细胞生物学论文

合集下载

叶绿体的研究进展细胞生物学论文(1)

叶绿体的研究进展细胞生物学论文(1)

叶绿体的研究进展细胞生物学论文(1)叶绿体是植物细胞中的核糖体体系,是光合作用的重要场所。

自从1883年Schimper的研究发现叶绿体后,研究人员对叶绿体的细胞生物学行为和功能进行了大量的研究。

本文就叶绿体的研究进展做一综述。

一、叶绿体的起源和进化叶绿体起源于一次原核生物和真核生物的共生事件。

这次共生事件导致原核生物进入真核生物细胞,成为真核生物内的一项复杂结构和新功能的起源。

研究表明,叶绿体和细胞质基因的比较显示了叶绿体和细胞质都存在高度的多样性,这表明了叶绿体的进化是一个非常复杂的过程。

此外,研究还发现,叶绿体基因组中存在大量的基因转移,说明叶绿体的进化是一个由多个因素共同作用的进程。

二、叶绿体的结构和功能叶绿体有多个膜系统,包括两个质膜和一个腔膜系统,这些膜系统在叶绿体的光合作用和细胞代谢中扮演着重要的角色。

叶绿体内部还存在大量的第一级葡萄糖和第一级光合色素,这些在光合作用和提供能量方面起着重要的作用。

三、叶绿体的光合作用叶绿体是光合生物的光合作用场所。

光合作用是通过光合作用中的各种步骤来转化太阳能为化学能,并将其储存在ATP和NADPH中。

光合作用是生命的基本过程之一,它为植物提供能量并产生O2。

关于叶绿体的光合作用机制,科学家研究发现,光合作用机制包括5个过程:光场效应、电子传递、ATP生成、碳的固定和光保护。

四、叶绿体的光敏响应和光防御叶绿体本身是一个光敏结构,它能够感知光强度和光质,并作出相应的反应。

例如,叶绿体光受体和铁离子信号能够感知光线和热量,促进植物进行适应性反应。

此外,叶绿体中还存在着一系列反应蛋白,如Apx、Chi、Psb7、Psb28,能够提供叶绿体免疫功能及光防御作用。

五、叶绿体与环境胁迫的关系环境胁迫是植物生长发育过程中的常见问题。

环境胁迫对叶绿体的结构和功能产生负面影响,因此,科学家研究了叶绿体在不同环境胁迫下的应对机制。

例如,研究发现,叶绿体MC4和MC3等膜蛋白可以改善叶片的灌浆效应,有效地缓解了盐碱胁迫对植物生长和发育的不利影响。

细胞生物学论文

细胞生物学论文

细胞生物学概述摘要:细胞生物学是以细胞为研究对象,从细胞的整体水平、亚显微水平、分子水平等三个层次,(斯。

诺。

美。

A11-走在生物医学的最前沿)以动态的观点,研究细胞和细胞器的结构和功能、细胞的生活史和各种生命活动规律的学科。

细胞生物学是现代生命科学的前沿分支学科之一,主要是从细胞的不同结构层次来研究细胞的生命活动的基本规律。

从生命结构层次看,细胞生物学位于分子生物学与发育生物学之间,同它们相互衔接,互相渗透。

英文摘要:Cell biology is to cell as the research object, from the three levels of the overall level of the sub microscopic level, cells, molecular level (,. Connaught. Beauty. A11- in the forefront of biomedical) from the dynamic point of view, the structure and function of cells, cell and organelle of the life history and various life activities of the discipline. Cell biology is one of the frontier branch of modern life science, mainly is the basic rule to study cell from different hierarchy of life activities of cells. From the life structure and arrangement, and developmental biology is located between cell biology molecular biology, their mutual connection, mutual penetration.关键字:细胞学说显微技术遗传物质前言:细胞是生命的基本单位,细胞的特殊性决定了个体的特殊性,因此,对细胞的深入研究是揭开生命奥秘、改造生命和征服疾病的关键。

