数学建模课程设计

合集下载

数学建模教案设计

数学建模教案设计

数学建模教案设计一、教学内容本节课选自《数学建模》教材第四章第一节,详细内容为多变量线性规划及其应用。

主要包括多变量线性规划模型的建立、求解方法以及实际应用案例。

二、教学目标1. 理解多变量线性规划的概念,掌握其数学表达形式。

2. 学会使用单纯形法求解多变量线性规划问题。

3. 能够将实际问题抽象为多变量线性规划模型,并运用所学知识解决实际问题。

三、教学难点与重点教学难点:多变量线性规划模型的建立与求解。

教学重点:单纯形法的应用以及实际问题的建模。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:数学建模教材、练习本、计算器。

五、教学过程1. 实践情景引入(5分钟)利用多媒体展示一个实际生产问题,引导学生思考如何优化生产方案。

2. 知识讲解(15分钟)讲解多变量线性规划的基本概念、数学表达形式及求解方法。

3. 例题讲解(20分钟)通过一个具体例题,演示如何将实际问题抽象为多变量线性规划模型,并运用单纯形法求解。

4. 随堂练习(15分钟)学生独立完成一道类似例题的练习,教师巡回指导。

6. 课堂小结(5分钟)回顾本节课所学内容,强调重点、难点。

六、板书设计1. 多变量线性规划概念及数学表达形式2. 单纯形法求解步骤3. 实际问题建模过程4. 例题解答过程七、作业设计1. 作业题目:(1)求解下列多变量线性规划问题:max z = 2x1 + 3x2s.t. x1 + 2x2 ≤ 4x1 + x2 ≤ 3x1, x2 ≥ 0某工厂生产两种产品,产品A和产品B。

生产一个A产品需要2小时工时和3小时机器时,生产一个B产品需要1小时工时和2小时机器时。

工厂每天有8小时工时和12小时机器时可用,问如何安排生产计划,才能使每天生产的A产品和B产品总价值最大?答案:(1)max z = 4x1 = 2, x2 = 0(2)max z = 18x1 = 3, x2 = 2八、课后反思及拓展延伸1. 反思:本节课学生对多变量线性规划的建模和求解掌握程度,以及课堂互动情况。

