六年级奥数-第4讲.几何-平面部分.学生版

合集下载

六年级奥数平面几何常用技巧

六年级奥数平面几何常用技巧

平面几何常用技巧【加油站】常有正多边形:正三正方形正五边正六正八边形正十边形正十二角形形边形边形图形内角和每个内角【加油站】正十二边形的做法:一、做正六边形二、以正六边形每边为边长向外做六个正方形三、依次连接正方形外面的十二个极点。

则所构成的是正十二边形。

【例 1】(★★★)125 平方厘米,那么【例 2】(★★★)1 厘米,空白部分是等边以下列图,正八边形中的阴影部分面积是以下列图,一个正十二边形的边长是正八边形的面积是多少?三角形,一共有 12 个.请算出阴影部分的面积.1cm1【例 3】(★★★★)如右图,正十二边形和中心白色的正六边形的边长均为 12,图中阴影部分的面积 _________。

【例 5】(★★★★)如图,三角形 ABC 是等腰直角三角形, P 是三角形外的一点,其中 AP = 10 厘米,∠BPC =90°,求四边形 ABPC 的面积.QDBCP 【例 4】(★★★)依照图中的样子,在一平行四边形纸片上割去了甲、乙两个直角三角形.已知甲三角形两条直角边分别为 2 和 4,乙三角形两条直角边分别为 3 和 6,求图中阴影部分的面积.甲43乙6【例 6】(★★★)以下列图的四边形 ABCD 中,∠A=∠C=45°∠ABC=105 °, AB= CD =10 厘米,连接对角线,∠ABD =30°.求四边形 ABCD 的面积.CDA2【例 7】 (★★)6 厘米,小正方形边长是 4 厘米,两块阴【例 8】(★★★)华杯赛复赛试题10 厘米, 则阴影部分的面积为多少如图,大正方形边长是右图中的正方形的边长为影的面积差是多少?平方厘米?【本讲总结】一、特别图形的性质二、割补法、差不变:化不可以求为可求三、平移、旋转、对称:动向几何——改变地址不改变形状重点例题:例 3、例 4、例 5 、例 6、例 83。

六年级奥数 几何;第4讲;几何综合_一_;学生版

六年级奥数 几何;第4讲;几何综合_一_;学生版

第四讲 几何综合(一)1. 熟练运用直线型面积的各种模型。

2.熟练掌握平面图形中的割补、旋转、平移、差不变等各种方法。

3. 针对勾股定理、弦图等特定方法熟练应用。

模块一:割补思想FEADCB例题44例题33例题22例题11【巩固】在图中,三角形ABC 和DEF 是两个完全相同的等腰直角三角形,其中DF长9厘米,CF 长3厘米,那么阴影部分的面积是多少平方厘米?C 1D 1E 1A 1EBC DA例题77例题66例题55【巩固】(2008年第六届“希望杯”五年级第二试)如图 (a ),ABCD 是一个长方形,其中阴影部分是由一副面积为100平方厘米的七巧板(图(b ))拼成.那么,长方形ABCD 的面积是多少平方厘米?DC BA【巩固】如图,正方形硬纸片ABCD 的每边长20厘米,点E 、F 分别是AB 、BC 的中点,现沿图(a )中的虚线剪开,拼成图(b )所示的一座“小别墅”,则图(b )中阴影部分的面积是平方厘米. (b)(a)A⑤④③②①例题101例题99例题88【巩固】(2008年“迎春杯”初试六年级)一个等腰直角三角形和一个正方形如左下图摆放,①、②、③这三块的面积比依次为1:4:41.那么,④、⑤这两块的面积比是 .⑤④③②①CD150°B A板块二、旋转平移思想例题1例题121例题111【巩固】如图所示,外侧大正方形的边长是10cm ,在里面画两条对角线、一个圆、两个正方形,阴影的总面积为226cm,最小的正方形的边长为多少厘米?例题161例题171例题151例题141PDCBA2例题212例题202例题191例题181FECB DAEDCBAGFEDCBA例题252例题242例题232ADDCEBAABCD30°A 例题2例题282例题272例题262FBAABCD练习44练习33练习22练习11。