细胞衰老论文(8篇无删减范文)-细胞生物学论文-生物学论文

细胞衰老论文(8篇无删减范文)-细胞生物学论文-生物学论文

细胞衰老论文(8篇无删减范文)-细胞生物学论文-生物学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——衰老是有机生物体普遍经历的一个生命进程, 所谓细胞衰老,是指细胞的功能发生了特征性改变,衰老表现为组织再生能力下降、胚胎发育过程中出现细胞周期阻滞。

本文精选了8篇细胞衰老论文范文,以供参考和研究。

细胞衰老论文(8篇无删减范文)之第一篇:慢性疼痛与细胞衰老的关系探究摘要:慢性疼痛是一种能给人们身心健康带来伤害的慢性疾病。

特别在中老年人群中, 慢性疼痛的发生率仍然很高。

慢性疼痛不仅会损害身心健康, 而且还会严重影响人们的正常工作和生活。

目前研究发现了多种炎症因子及其通路与慢性疼痛的痛觉敏化过程相关,同时这类炎症因子也被发现参与细胞衰老过程, 其中p38有丝原激活蛋白激酶(p38 MAPK) 通路及其相关的核转录因子(NF-B) 、肿瘤坏死因子-(TNF-) 可能是关联慢性疼痛和衰老的关键点。

阐明慢性疼痛与细胞衰老的关系有利于进一步探究治疗慢性疼痛及延缓衰老的新思路, 同时提高患者及相关医务工作者、科研人员对慢性疼痛的重视程度。

关键词:慢性疼痛,细胞衰老,炎症因子,新思路慢性疼痛通常指持续时间超过1个月的疼痛, 它是一种严重的慢性疾病, 对人们的身心健康有很大的负面影响, 在身体方面出现体质衰退、睡眠障碍和食不振[1,2,3];在心理方面出现消极情绪, 精神, 甚至人格扭曲, 最终导致生活质量不断下降。

流行病学研究发现, 各个国家有10.1%至55.2%的人患有慢性疼痛。

随着年龄的增长, 慢性疼痛会越来越严重, 并且患者对疼痛的忍耐力逐渐降低, 严重的慢性疼痛与10年率的增长有关, 尤其是患有心脏病和呼吸道疾病的患者。

此外, 老年人可能比年轻人更不愿意报告自己的疼痛症状;这种情况导致患有慢性疼痛的老年人比年轻人更多, 并且有更严重的慢性疼痛症状。

近年来的一些研究表明, 慢性疼痛与衰老有密切联系。

细胞信号转导与作用细胞生物学论文(1)

细胞信号转导与作用细胞生物学论文(1)