什么是数学建模课程设计

什么是数学建模课程设计

什么是数学建模课程设计一、课程目标知识目标:1. 理解数学建模的基本概念,掌握数学建模的主要方法。

2. 学会运用数学知识解决实际问题,提高数学应用能力。

3. 了解数学建模在自然科学、社会科学等领域的应用,拓展知识视野。

技能目标:1. 培养学生运用数学语言进行逻辑推理和分析问题的能力。

2. 提高学生运用数学软件和工具进行数据分析和模型构建的技能。

3. 培养学生团队协作和沟通表达能力,提高解决问题的综合素质。

情感态度价值观目标:1. 培养学生对数学建模的兴趣和热情,激发学生主动探索的精神。

2. 培养学生面对复杂问题时,保持积极的心态,勇于克服困难。

3. 增强学生的创新意识,培养将数学知识应用于实际问题的责任感。

课程性质分析:本课程为选修课程,旨在提高学生的数学应用能力和综合素质。

通过数学建模的学习,使学生掌握运用数学知识解决实际问题的方法,培养创新意识和团队协作能力。

学生特点分析:本课程面向初中年级学生,学生在数学基础知识和逻辑思维能力方面有一定基础,但对数学建模的了解相对较少。

因此,课程设计需注重激发学生兴趣,引导学生主动参与。

教学要求:1. 注重理论与实践相结合,让学生在实际问题中感受数学建模的魅力。

2. 创设生动活泼的课堂氛围,鼓励学生提问、讨论,培养学生的创新思维。

3. 加强团队合作,提高学生沟通协作能力,使学生在合作中共同成长。

二、教学内容1. 数学建模基本概念:介绍数学建模的定义、意义和分类,使学生了解数学建模的广泛应用。

教材章节:第一章 数学建模简介2. 数学建模方法:讲解线性规划、非线性规划、整数规划等基本建模方法,以及差分方程、微分方程等在数学建模中的应用。

教材章节:第二章 数学建模方法3. 数据分析与处理:学习如何收集数据、整理数据、分析数据,掌握利用数学软件进行数据处理的方法。

教材章节:第三章 数据分析与处理4. 数学建模实例分析:分析实际案例,让学生了解数学建模在自然科学、社会科学等领域的具体应用。

数学建模教案设计

数学建模教案设计

数学建模教案设计第一章:数学建模概述1.1 数学建模的定义与意义1.2 数学建模的方法与步骤1.3 数学建模的应用领域1.4 数学建模的基本技能要求第二章:数学建模的基本技能2.1 数学符号与表达式的应用2.2 数学模型的构建与分析2.3 数学模型的求解与优化2.4 数学建模软件的使用技巧第三章:数学建模实例解析3.1 线性规划模型的构建与求解3.2 非线性规划模型的构建与求解3.3 微分方程模型的构建与求解3.4 差分方程模型的构建与求解第四章:数学建模竞赛与实践4.1 数学建模竞赛的类型与规则4.2 数学建模竞赛的准备与策略4.3 数学建模竞赛的案例分析4.4 数学建模实践项目的选择与实施第五章:数学建模在实际问题中的应用5.2 数学建模在工程学中的应用5.3 数学建模在生物学中的应用5.4 数学建模在社会科学中的应用第六章:数学建模的软件工具6.1 MATLAB 在数学建模中的应用6.2 Python 编程在数学建模中的应用6.3 R 语言在数学建模中的应用6.4 MAThematica 在数学建模中的应用第七章:数学建模的策略与技巧7.1 构建数学模型的策略7.2 模型求解的技巧与方法7.3 模型验证与误差分析7.4 模型优化与调整策略第八章:数学建模竞赛案例分析8.1 国内外数学建模竞赛经典案例8.2 数学建模竞赛案例的解析与评价8.3 数学建模竞赛案例的启示与建议8.4 数学建模竞赛案例的实践与反思第九章:数学建模在科研中的应用9.1 数学建模在自然科学中的应用9.2 数学建模在工程技术中的应用9.4 数学建模在跨学科研究中的应用第十章:数学建模的未来发展趋势10.1 数学建模与的融合10.2 大数据背景下的数学建模10.3 数学建模在生物信息学中的应用10.4 数学建模在其他领域的创新应用重点和难点解析一、数学建模的定义与意义重点:理解数学建模的概念,掌握数学建模在实际问题解决中的应用价值。