六年级奥数几何-平面部分.学生版

六年级奥数几何-平面部分.学生版

平面几何部分知识点拨一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如右图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACDBCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上), 则:():()ABC ADE S S AB AC AD AE =⨯⨯△△EDCBAEDCB A图⑴ 图⑵三、蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.baS 2S 1DC BA S 4S 3S 2S 1O DCB A A BC D Ob aS 3S 2S 1S 4四、相似模型(一)金字塔模型 (二) 沙漏模型GF E ABCDAB CDEF G①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半.相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形. 五、燕尾定理在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么::ABO ACO S S BD DC ∆∆=. 上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.典型例题【例 1】 如图,正方形ABCD 的边长为6,AE =1.5,CF =2.长方形EFGH 的面积为 .【巩固】如图所示,正方形ABCD 的边长为8厘米,长方形EBGF 的长BG 为10厘米,那么长方形的宽为几厘米?_ H_G_F_E_D_C_B_ A _A_B_C_D_E_ F_G_H_ A _ B_ G_ C _ E _ F_ D_ A _ B_ G_ C_ E_ F_ DO F ED C B A【例 2】长方形ABCD的面积为362cm,E、F、G为各边中点,H为AD边上任意一点,问阴影部分面积是多少?E【巩固】在边长为6厘米的正方形ABCD内任取一点P,将正方形的一组对边二等分,另一组对边三等分,分别与P点连接,求阴影部分面积.【例 3】如图所示,长方形ABCD内的阴影部分的面积之和为70,8AD=,四边形EFGO的面积AB=,15为.B【巩固】如图,长方形ABCD的面积是36,E是AD的三等分点,2=,则阴影部分的面积为.AE EDB【例 4】 已知ABC 为等边三角形,面积为400,D 、E 、F 分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形HBC)B【例 5】 如图,已知5CD =,7DE =,15EF =,6FG =,线段AB 将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG 的面积是 .GFE DC BA【例 6】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘米,求ABC △的面积.EDCBA【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那么三角形ABC 的面积是多少?EDCBA【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面积是甲部分面积的几倍?乙甲E D CBA【例 7】 如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =,:3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.EDA【例 8】 如图,平行四边形ABCD ,BE AB =,2CF CB =,3GD DC =,4HA AD =,平行四边形ABCD 的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比.HGAB CD EF【例 9】 如图所示的四边形的面积等于多少?DCB13131212【例 10】 如图所示,ABC ∆中,90ABC ∠=︒,3AB =,5BC =,以AC 为一边向ABC ∆外作正方形ACDE ,中心为O ,求OBC ∆的面积.【例 11】 如图,以正方形的边AB 为斜边在正方形内作直角三角形ABE ,90AEB ∠=︒,AC 、BD 交于O .已知AE 、BE 的长分别为3cm 、5cm ,求三角形OBE 的面积.【例 12】 如下图,六边形ABCDEF 中,AB ED =,AF CD =,BC EF =,且有AB 平行于ED ,AF 平行于CD ,BC 平行于EF ,对角线FD 垂直于BD ,已知24FD =厘米,18BD =厘米,请问六边形ABCDEF 的面积是多少平方厘米?FEABDC【例 13】 如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBA【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?x y y x ABCD E FGE D CBA【例 14】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示).如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍.ABC DO【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC 的面积;⑵:AG GC =?B【例 15】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积依次是2、4、4和6.求:⑴求OCF △的面积;⑵求GCE △的面积.OGFEDCBA【例 16】 如图,长方形ABCD 中,:2:3BE EC =,:1:2DF FC =,三角形DFG 的面积为2平方厘米,求长方形ABCD 的面积.ABCD EF G【例 17】如图,正方形ABCD面积为3平方厘米,M是AD边上的中点.求图中阴影部分的面积.CBA【巩固】在下图的正方形ABCD中,E是BC边的中点,AE与BD相交于F点,三角形BEF的面积为1平方厘米,那么正方形ABCD面积是平方厘米.AB CDEF【例 18】已知ABCD是平行四边形,:3:2BC CE ,三角形ODE的面积为6平方厘米.则阴影部分的面积是平方厘米.B【巩固】右图中ABCD是梯形,ABED是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是平方厘米.【巩固】右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是 平方厘米.B【例 19】 如图,长方形ABCD 被CE 、DF 分成四块,已知其中3块的面积分别为2、5、8平方厘米,那么余下的四边形OFBC 的面积为___________平方厘米.?852O A BCDEF【例 20】 如图,ABC ∆是等腰直角三角形,DEFG 是正方形,线段AB 与CD 相交于K 点.已知正方形DEFG 的面积48,:1:3AK KB =,则BKD ∆的面积是多少?B【例 21】 下图中,四边形ABCD 都是边长为1的正方形,E 、F 、G 、H 分别是AB ,BC ,CD ,DA 的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数mn,那么,()m n +的值等于 .BEE【例 22】 如图, ABC △中,DE ,FG ,BC 互相平行,AD DF FB ==,则::ADEDEGF FGCB S S S =△四边形四边形 .EGF A D CB【巩固】如图,DE 平行BC ,且2AD =,5AB =,4AE =,求AC 的长.A ED CB【巩固】如图, ABC △中,DE ,FG ,MN ,PQ ,BC 互相平行,AD DF FM MP PB ====,则::::ADE DEGF FGNM MNQP PQCB S S S S S =△四边形四边形四边形四边形 .【例 23】 如图,已知正方形ABCD 的边长为4,F 是BC 边的中点,E 是DC 边上的点,且:1:3DE EC =,AF与BE 相交于点G ,求ABG S △GFAEDCB【例 24】 如图所示,已知平行四边形ABCD 的面积是1,E 、F 是AB 、AD 的中点, BF 交EC 于M ,求BMG∆的面积.MHGF E D CBAQ E GNMF P A D C B【例 25】如图,ABCD为正方形,1cmAM NB DE FC====且2cmMN=,请问四边形PQRS的面积为多少?CA【例 26】如右图,三角形ABC中,:4:9BD DC=,:4:3CE EA=,求:AF FB.OFED CBA【巩固】如右图,三角形ABC中,:3:4BD DC=,:5:6AE CE=,求:AF FB.OFED CBA【巩固】如右图,三角形ABC中,:2:3BD DC=,:5:4EA CE=,求:AF FB.OFED CBA【例 27】如右图,三角形ABC中,:::3:2AF FB BD DC CE AE===,且三角形ABC的面积是1,则三角形ABE 的面积为______,三角形AGE的面积为________,三角形GHI的面积为______.IHGFED CBA【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形ABC的面积.IH G FEDCBA【巩固】如图,ABC ∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的倍.B【巩固】如图在ABC △中,12DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. IHG FEDCBA【例 28】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?GFE D CBA【巩固】如图,ABC 的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?K JI HABC D EF G【例 29】 右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米?N M GA BCD EF【例 30】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.GCBA【例 31】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.GCBA。