细胞信号转导与作用细胞生物学论文(1)
细胞信号转导与作用细胞生物学论文
1. 概述
细胞信号转导是指细胞接收外界信号后进行内部反应的过程。

信号可
以是化学物质、光、声音、触觉等各种刺激,而对信号进行转导的细
胞通常会做出相应的反应,如增殖、运动、分化等。

信号转导可分为
三个基本阶段:受体激活、转导途径和反应输出。

2. 受体激活
细胞膜和细胞核内的受体可以感知来自外界环境的刺激。

常见的细胞
膜受体有受体酪氨酸激酶、G蛋白耦联受体等;而细胞核内受体如核受体则对脂溶性物质有选择性的识别和结合作用。

受体与配体结合后,
受体激活开始。

3. 转导途径
受体激活后,信号会通过一系列酶、蛋白质、激酶等分子间的反应传递。

这些分子会相互作用形成受体复合物或信号传导通路,从而传递
外界的信息。

不同的转导途径通常包括有线性通路、串联通路、并联
和反馈通路。

4. 反应输出
转导途径终究会导致细胞内部某些分子的磷酸化或变化。

这些分子经
过一系列反应后会触发细胞内的一些反应,如胞质钙离子浓度的改变、酶的活性的改变等。

这些反应最终会导致细胞行为的改变,如细胞增殖、分化、凋亡等。

总之,细胞信号转导是一个复杂而有机的过程。

它可以是线性通路,
也可以是多重通路,甚至是网络通路。

它可以通过很多途径达到不同的细胞反应,从而影响细胞的生理行为。

理解信号转导和掌握其应用非常重要,可以应用于疾病治疗和药物开发等领域。

细胞生物学的论文

细胞生物学的论文

肿瘤细胞和疾病药物治疗的相关研究学生姓名学院药学院指导老师专业药学学号2012-12-3摘要目前,肿瘤尤其是恶性肿瘤已成为威胁人类健康的最严重疾病之一,采用化疗、放疗、手术、生物治疗和中西医结合等方法是治疗肿瘤的最有效手段。

其中,新型抗肿瘤药的应用,在提高肿瘤患者生存质量、延长生存时间、延缓疾病的发展等方面发挥了巨大作用。

本文分别从肿瘤特征、相关信号通路、相关基因、表观遗传修饰、肿瘤干细胞、肿瘤微环境几个方面综述了肿瘤细胞的相关研究进展,以期对肿瘤与细胞凋亡有个较全面的认识。

关键词:抗肿瘤药物发展细胞凋亡肿瘤细胞癌基因肿瘤干细胞AbstractAt present, the tumor especially malignant tumor has become a threat to the health of human being is the most serious one of disease, chemotherapy, radiotherapy, surgery, biological treatment of combination of TCM and western medicine and methods of treatment of cancer is the most effective means. Among them, the new antineoplastic applications, to improve the living quality of patients with cancer, prolong survival time, delay the disease development has played a tremendous role. This paper from the tumor characteristics, related signal path, related genes, apparent genetic modification, tumor stem cell, tumor microenvironment were reviewed several aspects of tumor cells related research progress, in order to tumor cell apoptosis and have a more comprehensive understanding.Keywords: antitumor drug research and development apoptosis tumor cell signal path cancer gene microenvironment cancer stem cells引言动物体内因分裂调节失控而无限增殖的细胞称为肿瘤细胞(tumor cell)。

