内,找出与︒-650角终边相同的角。

(2)把︒-2011写成)3600(360︒≤≤︒+⋅ααk 的形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锐角三角函数知识点总结及典型习题1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

25、30°、45°、 6 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。

7、正切、的增减性:当0°<α<90°时,tan α随α的增大而增大,1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。

(注意:尽量避免使用中间数据和除法)2、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

A 90B 90∠-︒=∠︒=∠+∠得由B A对边邻边仰角铅垂线水平线视线视线俯角(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。

用字母i 表示,即hi l=。

坡度一般写成1:m 的形式,如1:5i =等。

把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。

3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。

如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。

4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。

如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。

例1:已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( )A .43B .45C .54D .34 例2:104cos30sin 60(2)(20092008)-︒︒+---=______.1. 某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( )A .8米B .83米C .833米 D .433米 2. 一架5米长的梯子斜靠在墙上,测得它与地面的夹角是40°,则梯子底端到墙的距离为( )A .5sin 40°B .5cos 40°C .5tan 40°D .5cos 40°3. 如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,∠ABC =150°,BC 的长是8m ,则乘电梯从点B 到点C 上升的高度h 是( ) A .833m B .4 m C .43m D .8 m 4. 河堤横断面如图所示,堤高BC=5米,迎水坡AB 的坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是( )A .53 米B . 10米C .15米D .103米 5.如图,在矩形ABCD 中,DE ⊥AC 于E ,∠EDC ∶∠EDA=1∶3,且AC=10,则DE 的长度是( )A .3 B .5 C .25D .225 6. 如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点:i h l=hlαA BC D1hBC AABA 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为 82.0 米(精确到0.1).(参考数据:2 1.414≈ 3 1.732≈) 7. 如图,热气球的探测器显示,从热气球A 看一栋大楼顶部B 的俯角为30°,看这栋大楼底部C 的俯角为60°,热气球A 的高度为240米,求这栋大楼的高度.8. 如图所示,城关幼儿园为加强安全管理,决定将园内的滑滑板的倾斜角由45°降为30°,已知原滑滑板AB 的长为4米,点D 、B 、C 在同一水平面上.(1)改善后滑滑板会加长多少米?(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?请说明理由.(参考数据:141.12=,732.13=,449.26=,以上结果均保留到小数点后两位.)9.求值11|32|20093tan 303-⎛⎫-+--+ ⎪⎝⎭°10.计算:200912sin 603tan 30(1)3⎛⎫-++- ⎪⎝⎭°°1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( ) A 、缩小2倍 B 、扩大2倍 C 、不变 D 、不能确定2、在Rt △ABC 中,∠C=90,BC=4,sinA=54,则AC=( )A 、3 B 、4 C 、5 D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( ) A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB 7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,则下列各式中,正确的是( )A .sinB=23B .cosB=23C .tanB=23D .tanB=328.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(3,12)B .(-3,12)C .(-3,-12)D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米 B .8.5米 C .10.3米 D .12.0米 10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B地向正南方向走200m 到C 地,此时王英同学离A 地 ( ) (A )350m (B )100 m (C )150m (D )3100m 11、如图1,在高楼前D 点测得楼顶的仰角为30︒, 向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米 B.163米 C.52米 D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里 1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC 中,AB= ,AC=2,∠B=30°,则∠BAC 的度数是______. 5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.图145︒30︒BADC第6题xOAB北甲北乙第5题图6.如图,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为___________结果保留根 号). 7.求值:sin 260°+cos 260°=___________.8.在直角三角形ABC 中,∠A=090,BC=13,AB=12,则tan B =_________.9.根据图中所给的数据,求得避雷针CD 的长约为_______m (结果精确的到0.01m ).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).11.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米。

(保留两个有效数字,2≈1.41,3≈1.73)12.1计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒2计算:22459044211(cos sin )()()︒-︒+-︒+--π3 如图,在∆ABC 中,AD 是BC 边上的高,tan cos B DAC =∠。

(1)求证:AC =BD (2)若sin C BC ==121312,,求AD 的长。

5. 甲、乙两楼相距45米,从甲楼顶部观测乙楼顶部的俯角为30°,观测乙楼的底部的俯角为45°,试求两楼的高. 6. 从A 处观测铁塔顶部的仰角是30°,向前走100米到达B 处,观测铁塔的顶部的仰角是 45°,求铁塔高.DαACB第10题图A 40°52mCD第9题图 B434AF DCH7、如图,一铁路路基横断面为等腰梯形ABCD ,斜坡BC 的坡度为3:2=ι,路基高AE 为3m ,底CD宽12m ,求路基顶AB 的宽。

B ADCE8.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度3m CD =,标杆与旗杆的水平距离15m BD =,人的眼睛与地面的高度 1.6m EF =,人与标杆CD 的水平距离2m DF =,求旗杆AB 的高度.9 如图,一条渔船某时刻在位置A 观测灯塔B 、C(灯塔B 距离A 处较近),两个灯塔恰好在北偏东65°45′的方向上, 渔船向正东方向航行l 小时45分钟之后到达D 点,观测到灯塔B 恰好在正北方向上,已知两个灯塔之间的距离是12海里,渔船的速度是16海里/时,又知在灯塔C 周围18.6海里内有暗礁,问这条渔船按原来的方向继续航行,有没有触礁的危险?10、如图,A 城气象台测得台风中心在A 城的正西方300千米处,以每小时107 千米的速度向北偏东60º的BF 方向移动,距台风中心200千米的范围内是受这次台风影响的区域。

相关文档
最新文档