六年级奥数几何模型知识点

六年级奥数几何模型知识点

六年级奥数几何模型知识点六年级学生在数学学科中接触到了各种几何模型,这些模型不仅仅是用来展示形状和结构,更是一种思维工具,能够帮助学生理解几何概念和解决几何问题。

本文将介绍六年级奥数中的几个重要的几何模型知识点,帮助同学们更好地掌握几何学。

一、平面图形与立体图形的区别在学习几何模型之前,首先需要了解平面图形和立体图形的区别。

平面图形是指只有两个维度,只有长和宽,没有厚度。

常见的平面图形有圆形、矩形、三角形等。

而立体图形则有三个维度,除了长和宽,还有高度,具有厚度的特点。

常见的立体图形有立方体、圆柱体、球体等。

二、几何模型的拼装与构建几何模型是由各种基本图形拼装和构建而成的。

比如,通过将正方形和三角形拼接起来,可以构建出一个五边形。

同样地,通过将立方体、圆柱体和球体等不同的立体图形拼接,可以构建出更复杂的几何模型。

三、相似图形的特性与应用相似图形是指形状和结构相似但大小不同的图形。

在奥数中,相似图形的特性被广泛应用于几何问题的解决中。

具体来说,当两个图形相似时,它们的对应边的比例相等。

利用相似图形的特性,我们可以解决一些复杂的几何问题,比如求解图形的面积、周长等。

四、三角形的性质与运用三角形是几何学中研究最广泛的图形之一。

在六年级奥数中,同学们需要掌握三角形的基本性质,并能灵活运用于解决问题。

常见的三角形性质有等腰三角形、等边三角形和直角三角形。

利用这些性质,我们可以求解三角形的各个边长和角度,并解决与三角形相关的几何问题。

五、平行四边形的特征与应用平行四边形是含有两组平行边的四边形。

在奥数中,平行四边形的性质和应用也是重点之一。

其中,重要的性质包括对角线互相平分、对边相互平行、对边相等等。

通过掌握平行四边形的性质,我们可以求解其面积、周长,并在解决问题时灵活运用。

六、圆的性质与相关应用圆是几何学中的重要概念,它具有独特的性质和特点。

在六年级奥数中,同学们需要了解圆的直径、半径、弧长和面积等概念,并能运用它们解决与圆相关的几何问题。

六年级奥数重点易错知识点-平面解析几何

六年级奥数重点易错知识点-平面解析几何

平面图形在这一讲,平面图形的周长,面积及相关概念作为已掌握的基本知识,不再赘述,介绍几种常用的解题方法与技巧。

例1 如图,直角三角形ADE、直角三角形BDF、正方形EDFC组成一个大直角三角形ABC。

如果AD=12厘米,BD=10厘米,那么图中阴影部分的面积是多少平方厘米?分析与解答:分析:如图所示,因为∠EDF=90°,所以∠AD E+∠BDF=90°。

因为四边形CEDF是正方形,所以∠CED=∠BFD=90°,ED=DF。

于是若以D点为中心,直角三角形BDF绕D点逆时针旋转90°,则直角三角形BDF与直角三角形EDG重合。

显然,所求面积与直角三角形AGD的面积相等。

解答:阴影部分面积=12×10×12=60(平方厘米)说明:在解答平面图形问题时,要动静结合,根据题目给的已知条件,旋转变换图形的位置,换个角度考虑问题。

例2 如图是两个直角三角形叠放在一起形成的图形。

已知AF、FE、EC都等于3,CB、BD都等于4。

求这个图形的面积。

分析:连结CG。

因为AF=FE=EC=3,所以△AGF、△EGC面积相等。

因为BD=DC=4,所以△BGD、△BGC面积相等。

显然,△ABC的面积=(3+3+3)×4×1/2=18△DEC的面积=(4+4)×3×1/2=12解答:不妨设三角形CEG的面积为X,三角形BGC的面积为Y,据题意列方程得所以,这个图形的面积是:3X+2Y=3×4.8+2×3.6=21.6说明:用方程来解决平面图形问题是一种重要手段。

例3 如图所示,正方形ABGD与正方形EFCG并放在一起。

已知小正方形EFCG的边长是6,求三角形AEC的面积(阴影部分)。

分析:如图所示,直接求出阴影部分的面积,显然很困难,怎么办?不妨设大正方形边长为a,小正方形边长为b。

于是,三角形ADC的面积=a×(a+b)×1/2=1/2×a(a+b)梯形ADGE的面积=(a+b)×a×1/2=1/2×a(a+b)所以,三角形ADC的面积=梯形ADGE的面积。

六年级上册奥数试题:第4讲 最大与最小 全国通用(含答案)

六年级上册奥数试题:第4讲 最大与最小 全国通用(含答案)

第4讲最大与最小知识网络人们经常考虑有关“最”的问题,如最大、最小、最多、最少、最快、最慢等。

这类求最大值、最小值的问题是一类重要典型的问题,我们在实际生产和生活中经常遇到。

在本书的学习中我们经常要用到以下几个重要结论:(1)两个数的和一定,那么当这两个数的差最小时,它们的积最大。

(2)三个数a、b、c,如果a+b+c一定,只有当a=b=c时,a×b×c的积才能最大。

(3)两个数的积一定,那么当两个数的差最小时,它们的和最小。

(4)在所有周长相等的n边形中,以正n边形的面积最大。

(5)在周长相等的封闭平面图形中,以圆的面积为最大。

(6)在棱长的和一定的长方体中,以长、宽、高都相等的长方体,即正方体的体积最大。

(7)在所有表面积一定的几何体中,球体体积最大。

重点·难点本节所涉及的题型较多,但一般都要求根据一个不变量来确定另一变量的最大值或最小值。

如何根据题意,灵活运用不同的方法来求出表达式,再求最值,或直接求最值是本讲的重点。

这就要求我们不能太急于入手,不妨从一些比较简单的现象或数字开始,找出规律,进而解决问题。

学法指导解决本节问题的方法和策略常常因题而异,归纳起来有以下几种常用的方法:(1)从极端情形入手。

(2)枚举比较。

(3)分析推理。

(4)构造。

[例1]不能写成两个不同的奇合数之和的最大偶数为多少?思路剖析两个最小的不同的奇合数为9和15,9+15=24,因此小于24的偶数都不能写成两个不同的奇合数之和。