1000字高中生物学报告论文三篇

1000字高中生物学报告论文三篇

1000字高中生物学报告论文三篇文章一:细胞结构与功能细胞是生物体的基本组成单位,它具有多种结构和功能。

本文将介绍细胞的结构和功能,并探讨细胞在生物体内的重要作用。

1. 细胞的结构细胞主要由细胞膜、细胞质和细胞核组成。

细胞膜是细胞的外层包裹物,起到保护细胞和控制物质进出的作用。

细胞质是细胞内的液体,包含多种细胞器和溶液。

细胞核是细胞的控制中心,包含遗传物质DNA。

2. 细胞的功能细胞具有多种功能,包括生物合成、能量转换、物质运输、细胞分裂等。

细胞通过生物合成过程合成生物分子,如蛋白质和核酸。

能量转换过程中,细胞将光能或化学能转化为可利用的化学能。

物质运输是细胞将物质从细胞外运输到细胞内或反之的过程。

细胞分裂是细胞复制自身的过程,包括有丝分裂和无丝分裂。

3. 细胞的重要作用细胞在生物体内起着重要的作用。

它们组成组织、器官和器系,构成整个生物体。

细胞通过生物合成过程合成各种生物分子,维持生物体的正常功能。

细胞通过能量转换提供生物体所需的能量。

细胞还通过物质运输实现细胞内外物质的交换。

细胞分裂是生物体生长和繁殖的基础。

文章二:遗传与进化遗传是生物体传递基因信息的过程,而进化是物种随时间逐渐改变和适应环境的过程。

本文将介绍遗传和进化的基本概念,并探讨它们对生物多样性的重要影响。

1. 遗传的基本原理遗传是通过基因传递信息的过程。

基因是生物体内的遗传物质,它决定了生物体的性状和特征。

遗传的基本原理包括遗传物质的复制、遗传物质的分离和重新组合,以及基因突变等。

2. 进化的基本原理进化是物种逐渐改变和适应环境的过程。

进化的基本原理包括遗传变异、适应性选择和遗传漂变。

遗传变异指的是基因在遗传过程中发生的变化。

适应性选择指的是环境选择对适应环境的个体进行生存和繁殖的过程。

遗传漂变指的是随机事件导致基因频率的变化。

3. 遗传和进化对生物多样性的影响遗传和进化是生物多样性形成和维持的重要因素。

通过遗传变异和适应性选择,物种可以逐渐适应不同的环境,形成不同的种群和亚种。

(细胞生物学专业优秀论文)组蛋白乙酰化修饰调控果蝇热休克基因表达和寿..

(细胞生物学专业优秀论文)组蛋白乙酰化修饰调控果蝇热休克基因表达和寿..

摘要衰老是一个普遍的生物学现象,衰老控制着生物寿命的长短,主要受遗传因子和环境因素所影响。

了解衰老的分子机制,对于延缓衰老、保持生命活力具有重要的意义。

热休克蛋白(HSP)作为高度保守的“分子伴侣”,在细胞内广泛地参与许多复杂的功能活动,可以抵制衰老过程中一些有害蛋白的发生。

其基因的表达调控是一种特殊的真核基因表达模式,包括基础水平和诱导水平的表达。

由组蛋白乙酰转移酶(HAT)和组蛋白去乙酰化酶(HDAC)催化的乙酰化反应在真核基因的表达调控中起着重要作用,这两种酶通过对核心组蛋白进行可逆修饰来调节核心组蛋白的乙酰化水平,从而调控转录的起始与延伸。

组蛋白去乙酰化酶抑制剂(HDI)可以通过抑制HDAC活性提高组蛋白乙酰化水平,是研究乙酰化修饰在真核基因表达调控中的作用的有用工具。

本论文一方面采用HDItrichostatinA<TSA)和丁酸钠(BuA)喂食果蝇,改变果蝇体内组蛋白乙酰化水平,系统地研究组蛋白乙酰化修饰、HSP的表达以及寿命调控三者之间的关系。

