(3) 第一部分 行列式及矩阵运算——典型例题

合集下载

考研数学一(行列式、矩阵)历年真题试卷汇编1(题后含答案及解析)

考研数学一(行列式、矩阵)历年真题试卷汇编1(题后含答案及解析)

考研数学一(行列式、矩阵)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2014年]行列式=( ).A.(ad-bc)2B.一(ad-bc)2C.a2d2一b2c2D.一a2d2+b2c2正确答案:B解析:令,则此为非零元素仅在主、次对角线上的行列式,即得|A|=一(ad-bc)(ad-bc)=一(ad-bc)2.仅B入选.知识模块:行列式2.设A是m×n矩阵,B是n×m矩阵,则( ).A.当m>n时,必有行列式|AB|≠0B.当m>n时,必有行列式|AB|=0C.当n>m时,必有行列式|AB|≠0D.当n>m时,必有行列式|AB|=0正确答案:B解析:利用矩阵秩和乘积矩阵秩的两不大于法则确定正确选项.因AB为m 阶矩阵,行列式|AB|是否等于零取决于其秩是否小于m.利用矩阵秩的两不大于法则得到m>n时,有秩(A)≤min{m,n}=n<m,秩(B)≤min{m,n}=n <m.再利用乘积矩阵秩的两不大于法则得到秩(AB)≤min{秩(A),秩(B)}<m,而AB为m阶矩阵,故|AB|=0.仅B入选.知识模块:行列式3.[2012年]设A为三阶矩阵,P为三阶可逆矩阵,且P-1AP=.若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则Q-1AQ=( ).A.B.C.D.正确答案:B解析:因Q=[α1+α2,α2,α3]=[α1,α2,α2],故因而Q-1AQ 知识模块:矩阵4.[2008年] 设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则( ).A.E—A不可逆,E+A不可逆B.E—A不可逆,E+A可逆C.E—A可逆,E+A可逆D.E—A可逆,E+A不可逆正确答案:C解析:由A3=O知A为幂零矩阵,故其特征值λ1=λ2=…=λn=0,因而E —A与E+A的n个特征值均为μ1=μ2=…=μn=1,故E一A与E+A没有零特征值.可知,它们均可逆.知识模块:矩阵填空题5.设n阶矩阵,则|A|=______.正确答案:(一1)n-1(n一1)解析:|A|是行和与列和都相等的行列式.将各列加到第1列,提取公因式n一1,去掉与第1列成比例的分列,化为下三角形行列式,得=(一1)n-1(n 一1).知识模块:行列式6.[2015年] n阶行列式=______.正确答案:2n+1-2解析:按第1行展开得到递推关系式:=2Dn-1+2(一1)n+1(一1)n-1=2Dn-1+2.依此递推,得到Dn=2Dn-1+2=2(2Dn-2+2)+2=22Dn-2+22+2=22(2Dn-3+2)+22+2=23Dn-3+23+22+2 =…=2n-1D1+2n-1+2n-2+…+22+2=2n-1·2+2n-1+2n-2+…+22+2=2n+2n-1+2n-2+…+22+2=2(1+2+22+…+2n-1).由等比级数求和的公式a1+a1q+a1q2+…+a1qn-1=,令a1=2,q=2,得到Dn=2(1+2+22+…+2n-1)==(一1)(2—2n+1)=2n+1-2.知识模块:行列式7.[2016年]行列式=______.正确答案:λ4+λ3+2λ2+3λ+4解析:=λ[λ·λ·(λ+1)+0·2·0+3(-1)(一1)一0·λ·3一(一1)·2·λ—(λ+1)(一1)·0]+4=λ4+λ3+2λ2+3λ+4.知识模块:行列式8.设A,B为n阶矩阵,|A|=2,|B|=一3,则|2A*B-1|=______.正确答案:一22n-1/3解析:由|kA|=kn|A|.A*=|A|A-1,|A*|=|A|n-1,|B-1|=1/|B|,有|2A*B-1|=|2A*||B-1|=2n|A*|(1/|B|)=2n|A|n-1一/|B|=2n2n-1/(一3)=一22n-1/3.