数学建模课教学设计

数学建模课教学设计

数学建模课教学设计在数学建模课的教学设计中,教师需要综合考虑学生的实际情况,灵活运用不同的教学方法,激发学生的学习兴趣和动力。

以下是一个针对数学建模课的教学设计方案,旨在帮助教师更好地开展教学工作。

一、课程背景分析1.1 课程目标数学建模课是培养学生分析问题、解决问题的能力,提高数学应用技能的重要途径。

因此,教学目标应该明确,包括培养学生的数学建模意识、提高数学建模能力、促进学生综合运用数学知识解决实际问题的能力等。

1.2 学生特点在进行数学建模课的教学设计时,需要充分考虑学生的年龄特点、认知水平、数学基础等方面因素。

针对不同年级的学生,可以采取不同的教学方法和策略,以便更好地激发他们的学习兴趣和潜能。

二、教学内容安排2.1 理论知识讲解在数学建模课的教学过程中,教师首先要对数学建模的基本理论知识进行讲解,包括建模的概念、建模的基本步骤、常用的数学建模方法等。

通过系统的理论知识讲解,可以帮助学生建立起对数学建模的整体认识。

2.2 实例分析与实践操作除了理论知识讲解外,数学建模课的教学设计中还需要包括实例分析和实践操作环节。

通过对实际问题的案例分析,可以帮助学生将抽象的数学概念与实际问题相联系,培养他们的问题解决能力和创新思维。

2.3 小组合作与讨论数学建模是一个复杂的过程,需要团队协作和集体智慧。

因此,在教学设计中,可以设置小组合作与讨论环节,让学生在团队中相互交流、互相学习,共同解决给定的数学建模问题。

三、教学评估与反馈3.1 定期测验与考核为了及时检测学生的学习情况,教学设计中可以设置定期测验与考核环节。

通过考核,可以评估学生对数学建模知识的掌握程度,及时发现问题并进行调整。

3.2 作业批改与评价学生的作业是了解他们学习情况的重要依据。

因此,在教学设计中需要考虑作业批改与评价环节,及时给予学生反馈,指导他们改进学习方法,提高学习效果。

四、教学反思与优化在进行数学建模课的教学设计和实施过程中,教师需要不断进行反思和总结,发现问题、解决问题,不断优化教学策略和方法,提高教学效果。

数学建模课程设计学什么

数学建模课程设计学什么

数学建模课程设计学什么一、课程目标知识目标:1. 理解数学建模的基本概念和原理,掌握建模的基本方法和步骤。

2. 能够运用所学数学知识解决实际问题,建立数学模型,并运用模型进行分析和预测。

3. 掌握数学软件在数学建模中的应用,能够运用软件工具进行数据处理和模型求解。

技能目标:1. 培养学生的观察能力和问题发现能力,能够从现实问题中抽象出数学模型。

2. 培养学生的数据分析能力,能够运用数学方法对实际问题进行合理假设和简化。

3. 培养学生的团队协作能力,学会与他人合作共同解决问题。

情感态度价值观目标:1. 培养学生对数学建模的兴趣和热情,激发学生主动探索和创新的欲望。

2. 培养学生面对问题的积极态度,敢于挑战困难,善于从失败中吸取经验。

3. 培养学生的科学素养,认识到数学建模在解决实际问题中的重要作用,增强社会责任感。

本课程针对的是高年级学生,他们在数学知识储备和逻辑思维能力方面具备一定的基础。

课程性质为理论与实践相结合,注重培养学生的实际操作能力和创新意识。

在教学过程中,教师应关注学生的个体差异,引导他们运用所学知识解决实际问题,并通过多元化的教学手段激发学生的学习兴趣,确保课程目标的实现。

通过本课程的学习,学生将能够具备运用数学建模方法解决实际问题的能力,为未来的学术研究和职业发展打下坚实基础。

二、教学内容本课程教学内容主要包括以下几部分:1. 数学建模基本概念:介绍数学建模的定义、作用和基本步骤,使学生了解数学建模的整体框架。

2. 数学建模方法:学习线性规划、非线性规划、差分方程、概率统计等数学建模方法,并结合实际案例进行分析。

3. 数学软件应用:学习数学建模软件(如MATLAB、Lingo等)的基本操作,掌握软件在数据处理、模型求解等方面的应用。

4. 实践案例分析:分析典型的数学建模案例,使学生了解数学建模在各个领域的应用,并学会运用所学知识解决实际问题。

5. 数学建模竞赛:组织学生参加数学建模竞赛,锻炼学生的团队协作能力和实际操作能力。

《数学建模》课程教案

《数学建模》课程教案

《数学建模》课程教案一、教学内容本节课的教学内容选自《数学建模》教材的第五章,主要内容包括线性规划模型的建立、图与网络模型的建立、整数规划模型的建立以及非线性规划模型的建立。

通过本节课的学习,使学生掌握数学建模的基本方法和技巧,培养学生解决实际问题的能力。

二、教学目标1. 让学生掌握线性规划、图与网络、整数规划和非线性规划模型的建立方法。

2. 培养学生运用数学知识解决实际问题的能力。

3. 提高学生的团队协作能力和创新意识。

三、教学难点与重点1. 教学难点:线性规划、图与网络、整数规划和非线性规划模型的建立及求解。

2. 教学重点:线性规划模型的建立和求解。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:教材、笔记本、文具。

五、教学过程1. 实践情景引入:以一个工厂生产安排的问题为例,引入线性规划模型的建立和求解。

2. 知识点讲解:(1)线性规划模型的建立:讲解目标函数的设定、约束条件的确定以及线性规划模型的标准形式。

(2)图与网络模型的建立:讲解图的概念、图的表示方法以及网络模型的建立。

(3)整数规划模型的建立:讲解整数规划的概念和建立方法。

(4)非线性规划模型的建立:讲解非线性规划的概念和建立方法。

3. 例题讲解:选取具有代表性的例题,讲解模型建立和求解的过程。

4. 随堂练习:让学生分组讨论并解决实际问题,巩固所学知识。

六、板书设计板书设计如下:1. 线性规划模型:目标函数约束条件标准形式2. 图与网络模型:图的概念图的表示方法网络模型的建立3. 整数规划模型:整数规划的概念整数规划的建立方法4. 非线性规划模型:非线性规划的概念非线性规划的建立方法七、作业设计1. 作业题目:(1)根据给定的条件,建立线性规划模型,并求解。

(2)根据给定的条件,建立图与网络模型,并求解。

(3)根据给定的条件,建立整数规划模型,并求解。

(4)根据给定的条件,建立非线性规划模型,并求解。

2. 答案:(1)线性规划模型的目标函数为:Z = 2x + 3y,约束条件为:x + y ≤ 6,2x + y ≤ 8,x ≥ 0,y ≥ 0。

数学建模课程方案设计模板

数学建模课程方案设计模板

一、课程概述1. 课程名称:数学建模2. 课程性质:专业基础课、实践性课程3. 课程目标:通过本课程的学习,使学生掌握数学建模的基本理论、方法和技巧,培养学生的数学思维能力、创新能力和解决实际问题的能力。