结果发现hsp基因在长寿果蝇中具有较高的基础表达、较快的热激诱导反应速度以及较强的高温抵抗性。

同时,不同的hsp基因在果蝇衰老过程中的作用不尽相同,hsp22的作用最为重要,hsp70次之,而hsp26的表达几乎与寿命无关。

使用HDITSA和BuA喂食果蝇可以延长其寿命,但不同的HDI的作用机制不尽相同,同一种HDI对不同寿命品系的果蝇的延长程度也不尽相同。

TSA的处理有一种时间依赖性,更长时间的TSA处理对寿命是有利的;而BuA的处理却与此不同,过长时间的处理反而加速衰老。

同样的去乙酰化酶抑制剂,同一剂量处理,在不同果蝇品系种的作用不同,它们对短寿果蝇寿命的延长程度更为明显。

另外,HDI处理还促进果蝇衰老过程中hsp基因的基础表达和诱导表达,但是随着衰老的进行,这种促进作用逐渐减弱。

同样在不同寿命的果蝇品系中,其提高hsp基因表达的程度也不一样。

细胞生物学论文-细胞自噬

细胞生物学论文-细胞自噬

细胞生物学论文-细胞自噬生物学家通过对选定的生物物种进行科学研究,来揭示某种具有普遍规律的生命现象。

此时,这种被选定的生物物种就是模式生物。

例如果蝇,有谁会想到,这种红眼、双翅、羽状触角芒、身体分节、黄褐色的小昆虫,在近百年间竟然能够“成就”好几位获得诺贝尔奖的大科学家。

什么是自噬?大隅良典研究的是酵母的细胞自噬机制。

酿酒酵母是一种模式生物,非常经典。

经过20多年的研究,在酵母里已经发现了34种与自噬有关的基因。

那么自噬到底是什么?当你真的了解它以后,你会发现,原来细胞这么“聪明”!自噬,不就是自己吃自己吗?可以这样理解。

自噬就是细胞自己降解自己结构的过程,即把一些暂时用不上的零件,拆解变成最小的模块,然后重新组装成自己需要的东西,这就是自噬。

在植物细胞和酵母细胞里,自噬在液泡中发生。

而在动物细胞里,自噬在溶酶体里发生。

从一个蛋白质到整个细胞器,都是可以降解的。

自噬是细胞内分解代谢的一种途径。

除此之外还有一种途径,称之为泛素蛋白酶体途径。

简单说就是在蛋白质上加个泛素,做个标记,然后送进蛋白酶体中完成消化。

发现细胞自噬首次提出自噬这一概念的,是诺贝尔奖生理学或医学奖获得者、比利时细胞和生物化学家克里斯汀・德・迪夫。

他在20世纪50年代通过电子显微镜观察到自噬体,并在1963年溶酶体国际会议上正式提出,他也因此被誉为“自噬之父”。

到了20世纪90年代,大隅良典开始用酵母研究自噬。

再后来越来越多科学家加入了研究自噬的队伍。

细胞自噬其实分为三种方式,这是根据如何“打包”物质和如何运送物质来划分的。

第一种叫宏自噬,也叫巨自噬,顾名思义就是自噬体比较大,用细胞膜或者其他的双层膜去把那些不想要的东西包裹起来,然后和溶酶体融合。

第二种叫微自噬。

顾名思义就是自噬体比较小,溶酶体或者液泡直接用自身去吞噬那些需要降解的东西,也许是细胞器,也许是蛋白质。

第三种叫分子伴侣介导自噬。

是指分子伴侣将细胞内的蛋白质先从折叠状态恢复为未折叠的状态,再放到溶酶体里。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

细胞生物学[cell biology]论述
郑州大学基础医学《2》姓名:学号:11061226022
摘要:细胞生物学与其说是一个学科,倒不如说它是一个领域。

这可以从两个方面来理解:
一:是它的核心问题的性质──把发育与遗传在细胞水平结合起来,这就不局限于一个学科的范围。

二:是它和许多学科都有交叉,甚至界限难分。

例如,就研究材料而言,单细胞的原生动物既是最简单的动物,也是最复杂的细胞,因为它们集许多功能于一身;尤其是其中的纤毛虫,不仅对于研究某些问题,例如纤毛和鞭毛的运动,特别有利,关于发育和遗传的研究也积累了大量有价值的资料。

但是这类研究也可以列入原生动物学的范畴。

其次,就研究的问题而言,免疫性是细胞的重要功能之一,细胞免疫应属细胞生物学的范畴,但这也是免疫学的基本问题。

由于广泛的学科交叉,细胞生物学虽然范围广阔,却不能像有些学科那样再划分一些分支学科──如象细胞学那样,根据从哪个角度研究细胞而分为细胞形态学、细胞化学等。

如果要把它的内容再适当地划分,可以首先分为两个方面:一是研究细胞的各种组分的结构和功能(按具体的研究对象),这应是进一步研究的基础,把它们罗列出来,例如基因组和基因表达、染色质和染色体、各种细胞器、细胞的表面膜和膜系、细胞骨架、细胞外间质等等。

其次是根据研究细胞的哪些生命活动划分,例如细胞分裂、生长、运动、兴奋性、分化、衰老与病变等,研究细胞在这些过程中的变化,产生这些过程的机制等。

关键字:细胞生物结构基因蛋白质结构发展
正文:
1.定义
细胞生物学(cell biology)是在显微、亚显微和分子水平三个层次上,研究细胞的结构、功能和各种生命规律的一门科学。