知识模块:行列式9.[2005年] 设α1,α2,α3均为三维列向量,记矩阵A=[α1,α2,α3],B=[α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3].如|A|=1,那么|B|=______·正确答案:2解析:B=[α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3]=[α1,α2,α3]=AC.其中为三阶范德蒙行列式,则|C|=(2—1)×(3—1)×(3—2)=2,故|B|=|A||C|=2×1=2.知识模块:行列式10.[2006年]设矩阵,E为二阶单位矩阵,矩阵B满足BA=B+2E,则|B|=______.正确答案:2解析:由BA=B+2E得|B(A—E)|=|2E|=22=4,故|B||A—E|=4,|B|=4/|A—E|=4/2=2.知识模块:行列式11.[2004年]设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则|B|=______.正确答案:1/9解析:在所给方程的两边同时右乘A,利用A*A=|A|E,得到ABA*A=2BA*A+A,即|A|AB=2|A|B+A,移项即得|A|(A一2E)B=A.两边取行列式,得到|A|(A-2E)B|=|A|,即|A|3|(A-2E)B|=|A|,|A|2|A一2E||B|=1,再由|A|=3,|A一2E|=1得到所求行列式|B|=1/|A|2=1/9.知识模块:行列式12.设三阶矩阵A的特征值为1,2,2,E为三阶单位矩阵,则|4A-1一E|=______.正确答案:3解析:所求结果应与A能否与对角矩阵相似无关,现用加强条件法求出此结果.如A与对角矩阵相似,则存在可逆矩阵P,使得P-1AP=diag(1,2,2)=Λ,即A=PΛP-1.于是A-1=PΛ-1P-1,4A-1一E=4PΛ-1P-1一PEP-1=P(4Λ-1一E)P-1.两端取行列式有|4A-1一E|=|P||4Λ-1一E||P-1|=|4Λ-1一E|=|4diag(1,1/2,1/2)一E|=3.知识模块:行列式13.[2013年] 设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=______.正确答案:-1解析:由aij=一Aij,则(aij)T=一(Aij)T=一(Aji),即AT=一A*,从而|A|=|AT|=|—A*|=(一1)3|A|3-1=一|A|2.即|A|2+|A|=|A|(|A|+1)=0,故|A|=0或|A|=一1.若|A|=0,则由|A|=ai1Ai1+ai2Ai2+ai3Ai3=一(ai12+ai22+ai32)=0 (i=1,2,3)得到aij=0(i,j=1,2,3),即矩阵A为零矩阵.这与假设矛盾,故|A|=一1. 知识模块:行列式14.若齐次线性方程组只有零解,则λ应满足的条件是______.正确答案:λ≠1解析:因方程个数与未知数的个数相同,又该方程组只有零解,可知,|A|≠0.而于是当λ≠1时,|A |≠0,即该方程组只有零解.知识模块:行列式15.设α为三维列向量,αT是α的转置.若ααT=,则αTα=______.正确答案:3解析:由ααT= 知,于是αTα=3.知识模块:矩阵16.设,而n≥2为整数,则An一2An-1=______.正确答案:O解析:先求出n=2和n=3时A2,A3的表示式,然后归纳递推求出An.当n=2时,A2==2A.当n=3时,A2=A2·A=2A·A=2A2=2·2A=22A.设Ak=2k-1A,下面证Ak+1=2kA.事实上,有Ak+1=Ak·A=2k-1A·A=2k-1A2=2k-1·2A=2kA.因而对任何自然数n,有An=2n-1A,于是An一2An-1=2n-1A一2·2n-2A=O.知识模块:矩阵解答题解答应写出文字说明、证明过程或演算步骤。