4. 适用对象:理工科专业学生二、课程内容1. 基本概念与理论(1)数学建模的基本概念(2)数学建模的常用方法(3)数学建模的常用软件2. 数理方法(1)线性代数(2)概率论与数理统计(3)微分方程3. 案例分析(1)实际问题背景介绍(2)数学模型建立(3)模型求解与分析(4)模型验证与应用4. 实践与作业(1)课程实验(2)课程设计(3)课后作业三、教学方法1. 讲授法:系统讲解数学建模的基本理论、方法和技巧。

2. 案例分析法:通过分析实际问题,使学生掌握数学建模的思路和方法。

3. 实践操作法:通过课程实验、课程设计和课后作业,培养学生的实际操作能力。

4. 混合式教学法:结合线上与线下教学资源,提高学生的学习效果。

四、教学手段1. 多媒体课件:制作精美、内容丰富的多媒体课件,提高教学效果。

2. 网络教学平台:利用网络教学平台,实现线上教学资源共享和互动交流。

3. 实验室:提供实验设备,让学生进行实际操作,提高实践能力。

4. 校外资源:与相关企业、研究机构合作,为学生提供实习和就业机会。

五、考核方式1. 平时成绩:包括课堂表现、作业完成情况等,占总成绩的30%。

2. 实验成绩:包括实验报告、实验操作等,占总成绩的20%。

3. 课程设计成绩:包括设计报告、设计答辩等,占总成绩的30%。

4. 期末考试成绩:包括笔试、口试等,占总成绩的20%。

六、课程实施1. 制定教学计划:根据课程内容,制定详细的教学计划,确保教学进度和质量。

2. 教学组织:合理安排教学时间,确保教学任务顺利完成。

3. 教学评价:定期对教学效果进行评价,及时调整教学方法和手段。

4. 学生辅导:为学生提供必要的辅导,帮助学生解决学习中遇到的问题。

数学建模课程方案模板

数学建模课程方案模板

一、课程名称数学建模二、课程背景数学建模是现代科学研究和工程技术中一种重要的研究方法,它将实际问题转化为数学模型,通过数学方法求解模型,从而为实际问题提供解决方案。

随着我国科学技术的发展,数学建模在各个领域都得到了广泛应用。

为了培养学生的数学思维能力和解决实际问题的能力,特开设此课程。

三、课程目标1. 使学生掌握数学建模的基本概念、方法和步骤;2. 培养学生运用数学知识解决实际问题的能力;3. 提高学生的团队合作和沟通能力;4. 培养学生的创新意识和实践能力。

四、课程内容1. 数学建模的基本概念和步骤2. 常用数学模型及其应用3. 数值计算和计算机编程4. 数学软件的使用5. 案例分析6. 实践项目五、教学安排1. 理论教学:32课时2. 实践教学:32课时3. 总课时:64课时六、教学方法1. 讲授法:系统讲解数学建模的基本概念、方法和步骤;2. 案例分析法:通过实际案例,引导学生掌握数学建模的技巧;3. 实践教学:组织学生进行数学建模实践,培养学生的动手能力;4. 讨论法:鼓励学生积极参与课堂讨论,提高学生的思考能力和表达能力。

七、考核方式1. 平时成绩(40%):包括课堂表现、作业完成情况等;2. 实践项目成绩(40%):根据学生在实践项目中的表现进行评定;3. 期末考试(20%):考察学生对数学建模知识的掌握程度。

八、教材与参考资料1. 教材:《数学建模》2. 参考资料:- 《数学建模案例分析》- 《MATLAB数值计算与编程》- 《数学软件使用指南》九、课程特色1. 注重理论与实践相结合,提高学生的实际应用能力;2. 强调团队合作,培养学生的沟通能力和协作精神;3. 采用多种教学方法,激发学生的学习兴趣和积极性;4. 跟踪科技发展动态,关注数学建模在各个领域的应用。

十、课程预期效果通过本课程的学习,学生能够:1. 掌握数学建模的基本概念、方法和步骤;2. 具备运用数学知识解决实际问题的能力;3. 提高团队合作和沟通能力;4. 培养创新意识和实践能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