细胞生物学由Cytology发展而来,Cytology是关于细胞结构与功能(特别是染色体)的研究。

现代细胞生物学从显微水平,超微水平和分子水平等不同层次研究细胞的结构、功能及生命活动。

在我国基础学科发展规划中,细胞生物学与分子生物学,神经生物学和生态学并列为生命科学的四大基础学科。

2. 基本介绍
(1)系统生物学的基本工作流程有这样四个阶段。

首先是对选定的某一生物系统的所有组分进行了解和确定,描绘出该系统的结构,包括基因相互作用网络和代谢途径,以及细胞内和细胞间的作用机理,以此构造出一个初步的系统模型。

第二步是系统地改变被研究对象的内部组成成分(如基因突变)或外部生长条件,然后观测在这些情况下系统组分或结构所发生的相应变化,包括基因表达、蛋白质表达和相互作用、代谢途径等的变化,并把得到的有关信息进行整合。

第三步是把通过实验得到的数据与根据模型预测的情况进行比较,并对初始模型进行修订。

第四阶段是根据修正后的模型的预测或假设,设定和实施新的改变系统状态的实验,重复第二步和第三步,不断地通过实验数据对模型进行修订和精练。

系统生物学的目标就是要得到一个理想的模型,使其理论预测能够反映出生物系统的真实性。

(2)系统生物学的灵魂——整合
作为后基因组时代的新秀,系统生物学与基因组学、蛋白质组学等各种“组学”的不同之处在于,它是一种整合型大科学。

首先,它要把系统内不同性质的构成要素(基因、mRNA、蛋白质、生物小分子等)整合在一起进行研究。

系统生物学研究所的第一篇研究论文,就是整合酵母的基因组分析和蛋白质组分析,研究酵母的代谢网络[2]。

由于不同生物分子的研究难度不一样,技术发展程度不一样,目前对它们的研究水平有较大的差距。

例如,基因组和基因表达方面的研究已经比较完善,而蛋白质研究就较为困难,至于涉及生物小分子的代谢组分的研究就更不成熟。

因此,要真正实现这种整合还有很长的路要走。

(3)对于多细胞生物而言,系统生物学要实现从基因到细胞、到组织、到个体的各个层次的整合。

《科学》周刊系统生物学专集中一篇题为“心脏的模型化——从基因到细胞、到整个器官”的论文,很好地体现了这种整合性[3]。

我们知道,系统科学的核心思想是:“整体大于部分之和”;系统特性是不同组成部分、不同层次间相互作用而“涌现”的新性质;对组成部分或低层次的分析并不能真正地预测高层次的行为。

如何通过研究和整合去发现和理解涌现的系统性质,是系统生物学面临的一个带根本性的挑战。

(4)系统生物学整合性的第三层含义是指研究思路和方法的整合。

经典的分子生物学研究是一种垂直型的研究,即采用多种手段研究个别的基因和蛋白质。

首先是在DNA水平上寻找特定的基因,然后通过基因突变、基因剔除等手段研究基因的功能;在基因研究的基础上,研究蛋白质的空间结构,蛋白质的修饰以及蛋白质间的相互作用等等。

基因组学、蛋白质组学和其他各种“组学”则是水平型研究,即以单一的手段同时研究成千
细胞生物学广泛地利用相邻学科的成就,在技术方法上是博采众长,凡是能够解决问题的都会被使用。

例如用分子生物学的方法研究基因的结构,用生物化学、分子生物学的方法研究染色体上的各种非组蛋白和它们对基因活动的调节和控制或者利用免疫学的方法研究细胞骨架的各种蛋白(微管蛋白、微丝蛋白、各种中等纤维蛋白)在细胞中的分布以及在生命活动中的变化。