线性代数-章节知识点及习题

线性代数-章节知识点及习题

第一章 行列式一、教学要求1、了解行列式定义;2、掌握行列式的性质和展开法则;3、会利用化三角法和行列式展开法则计算低阶行列式以及简单n 阶行列式;4、了解克莱姆法则;重点、难点:熟练运用行列式性质,掌握行列式计算方法二、主要知识点及练习 1、 行列式性111213111112132122232121222331323331313233223=1223=223a a a a a a a a a a a a a a a a a a a a a ,则。

练习:若行列式---311234=1303=101313a b c a b c ,则。

练习:若行列式+++2、 代数余子式13122,112D x x D=则中的系数为。

练习:设行列式11111111x x 是关于的一次多项式,该式中的一次项系数是。

练习:--- 3、 行列式计算1) 对角线法------计算二阶、三阶行列式212103214111213212223313233--、a a a a a a a a a 练习:计算三阶行列式2) 利用行列式性质计算行列式------将行列式化为上三角、下三角、对角行列式222222222(1)(2)(1)(2)(2)(1)(2)11231123(3)(4)11131121(1)ab b b x x x ba b b y y y bb a b z z z b b b ax ab ac aex bd cdde x bf cfefx 练习:计算下列行列、式、、的值+++++++-+-+-+3) 利用行列式展开法计算行列式------将行列式降阶0110100111011110练习:四阶行列式。

=11121314313233441111123456224816123434D A A A A A A A A 练习:已知行列式,则,。

==+++=++--+=123,1,3D A A 练习:设三阶行列式的第二行元素分别为,,第一行元素的代数余子式的值分别为,,则。

第一章 行列式 习题及答案

第一章 行列式 习题及答案

第一章 行列式习题1. n 阶行列式D 的值为c ,若将D 的第一列移到最后一列,其余各列依次保持原来的次序向左移动,则得到的行列式值为 。

(1(1)n c --)2. n 阶行列式D 的值为c ,若将D 的所有元素改变符号,得到的行列式值为 。

((1)n c -)3. 2(1)(2,1,21,2,,1,)(21)0(23)0122k k N k k k k k k k k --+=-++-+++=+?。

4. 由行列式的定义计算行列式413331233626xx x x xx展开式中4x 和3x 的系数。

(3412, 12x x -)(分析:4x 的系数:四个元素中必须全都包含x 。

第一行只能取11a ,第三行只能取33a ,这样第二、四行只能取22a 和44a ,则此项为(1234)411223344(1)4312N a a a a x x x x x -=⋅⋅⋅=。

3x 的系数:(2134)(4231)3331221334441223314(1)(1)3912N N a a a a a a a a x x x -+-=--=-。

)5. 已知1703,3159,975,10959能被13整除,不直接计算行列式17033159097510959的值,证明他是13的倍数。

证明:12341701703170170341000131531593153159410021309709750979754103109510959109510959l c c l c c l c c l +⋅+⋅=⋅+⋅,能被13整除。

注意,以下两个行列式:170317037033159315915909759759751095910959959≠,所以一定要加到最后一列上。

6. 设行列式311252342011133--=--D ,求11213141243A A A A +--及2123242-++M M M 。

(0和-5)解:112131412112423424301011333A A A A -+--==----。

矩阵与行列式练习题及解析

矩阵与行列式练习题及解析

矩阵与行列式练习题及解析矩阵与行列式是线性代数的重要内容之一,对于理解和运用线性代数的基本概念和方法具有重要作用。

本文将为读者提供一些矩阵与行列式的练习题,并对其解析过程进行详细讲解,帮助读者掌握相关知识。

练习题一:已知矩阵A=⎡⎣⎢123456⎤⎦⎥,求A的转置矩阵AT。

解析:矩阵的转置是指将矩阵的行与列进行对调。

根据定义,矩阵AT的第i行第j列元素等于矩阵A的第j行第i列元素。

因此,可以得到矩阵A的转置矩阵AT=⎡⎣⎢143256⎤⎦⎥。

练习题二:已知矩阵B=⎡⎣⎢112233⎤⎦⎥,求B的逆矩阵B-1。

解析:矩阵的逆是指与之相乘得到单位矩阵的矩阵。

对于2×2的矩阵而言,可以通过下面的公式求得逆矩阵:B-1 = 1/(ad-bc) * ⎡⎣⎢dd-bb-cc-aa⎤⎦⎥,其中a、b、c、d分别代表B的对应元素。

根据此公式,可以得到矩阵B的逆矩阵B-1=⎡⎣⎢-1/3-2/30.5-1⎤⎦⎥。

练习题三:已知矩阵C=⎡⎣⎢100010001⎤⎦⎥,求C的行列式|C|。

解析:行列式是用来表征矩阵性质的量,对于3×3的矩阵而言,行列式的计算公式如下:|C| = a(ei-hf) - b(di-hg) + c(dg-ge),其中a、b、c、d、e、f、g、h、i分别代表矩阵C的对应元素。