攀枝花学院学生课程设计(论文)题目:产品广告费用分配对销量及利润的影响模型学生姓名:**学号: ************ 所在院(系):数学与计算机学院专业:信息与计算科学班级: 12信本1班指导教师:马亮亮职称:讲师2014年12 月19 日攀枝花学院教务处制攀枝花学院本科学生课程设计任务书注:任务书由指导教师填写。

摘要广告,就是广而告知的意思。

随着市场经济的发展,行业之间的竞争越来越激烈,为了提高利润,广告成为了重要的竞争工具,也是企业培育市场、培养品牌的重要方式。

不同的行业、不同的产品、甚至同一产品的不同生命周期,广告的投放时间、投放程度、投放市场的选择都是千差万别的。

今天我们从数学建模角度结合数学知识研究产品广告费用分配对销量及利润的影响,建立广告投入策略的模型,讨论了不确定环境下使得公司获利最大的最优广告费投入量。

并用模拟近似法进行应用实例分析,从而得到模型参数的变化对最优策略的影响.本文还进一步考虑了模型的优缺点,并根据提出的缺点,对模型进行了进一步改进,并提供了一些相关的评估方法。

[关键词]:广告费用; 市场竞争;销量;利润;优化模型;增长因子目录摘要 (I)一丶问题重述 (1)二丶符号说明 (2)三、问题分析 (2)四、模型假设 (3)五、模型建立与求解 (4)六、结果解释 (6)七、实例分析 (6)八丶模型评估 (9)参考文献 (10)一丶问题重述甲乙两公司通过广告来竞争销售商品的数量,广告费分别是x和y。

设甲乙公司商品的售量在两公司总售量中占得份额,是它们的广收入与售量成正比,从收入中扣除广告费后即为公司的利润。

试构造,模型的图形,并讨论甲公司怎样确定广告费才能使利润最大。

(2)写出甲公司利润的表达式p(x)。

对于一定的y,使p(x)最大的x的最优值应满足什么关系。

用图解法确定这个最优值。

二丶符号说明k 、c: 任意常数;x 、y:甲、乙两公司各自投入的广告费; t: yx x t +=;p(x): 甲公司投入广告后获得的利润。

三、问题分析广告对于任何产品它的最终目的是提高销售量,进而使销售利润上升。

现实生活中,影响销售数量的因素有很多,包括市场的自然变动、价格因素、产品或者服务的性能和质量、广告的质量和密度、销售网络的密度和质量、行业特点等等。

但在实证研究的过程中我们无法把所有因素都考虑在内,因此我们在做模型分析前假设销售数量只受广告费用的影响,并且产品所做的广告在一定意义上都是成功的。

下面我们通过对销售与利润之间数量关系的分析,建立相应的函数关系模型,利用甲乙两公司销售的函数,用求导,平移函数图像地方法,求出相应的利润最值问题。

利润=收入-广告费,利用这个等式,建立甲公司利润的函数表达式,再根据已知的关系,求导,得驻点,进而得最值。

四、模型假设1. 销售数量只受广告费用的影响,且产品所做的广告在一定意义上都是成功的,商家的信誉度和产品质量是良好的。

2. 不考虑市场环境的突变及同类产品的竞争,有且仅有这两个公司通过广告竞争销售该商品。

3.产品的销售过程和宣传力度均为连续过程,若某公司广告费用为0,则商品销售额也是0。

4.广告具有立时性,一旦宣传就起效应;5.利润与销量成正比,且比例系数为k。

商品的销售速度是因作广告而增加,但是这种增加有一定的限度。

广告只能影响该产品在市场上尚未达到饱和的部分,当商品在市场上趋于饱和时,销售速度也趋于它的上限值。

6.假设停止广告宣传后,销售速度不会达到饱和速度。

7.产品量是充足的,广告的宣传力度和宣传时间相对固定;8. 自然衰减是销售速度的一种性质,即商品销售速度随销售率的增加而减小。

五、模型建立与求解问题(1):令yx x t +=,带入()()11=-+t f t f 得1=⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫⎝⎛+y x y f y x xf ,使用MATLAB 软件,得到()()11=-+t f t f 的示意图结果:f(t)图形以⎪⎪⎭⎫⎝⎛21,21为中心对称,如图实线或虚线所示。