下面我们只需要考虑大于24的偶数即可。

15后面的一个奇合数为21,9+21=30,所以比24大比30小的偶数也不能写成两个不同的奇合数之和。

32也不能,34=9+25,36=9+27,38不能,40=15+25,42=15=27,44=9+35,…此时初步确定不能写成两个不同的奇合数之和的最大偶数为38。

解答根据以上分析,我们初步确定所求的最大偶数为38,下面我们给予证明。

六年级奥数-第四讲[1].几何-平面部分.学生版

六年级奥数-第四讲[1].几何-平面部分.学生版

第四讲 平面几何部分教学目标:1. 熟练掌握五大面积模型2. 掌握五大面积模型的各种变形 知识点拨一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如右图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACDBCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 二、鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上), 则:():()ABC ADE S S AB AC AD AE =⨯⨯△△EDCBAEDCB A图⑴ 图⑵三、蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b = ②221324::::::S S S S a b ab ab =;③S 的对应份数为()2a b +.四、相似模型(一)金字塔模型 (二) 沙漏模型baS 2S 1DC BA S 4S 3S 2S 1ODCB AA B C DObaS 3S 2S 1S 4GF E ABCDAB CDEF G①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半.相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形. 五、燕尾定理在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么::ABO ACO S S BD DC ∆∆=. 上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.典型例题【例 1】 如图,正方形ABCD 的边长为6,AE =1.5,CF =2.长方形EFGH 的面积为 .【例 2】 长方形ABCD 的面积为362cm ,E 、F 、G 为各边中点,H 为AD 边上任意一点,问阴影部分面积是多少?E_H_G_F_E_D_C_B_ A _ A_B_C_D_E_F_ G_HO F ED C BA【例 3】 如图所示,长方形ABCD 内的阴影部分的面积之和为70,8AB =,15AD =,四边形EFGO 的面积为 .B【例 4】 已知ABC 为等边三角形,面积为400,D 、E 、F 分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形HBC)B.【例 5】 如图,已知5CD =,7DE =,15EF =,6FG =,线段AB 将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG 的面积是 .GFE DC BAABC DE FG【例 6】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘米,求ABC △的面积.EDCBAEDCBA【例 7】 【巩固】如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =,:3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.EDCBAEDCB A【例 8】 如图,平行四边形ABCD ,BE AB =,2CF CB =,3GD DC =,4HA AD =,平行四边形ABCD 的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比.HGAB CD EFHGAB CD EF【例 9】 如图所示的四边形的面积等于多少?DCB13131212【例 10】 如图所示,ABC ∆中,90ABC ∠=︒,3AB =,5BC =,以AC 为一边向ABC ∆外作正方形ACDE ,中心为O ,求OBC ∆的面积.【例 11】 如图,以正方形的边AB 为斜边在正方形内作直角三角形ABE ,90AEB ∠=︒,AC 、BD 交于O .已知AE 、BE 的长分别为3cm 、5cm ,求三角形OBE 的面积.D【例 12】 如下图,六边形ABCDEF 中,AB ED =,AF CD =,BC EF =,且有AB 平行于ED ,AF 平行于CD ,BC 平行于EF ,对角线FD 垂直于BD ,已知24FD =厘米,18BD =厘米,请问六边形ABCDEF 的面积是多少平方厘米?FEABDCGFEABDC【例 13】 如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBA33321F E DC BAABCDEF【例 14】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示).如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍.ABCDOH GA BCD O【例 15】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积依次是2、4、4和6.