带入矩阵C的值,可以得到|C|=0。

练习题四:已知矩阵D=⎡⎣⎢123456789⎤⎦⎥,求D的特征值和特征向量。

解析:特征值和特征向量是矩阵在线性变换过程中的重要指标,特征值是矩阵对应特征向量的线性变换因子。

首先,求解特征值需要解特征方程Det(D-λI)=0,其中λ为特征值,I为单位矩阵。

通过计算得到特征值λ1=0,λ2=15,λ3=-15。

然后,根据特征值求解对应的特征向量,即求解方程组(D-λI)X=0,其中X为特征向量。

求解过程中,可以得到特征向量X1=⎡⎢⎣-1-101⎤⎥⎦,X2=⎡⎢⎣111⎤⎥⎦,X3=⎡⎢⎣100-11⎤⎥⎦。

矩阵运算练习掌握行列式与矩阵的特性与运算

矩阵运算练习掌握行列式与矩阵的特性与运算

矩阵运算练习掌握行列式与矩阵的特性与运算矩阵运算练习:掌握行列式与矩阵的特性与运算矩阵是线性代数中的重要概念之一,广泛应用于各个领域,如数学、物理、计算机科学等。

掌握行列式与矩阵的特性与运算对于深入理解线性代数知识至关重要。

本文将介绍行列式和矩阵的基本概念,并列举一些练习题目以帮助读者加深对矩阵运算的理解。

一、行列式与矩阵的基本概念1. 行列式的定义行列式是一个方阵(即行数等于列数的矩阵)特有的性质,用于描述线性变换过程中体积的变化。

对于一个$n \times n$的矩阵$A$,其行列式记作$|A|$,行列式的计算可以通过对角线法则或拉普拉斯展开法进行。

2. 矩阵的基本概念矩阵是由数个数组成的矩形排列,常用于表示线性方程组、线性映射等。

一个$m \times n$的矩阵$A$由$m$行$n$列的数$a_{ij}$组成,其中$a_{ij}$表示矩阵$A$中第$i$行第$j$列的元素。

二、行列式与矩阵的运算1. 行列式的性质行列式具有一些重要的性质,包括行列互换、同行(列)倍乘、行列式的加减性等。

这些性质对行列式的计算和简化非常有帮助。

2. 矩阵的基本运算矩阵的基本运算包括矩阵的加法和数乘运算。

对于两个相同大小的矩阵$A$和$B$,它们的和$A + B$即为对应元素相加得到的矩阵,数乘运算即将一个矩阵的每个元素乘以一个标量。

3. 矩阵乘法矩阵乘法是矩阵运算中的重要部分,它描述了两个矩阵相乘的过程。

对于两个矩阵$A$和$B$,它们的乘积$AB$是一个新的矩阵,其中新矩阵的第$i$行第$j$列的元素由矩阵$A$的第$i$行和矩阵$B$的第$j$列对应元素的乘积之和得到。

三、行列式与矩阵的练习题以下是一些行列式与矩阵的练习题,可以帮助读者加深对矩阵运算的理解。

1. 给定矩阵$A = \begin{bmatrix} 2 & 1 \\ -3 & 4 \end{bmatrix}$,计算其行列式$|A|$。

线性代数重要知识点及典型例题答案

线性代数重要知识点及典型例题答案

线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和nnn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ〔奇偶〕排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。

〔转置行列式〕TD D =②行列式中*两行〔列〕互换,行列式变号。

推论:假设行列式中*两行〔列〕对应元素相等,则行列式等于零。

③常数k 乘以行列式的*一行〔列〕,等于k 乘以此行列式。

推论:假设行列式中两行〔列〕成比例,则行列式值为零;推论:行列式中*一行〔列〕元素全为零,行列式为零。

④行列式具有分行〔列〕可加性⑤将行列式*一行〔列〕的k 倍加到另一行〔列〕上,值不变行列式依行〔列〕展开:余子式、代数余子式ij M ijji ij M A +-=)1( 定理:行列式中*一行的元素与另一行元素对应余子式乘积之和为零。