由x,y 的一般性,以下设f (t )为实线形状。

问题(2):设甲公司广告费用为x,以公司广告费用为y(y 是常数)。

则甲公司销量为⎪⎪⎭⎫⎝⎛+y x xf ,销售额为⎪⎪⎭⎫ ⎝⎛+y x x kf ,(k 是常数)。

利润p(x)为:x y x x kf x p -⎪⎪⎭⎫⎝⎛+=)(。

依题意即是要求p (x )取得最大值的点。

方法一:由0)(*’=x p 可得2**’11)(⎪⎪⎭⎫ ⎝⎛-=t ayt f , 取任意常数c ,c tk y t g +-=11)(,则:曲线族g (t )中与f (t )相切的那一条曲线的切点坐标为*t ,yx x t+=***。

如图:方法二:由f (t )~t 图形做出下图,再作直线axx h =)(,在曲线上找一点M ,其横坐标y x >*,使过M 点的切线平行于h (x ),*x 即为所求:结果:按方法一或者方法二都可以得到结果。

如图,*x 即为所求,即产品投资费用为*x 时甲公司获得的利润最大。

六、结果解释产品销售中的广告投入选择与费用分配一直是企业面临的一大难题,如何将其进行合理分配不仅体现了广告业务人员的决策意识,也是企业利润取得最大化的重要保障,在广告费用投入准则中我们要知道既不是投入越多,收获也就更多,而是要采取理性选择,在广告费用投入越少的情况下使得利润最大,总而言之,广告在产品销售环节中已经起着举足轻重的作用,而且随着社会竞争的激烈加剧,它的重要性还会上升。

本模型可以有效帮助决策者大致估算广告投入费用,提高广告费用的投入产出比。

七、实例分析究竟如何分配才能使效益最大化了,我们举例说明一下:某装潢公司以每桶20元的价格购进一批彩漆,想通过做广告使销售量有一个增长.根据经验,彩漆售价与预期销售量的关系见表一(来源于网络),广告费与销售增长因子的关系见表二,其中销售增长因子意义为:实际销售量等于预期销售量乘以销售增长因子.现问广告费与销售价分别为多少时利润最大?根据所给的数据,通过曲线拟合得到预期销售量与售价、销售增长因子与广告费之间的函数关系,并建立以售价和广告费为二元变量的利润函数,最后求极值得到问题的解.第一步:根据表中数据可预设销售量为线性函数t(x)=ax+b,设销售增长因子为二次函数z(y)=cy^2+dy+e.第二步:利用数学软件中曲线拟合功能求出t(x)=ax+b其中a≈-513.33, b≈50422.22.()ez+ycydy=2+其中c≈-4.25*10ˉ10,d≈4.09*10ˉ5,e≈1.02.第三步:由于利润=实际销售收入-购进彩漆费用-广告费用,故设利润函数为:()()()()yytxp-zxxy,-=20将第二步中t(x)和z(y)代入得:()()()()y x e dy cy b ax y x p --+++=20,2 其中a,b,c,d,e 分别如第二步所示。

分别将利润函数对x 和y 求偏导并令其等于零得:并将a,b,c,d,e的值代入得:x ≈59.11, y ≈46620所以,当投入约46620元广告费,实际售价约为59.11元时利润最大,此时获最大利润约为1525600元.通过实例研究,分析可得如下结论:相关关系证明了假设5利润与销量成正比,以及其他方面实例也与模型符合。

八丶模型评估模型的优点:1、易于推广,模型构思巧妙,能准确得出最佳广告费;2、应用范围广,可应用各种新产品的市场销售计划;3、基本模型对问题的描述精确、合理,推导严谨,理论性强。

模型的缺点以及改进方法:1:此模型是理想化的模型,k的不确定性使这个模型比较粗糙,这里只是简单的使收入与销售成线性的正比关系。

在实际应用中,可以再细微的调查相关数据,得出一个更精确的函数关系。

2.建模前假设的销售额不受其他因素的影响,使研究的精准性受到了限制。

因此广告费用与利润的深层关系还有待进一步的研究。

3.上述模型说明了广告费与销量呈正相关关系。

但从经济学的角度讲,任何现实投入都存在边际产出的问题。

也就是说,广告的费用投入同样应该考虑边际产出,过度的投入不但不会使投入产出比增加,相反会引起降低,使产品的生产流通成本增加。

所以广告费用的多少,应该与企业的生产流通规模相适应。

正确利用模型,科学投入。

参考文献【1】姜启源,数学模型(第二版),高等教育出版社,北京。

【2】寿纪麟,数学建模——方法与范例,西安交大出版社。

【3】(美)JOHN A.QUELCH 等著吕—林等译,市场营销管理教程和案例, 北京大学出版社 2000。

【4】戴永良广告绩效评估,中国戏剧出版社,2001。

相关文档
最新文档