求:⑴求OCF △的面积;⑵求GCE △的面积.OGF EDCBA【例 16】 如图,长方形ABCD 中,:2:3BE EC =,:1:2DF FC =,三角形DFG 的面积为2平方厘米,求长方形ABCD 的面积.ABCD EF GABCD EF G【例 17】 如图,正方形ABCD 面积为3平方厘米,M 是AD 边上的中点.求图中阴影部分的面积.CBA【例 18】 已知ABCD 是平行四边形,:3:2BC CE =,三角形ODE 的面积为6平方厘米.则阴影部分的面积是平方厘米.BB【例 19】 【巩固】如图,长方形ABCD 被CE 、DF 分成四块,已知其中3块的面积分别为2、5、8平方厘米,那么余下的四边形OFBC 的面积为___________平方厘米.?852O A B C DEF?852O A BCD EF【例 20】 如图,ABC ∆是等腰直角三角形,DEFG 是正方形,线段AB 与CD 相交于K 点.已知正方形DEFG 的面积48,:1:3AK KB =,则BKD ∆的面积是多少?BB【例 21】 下图中,四边形ABCD 都是边长为1的正方形,E 、F 、G 、H 分别是AB ,BC ,CD ,DA 的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数mn,那么,()m n +的值等于 .BEE【例 22】 如图, ABC △中,DE ,FG ,BC 互相平行,AD DF FB ==,则::ADEDEGF FGCB S S S =△四边形四边形 .EGF A D CB【例 23】 如图,已知正方形ABCD 的边长为4,F 是BC 边的中点,E 是DC 边上的点,且:1:3DE EC =,AF与BE 相交于点G ,求ABG S △GFAEDC BM GFAEDCBGFAEDCB【例 24】 如图所示,已知平行四边形ABCD 的面积是1,E 、F 是AB 、AD 的中点, BF 交EC 于M ,求BMG∆的面积.MHGF E D CBAA【例 25】 如图,ABCD 为正方形,1cm AM NB DE FC ====且2cm MN =,请问四边形PQRS 的面积为多少?CACA【例 26】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .O F EDCBA【例 27】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.I HGFEDCBAI HG FEDCBA【例 28】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?GFE D CBAN MQPGF EDCBA【例 29】 右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米?N M GA BCD EFNMGA BCD E F【例 30】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.GC BAGCB【例 31】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.CBCBA课后练习:练习1. 已知DEF △的面积为7平方厘米,,2,3BE CE AD BD CF AF ===,求ABC △的面积.FED CBA练习2. 如图,四边形EFGH 的面积是66平方米,EA AB =,CB BF =,DC CG =,HD DA =,求四边形ABCD的面积.H GED CB A A B CDEFGH练习3. 正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是平方厘米.H GFEDC BAM H GFEDCBA练习4. 如图,已知4cm AB AE ==,BC DC =,90BAE BCD ∠=∠=︒,10cm AC =,则S ABC ACE CDE S S ∆∆∆++=2cm .DCEBABCA'C'EDA练习5. 如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是_____平方厘米.EDCBEDCB练习6. 如图,ABC ∆中,点D 是边AC 的中点,点E 、F 是边BC 的三等分点,若ABC ∆的面积为1,那么四边形CDMF 的面积是_________.F ABCDEM NFABCDE MN练习7. 如右图,三角形ABC 中,:::4:3AF FB BD DC CE AE ===,且三角形ABC 的面积是74,求角形GHI的面积.IH G FEDCBAIH G FEDCBA月测备选【备选1】 按照图中的样子,在一平行四边形纸片上割去了甲、乙两个直角三角形.已知甲三角形两条直角边分别为2cm 和4cm ,乙三角形两条直角边分别为3cm 和6cm ,求图中阴影部分的面积.【备选2】 如图所示,矩形ABCD 的面积为36平方厘米,四边形PMON 的面积是3平方厘米,则阴影部分的面积是 平方厘米.【备选3】 如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △ 面积的几分之几?OE DCBA13.54.59211213O E D CBA【备选4】 如图,在ABC △中,延长AB 至D ,使BD AB =,延长BC 至E ,使12CE BC =,F 是AC 的中点,若ABC △的面积是2,则DEF △的面积是多少?A BCDEF【备选5】 如图,:2:3BD DC =,:5:3AE CE =,则:AF BF =GF EDCBA【备选6】 如图在ABC △中,13DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. IHG FEDCBAIH G FEDCB A。