克莱姆法则:非齐次线性方程组 :当系数行列式时,有唯一解:0≠D )21(n j DD x j j ⋯⋯==、 齐次线性方程组 :当系数行列式时,则只有零解01≠=D 逆否:假设方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a →②对称行列式:jiij a a =③反对称行列式:奇数阶的反对称行列式值为零ji ij a a -=④三线性行列式: 方法:用把化为零,。

化为三角形行列式333122211312110a a a a a a a 221a k 21a ⑤上〔下〕三角形行列式:行列式运算常用方法〔主要〕行列式定义法〔二三阶或零元素多的〕化零法〔比例〕化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:〔零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵)n m A * 矩阵的运算:加法〔同型矩阵〕---------交换、结合律数乘---------分配、结合律n m ij ka kA *)(= 乘法注意什么时候有意义nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑== 一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0转置A A TT =)(TTTBA B A +=+)((反序定理)T T kA kA =)(T T T A B AB =)(方幂:2121k k k kA AA += 几种特殊的矩阵:对角矩阵:假设AB 都是N 阶对角阵,k 是数,则kA 、A+B 、AB 都是n 阶对角阵数量矩阵:相当于一个数〔假设……〕 单位矩阵、上〔下〕三角形矩阵〔假设……〕对称矩阵反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,假设存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,(非奇异矩阵、奇异矩阵|A|=0、伴随矩阵)B A =-1 初等变换1、交换两行〔列〕2.、非零k 乘*一行〔列〕3、将*行〔列〕的K 倍加到另一行〔列〕初等变换不改变矩阵的可逆性 初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的〔对换阵 倍乘阵 倍加阵〕等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr 矩阵的秩r(A):满秩矩阵 降秩矩阵 假设A 可逆,则满秩假设A 是非奇异矩阵,则r 〔AB 〕=r 〔B 〕初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵,行列式n ij n ij a k ka )()(=nijn nij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④假设A 可逆,则其逆矩阵是唯一的。

线性代数典型例题

线性代数典型例题

A = C 1,: 2,: 3),B =(:1: 2: 3, j 2 24 3√ 13: 29 3)线性代数第一章行列式典型例题、利用行列式性质计算行列式 、按行(列)展开公式求代数余子式四、抽象行列式的计算或证明1. 设四阶矩阵 A=[2>,3 2,4 3, 4],B=「,2 2,3 3,4 4],其中2, 3, 4 均为四 维列向量,且已知行列式|A| = 2,|B|=-3,试计算行列式|A - B|.A12. 设A 为三阶方阵,A 为A 的伴随矩阵,且IAI=',试计算行列式2"(3A ) j-2A * 0〕 2 L :O AT3. 设A 是n 阶(n 工2)非零实矩阵,元素a ij与其代数余子式A j 相等,求行列式|A|.2 1 04. 设矩阵 A= 1 2 0 ,矩阵 B 满足 ABA * = 2BA*+E ,则 |B|= ________ .'0 0 1 J5. 设>1√∙2, : 3均为3维列向量,记矩阵已知行列式D 4 =1 3 1 123 5 1 34 6 2 4 4 7 2=-6,试求 A 41 A 42 与 A 43 ' A 44.三、利用多项式分解因式计算行列式11、tW1 2 —X1 •计算D =151 9-x 22 •设 f(x)=X b b b b X C C C C Xddd ,则方程f (X) =O 有根X = d如果I A ∣=1,那么| B |= __ .五、n阶行列式的计算六、利用特征值计算行列式1. 若四阶矩阵A与B相似,矩阵A的特征值为丄丄,则行列式2 3 4 51IB -E∣= _________ .2. 设A为四阶矩阵,且满足|2E ∙ A∣=0,又已知A的三个特征值分别为-1,1,2,试计算行列式|2A 3E |.第二章矩阵典型例题一、求逆矩阵1. 设代B, A ■ B都是可逆矩阵,求:(A J■ B」)」.-00021〕000532.设 A =12300,求A JL4580034600一二、讨论抽象矩阵的可逆性1. 设n阶矩阵A满足关系式A3∙ A2- A- E =0,证明A可逆,并求A^l.2. 已知A3 =2E,B = A2 -2A ∙ 2E ,证明B可逆,并求出逆矩阵。