起源于分子遗传学的重组DNA技术和起源于免疫学的产生单克隆抗体的杂交瘤技术,也成了细胞生物学的有力工具。

显然,一种方法所解决的问题不一定属于原来建立这一方法的学科。

例如用分子生物学的方法解决了核小体的结构,严格地说这应是形态学的范畴。

这样的例子并不少见,在这里学科的界限也被抹掉了。

也许可以说细胞核移植、微量注射和细胞融合是细胞生物学自身发展起来的方法,但是用这些方法进行的实验往往也需要其他方法配合来做进一步分析
3. 生物经济发展的前景与阻碍
1、有效地解决当今重大疑难疾病治疗的世界性难题:当前胚胎组织干细胞技术已经发展到只要获取病人身体上任意活细胞的DNA,就可以培养出身体除大脑以外的任意部分组织结构的器官(科普:皮肤,指甲等组织也是器官的一种),从而达到医学上真正的器官再生。

2、带动信息产业和某些特殊行业如电脑制造业的划时代的革命;一个现在的你从未想到过得世界:
3、经济结构发生变化:钢铁已经不是在重工业的标志性的产品了。

坚硬“骨头”构成的房屋,高度仿生化的汽车、飞机。

等等。

返璞归真的生活在等待着你。

4、目前生物技术的发展其实已经超越了想象,但是根据《国际教科文组织45号协议》中约定的各国之间由于民族、文化、生活传统等巨大差异造成的一些列相关问题的讨论决议。

很多已经实现了的成果和产品不能进入我们的现实生活。

这也是制约生物技术发展和应用的最关键因素
4. 细胞生物学的影响和意义
细胞生物学是生命科学中一门发展十分迅速的重要基础学科。

从细胞学的诞生到细胞生物学,按其自然发展经历了细胞显微、亚显微和分子三个水平的发展时期。

细胞学是从显微和亚显微两个结构层次上研究细胞;细胞生物学是细胞学发展的高级阶段,发展到从分子水平研究细胞,从显微、亚显微、分子水平三个结构层次上研究细胞结构和功能以阐明生命活动基本规律的各个方面。

由于细胞是生命的基本单位,一切生命现象都要从细胞中获得答案,因此,它是生命科学中一个核心部分。

近半个世纪以来,在研究细胞的结构与功能、揭示生命奥秘所取得的一系列突破性进展是自然科学中的伟大成就,对人类的健康和生存,对生物的控制、利用和改造都有重要作用。

当今世界面临着人口爆炸、环境污染、粮食危机、资源匮乏的严重挑战,对此,生命科学的地位和作用日益突出重要,其中细胞生物学的作用也不容忽视。

可以预见,在未来的时代细胞生物学仍然是生命科学的领头学科,是支撑生物技术发展的基础科学。

尽管发现细胞已经300多年了,但人类目前对细胞在整体层次上(哪怕是“简单的”细菌)的工作机理并未获得一个完整清晰的认识。

细胞生物学在如下领域内的发现将为生物技术带来新的发展动力。

①对干细胞生长和分化的控制机制的认识或许会带来治疗应用方面的重大突破;②对遗传基因和生化途径调控机制的认识将催生更先进的遗传修饰方法;③理解细胞感知环境的机理会有助于研发具有广泛应用前景的生物传感器;④了解细胞骨架和分子马达的协同工作机制将很可能在下半个世纪中引领纳米技术的生物应用。

参考文献:
1. Bruce Alberts et al. Molecular Biology of the Cell 4th. Garland Science, 200
2.
2. Harvey Lodish et al. Molecular Cell Biology 4th. W. H. Freeman and Company, 1999.
3. Gerald Karp. Cell and Molecular Biology: Concepts and Experiments 3rd. Wiley & Sons, 2002.
4. 韩贻仁. 分子细胞生物学科学出版社. 2001年03月.
5. 郭葆玉. 细胞分子生物学实验操作指南. 安徽科学技术出版社1998年04月.
6. 王德耀. 细胞生物学. 上海科学技术出版社.1998年.。

相关文档
最新文档