小学奥数汇编教材 第四讲 平面几何综合

小学奥数汇编教材 第四讲  平面几何综合

特级教师小学奥数汇编教材第四讲平面几何综合【专题知识点概述】本讲复习以前所学过的有关平面几何方面的知识,包括直线型图形的五大模型以及圆与扇形方面的知识,旨在提高学生对该部分知识的综合运用能力。

重点模型重温直线型图形五大模型模型一:同一三角形中,相应面积与底的正比关系:即:两个三角形高相等,面积之比等于对应底边之比。

S1︰S2=a︰b ;模型一的拓展:等分点结论(“鸟头定理”)如图,三角形AED占三角形ABC面积的23×14=16模型二:任意四边形中的比例关系(“蝴蝶定理”)①S1︰S2=S4︰S3或者S1×S3=S2×S4②②AO︰OC=(S1+S2)︰(S4+S3)模型三:梯形中比例关系(“梯形蝴蝶定理”)①S1︰S3=a2︰b2S4S3s2s1abs2s1S4S3s2s1ODCBA②S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab ; ③S 的对应份数为(a+b )2模型四:相似三角形性质①a b c hA B C H=== ; ②S 1︰S 2=a 2︰A 2模型五:燕尾定理S △ABG :S △AGC =S △BGE :S △GEC =BE :EC ; S △BGA :S △BGC =S △AGF :S △GFC =AF :FC ; S △AGC :S △BCG =S △ADG :S △DGB =AD :DB ;【授课批注】复习该部分知识的时候可结合前面所讲过的题深入讲解。