考研数学一-线性代数行列式、矩阵(三)

考研数学一-线性代数行列式、矩阵(三)

考研数学一-线性代数行列式、矩阵(三)(总分:100.00,做题时间:90分钟)一、选择题(总题数:18,分数:9.00)1.f(x),则方程f(x)=0的根的个数为(分数:0.50)A.1.B.2.√C.3.D.4.解析:2.若α1,α2,α3,β1,β2都是4维列向量,且4阶行列式|α1,α2,α3,β1 |=m,|α1,α2,β2,α3 |=n,则4阶行列式|α3,α2,α1,β1 +β2 |等于(分数:0.50)A.m+m.B.-(m+n).C.n-m.√D.m-n.解析:3.设A,B均为n×n矩阵,则必有∙ A.|A+B|=|A|+|B|.∙ B.AB=BA.∙ C.|AB|=|BA|.∙ D.(A+B)-1+A-1+B-1.(分数:0.50)A.B.C. √D.解析:4.设A,B为n阶矩阵,满足等式AB=0,则必有(分数:0.50)A.A=0或B=0.B.A+B=0.C.|A|=0或|B|=0.√D.|A|+|B|=0.解析:5.设n维行向量A=E-αTα,B=E+2αTα,其中E为n阶单位矩阵,则AB等于∙ A.0.∙ B.-E.∙ C.E.∙ D.E+αTα.(分数:0.50)A.B.C. √D.解析:6.设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则∙ A.(A*)*=|A|n-1A.∙ B.(A*)*=|A|n+1A.∙ C.(A*)*|A|n-2A.∙ D.(A*)*=|A|n+2A.(分数:0.50)A.B.C. √D.解析:7.设A是任一n(n≥3)阶方阵,A*是A的伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*等于∙ A.kA*.∙ B.k n-1A*.∙ C.k n A.∙ D.k-1A*.(分数:0.50)A.B. √C.D.解析:8.设A,B为n阶矩阵,A*,B*分别是A,B对应的伴随矩阵,分块矩阵,则C的伴随矩阵C*等于A..B..C..D..(分数:0.50)A.B.C.D. √解析:9.设A,B,A+B,A -1 +B -1均为n阶可逆矩阵,则(A -1 +B -1 ) -1等于∙ A.A-1+B-1.∙ B.A+B.∙ C.A(A+B)B-1.∙ D.(A+B)-1.(分数:0.50)A.B.C. √D.解析:10.设,,,A可逆,则B -1等于∙ A.-1 P1P2.∙ B.P1A-1P2.∙ C.P1P2A-1.∙ D.P2A-1P1.(分数:0.50)A.B.C. √D.解析:11.设n阶矩阵A与B等价,则必有(分数:0.50)A.当|A|=α(α≠0)时,|B|=α.B.当|A|=α(α≠0)时,|B|=-α.C.当|A|≠0时,|B|=0.D.当|A|=0时,|B|=0.√解析:12.设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r 1,则(分数:0.50)A.r>r1.B.r<r1.C.r=r1.√D.r与r1的关系依C而定.解析:13.设A,B都是n阶非零矩阵,且AB=0,则A和B的秩(分数:0.50)A.必有一个等于0.B.都小于n.√C.一个小于n,一个等于n.D.都等于n.解析:14.设矩阵A m×n的秩r(A)=m<n,E m为m阶单位矩阵,下述结论中正确的是(分数:0.50)A.A的任意m个列向量必线性无关.B.A的任意一个m阶子式不等于零.C.若矩阵B满足BA=0,则B=0.√D.A通过初等行变换,必可以化为(Em,0)形式.解析:15.设矩阵A m×n的秩r(A)=m<n,E m为m阶单位矩阵,下述结论中正确的是(分数:0.50)A.A的任意m个列向量必线性无关.B.A的任意一个m阶子式不等于零.C.A通过初等行变换,必可以化为(Em,0)形式.D.非齐次线性方程组Ax=b一定有无穷多组解.√解析:16.设n(n≥3)阶矩阵,若矩阵A的秩为n-1,则α必为A.1.B..C.-1.D..(分数:0.50)A.B. √C.D.解析:17.设3A的伴随矩阵的秩为1,则必有(分数:0.50)A.α=b或α+2b=0.B.α=b或α+2b≠0.C.α≠b且α+2b=0.√D.α≠b且α+2b≠0.解析:18..已知矩阵A相似于B,则秩(A-2E)与秩(A-E)之和等于(分数:0.50)A.2.B.3.C.4.√D.5.解析:二、填空题(总题数:26,分数:52.00)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(A的迹)
( A∗ )2 = kA∗ 例39 设A为3阶矩阵,R(A)=2,证明
25 November 2012
⎛ 1 1/ 2 1/ 3 ⎞ 例38 设 A = ⎜ 2 1 2 / 3 ⎟ , 求 An ⎜ ⎟ ⎜3 3/ 2 1 ⎟ ⎝ ⎠
(k为常数)
科大考研辅导——线性代数
第一部分 行列式及矩阵的运算——典型例题
思路 通过分解化繁为简
25 November 2012
科大考研辅导——线性代数
第一部分 行列式及矩阵的运算——典型例题
7
分解1: = kE + B , 且 B n易求 A
A = ( kE + B ) = k E + C k
n n n 1 n
n −1
B+
+C B
n n
n
⎛k 1 0⎞ 例37 设 A = ⎜ 0 k 1 ⎟ , ⎜0 0 k⎟ ⎝ ⎠
4
例31 设A,B为n阶正交阵,且 A + B = 0, 则
A+ B =
例 设 A = (aij )3×3 , Aij = aij ( i , j = 1, 2, 3), a11 ≠ 0 则 A= 例35 已知α1 , α 2 为2维列向量, A = (α 1 , α 2 ), B = (2α1 + α2 , α1 −α2 ), 若 B = 6, 则 A = (06)
⎛ 1 0 0⎞ 例44 已知 A = ⎜ 2 1 0 ⎟ , B = ( A + E )−1 ( A − E ), ⎜ 0 0 1⎟ ⎝ ⎠ −1 则 ( E + B) =
⎛ 1/2 1 1 ⎞ 例45 设 C = ⎜ 0 1/2 1 ⎟ , A, B为3阶矩阵, 且 ⎜ 0 0 1/2 ⎟ ⎝ ⎠ AC = CA, A( B + C ) = E , A( B − C )( B + C ) = C ,
25 November 2012
四 判断(证明)矩阵可逆及求逆
(01)
科大考研辅导——线性代数
第一部分 行列式及矩阵的运算——典型例题
11
例47 设A为n阶非零实矩阵, A* = AT ,证明A可逆. (94) 例46 已知A, B, A+B都可逆,证明 A−1 + B −1 可逆. 例48 设A为n阶可逆阵, α 为n维列向量,b为常数, (97) 0⎞ ⎛ E ⎛ A α⎞ P=⎜ T * ⎟ , Q = ⎜αT b ⎟ ⎝ ⎠ ⎝ −α A A ⎠
0 1 0 −3 0 0 1 0
⎛1 0 例26 设A∗ = ⎜ 1 ⎜ ⎜0 ⎝
25 November 2012
0⎞ 0 ⎟ ,且ABA−1 = BA−1 + 3 E , 则 B= 0⎟ 8⎟ ⎠
科大考研辅导——线性代数
第一部分 行列式及矩阵的运算——典型例题
3
二 求抽象矩阵的行列式
1 −1 例28 设A为3阶矩阵,A = 1 / 8, 则 ( A) − (2 A)∗ = 3
⎛ 1 0 1⎞ 例34 设 A = ⎜ 0 2 0 ⎟ , A2 B − A − B = E , 则 B = ⎜ −2 0 1 ⎟ ⎝ ⎠ (03)
25 November 2012 科大考研辅导——线性代数
第一部分 行列式及矩阵的运算——典型例题
6
三 求方阵的高次幂
⎛ 1 0 1⎞ 例36 设 A = ⎜ 0 2 0 ⎟ , 求 A n − 2 A n − 1 ⎜ 1 0 1⎟ ⎝ ⎠
(1)求PQ;
⇔ b − α T A−1α ≠ 0 (2)证明Q可逆
25 November 2012 科大考研辅导——线性代数
第一部分 行列式及矩阵的运算——典型例题
12
⎛ 2 0 2⎞ ⎜ 0 4 0 ⎟ , 则 ( A − E ) −1 = 例43 设AB=2A+B,B = ⎜ 2 0 2⎟ (03) ⎝ ⎠
例29 设A、B为n阶方阵, A = 2, B = −3, 则
A−1 B ∗ − A∗ B −1 =
例30 设A为3阶正交阵, A < 0, B为3阶方阵, E − ABT = B − A = 4, 则
25 November 2012 科大考研辅导——线性代数
第一部分 行列式及矩阵的运算——典型例题
一 解矩阵方程
⎛ 1 −1 0 0 ⎞ ⎛ 2 1 3 4⎞ ⎜ 0 1 −1 0 ⎟ 例25 已知 B = ⎜ , C = ⎜ 0 2 1 3⎟ , ⎜ 0 0 2 1⎟ 0 0 1 −1 ⎟ ⎜0 0 0 1 ⎟ ⎜ 0 0 0 2⎟ ⎝ ⎠ ⎝ ⎠ 矩阵 A 满足 A( E − C −1 B )T C T = E , 则 A=
9
分解3:A = P −1 BP , 且 B n 易求
A =P B P
n −1 n
(特别地,B =Λ)
⎛ 0 −1 0 ⎞ 例40 设 A = ⎜ 1 0 0 ⎟ , B = P −1 AP , 则 ⎜ 0 0 −1 ⎟ ⎝ ⎠
B 2012 − 2 A2 =
⎛ 2 0 0⎞ ⎛ −1 ⎞ 例41 设 A = ⎜ 0 1 1 ⎟ , B = ⎜ −2 ⎟ , 且 ⎜ 0 0 −1 ⎟ ⎜ 1⎟ ⎝ ⎠ ⎝ ⎠
则 B −1 =
25 November 2012 科大考研辅导——线性代数

科大考研辅导——线性代数
第一部分 行列式及矩阵的运算——典型例题
8
分解2:A = αβ T , α , β ——列向量
An = ( β T α ) n −1 A
( β T α ——数)
何时可以分解?A = αβ T ⇔ R( A) = 1 第 (各行(列)成比例) 如何分解? 一 (列比例系数)
第一部分 行列式及矩阵的运算——典型例题
1
第一部分
行列式及矩阵的运算 ——典型例题
25 November 2012
科大考研辅导——线性代数
第一部分 行列式及矩阵的运算——典型例题
2
⎛ 0 1 1⎞ ⎛1 0 0⎞ 例24 已知 A = ⎜ 1 1 0 ⎟ , B = ⎜ 1 0 1 ⎟ , 矩阵 X 满足 ⎜ 1 1 0⎟ ⎜1 1 1⎟ ⎝ ⎠ ⎝ ⎠ AXA + BXB = AXB + BXA + E , 则 X=
AX − BA = 0, 则 X n =
25 November 2012 科大考研辅导——线性代数
第一部分 行列式及矩阵的运算——典型例题
10
思路:1) 定义 A =E 2) A ≠ 0 5) 列(行)向量组线性无关 3) A满秩 6) A无零特征值 4) Ax=0只有零解 7) A正定(若A正定,则A可逆) 例42 设 A2 + A − 4 E = 0, 证明A-E可逆. 例49 已知 A2 = E , 则有( ) (B) A − E 可逆 (A) A + E 可逆 A (C) 当 A ≠ E 时, + E 可逆 (A) 当A ≠ E 时,A + E 不可逆
25 November 2012 科大考研辅导——线性代数
第一部分 行列式及矩阵的运算——典型例题
5
⎛ 2 1 0⎞ 例32 设 A = ⎜ 1 2 0 ⎟ , ABA∗ = 2 BA∗ + E , 则 B = ⎜ 0 0 1⎟ (04) ⎝ ⎠
例33 设A,B为3阶矩阵,且 A = −2, A3 − ABA + 2 E = 0, 则 A− B =
相关文档
最新文档