【重点难点解析】1. 三角形的相似问题2. 四边形中的蝴蝶定理3. 三角形中燕尾定理的运用hh H cb a CB Aac b HC BAF ED CBA【竞赛考点挖掘】1. 三角形或四边形中的部分面积求解2. 相似形的相关性质3. 多边形内角和4. 圆与圆弧的相关图形面积和周长求解【习题精讲】【例1】(难度等级 ※※※)如图,长方形ABCD 中,阴影部分是直角三角形且面积为54,OD 的长是16,OB 的长是9.那么四边形OECD 的面积是_____. 【分析与解】 连结DE ,依题意5492121=⨯⨯=⨯⨯=∆AO AO BO S AOB , 得AO=12.于是可推知9612162121=⨯⨯=⨯⨯=∆AO DO S AOD , 又因为OE S S DOE AOB ⨯⨯===∆∆162154,所以OE=436.这样可得833043692121=⨯⨯=⨯⨯=∆EO BO S BOE ,从而有BOE BCD ECD S S S ∆∆∆-=ABD BOE=S -S 3(50+49)-30851198∆∆==【例2】(难度等级 ※※※)如下左图.将三角形ABC 的BA 边延长1倍到D ,CB 边延长2倍到E ,AC 边延长3倍到F.如果三角形ABC 的面积等于l ,那么三角形DEF 的面积是_____. 【分析与解】连结AE 、BF 、CD(如上右图).由于三角形AEB 与三角ABC 的高相等,而底边EB=2BC ,所以三角形AEB 的面积是2.同理,三角形CBF 的面积是3,三角形ACD 的面积是1. 类似地三角形AED 的面积=三角形AEB 的面积=2. 三角形BEF 的面积=2×(三角形CBF 的面积)=6. 三角形CFD 的面积=3×(三角形ACD 的面积)=3.于是三角形DEF 的面积等于三角形ABC 、AEB 、CBF 、ACD 、AED 、BEF 、CFD 的面积之和,即 1+2+3+1+2+6+3=18.【例3】(难度等级 ※※※※)如图,三角形ABC 的面积是1平方厘米,且BE=2EC ,F 是CD 的中点.那么阴影部分的面积是( )平方厘米. 【分析与解】ABE2S3=(平方厘米), ACE1S 3= (平方厘米). 又ACFADF BCFBDF SSS S==,,, 所以S ACF BCFABC11+SS 22==(平方厘米). 于是BCFACF BCFACES (SS)S=+-=111236-=(平方厘米). 又CEF BEF 1111S S 22612==⨯=(平方厘米),故BDF BCF BEF CEF 111S S S S 6124==+=+=(平方厘米)因此,BDF BEF115S S S4612=+=+=阴影(平方厘米).【例4】(难度等级 ※※※※)如图,已知AE=15AC ,CD=14BC ,BF=16AB ,那么DEF =____ABC 三角形的面积三角形的面积【分析与解】 连结辅助线AD.因为CD=14Bc ,所以14ACD ABC S S ∆∆= (等高的两个三角形面积之比等于底边之比) 同理54ACD ABC S S ∆∆= 从而1=5CDE ABC S S ∆∆ 连结辅助线BE 、CF ,同理可证BDF ABC 1S =S 8∆∆AEF ABC 1S =S 6∆∆所以DEF ABC1111---S 61568S 1120∆∆==【例5】(难度等级 ※※※)如图,BD 是梯形ABCD 的一条对角线,线段AE 与梯形的一条腰DC 平行,AE 与BD 相交于O 点.已知三角形BOE 的面积比三角形AOD 的面积大4平方米,并且EC=25BC.求梯形ABCD 的面积. 【分析与解】三角形ABE 的面积比三角形ABD 大4平方米,而三角形ABD 与三角形ACD 面积相等(同底等高),因此也与三角形ACE 面积相等,从而三角形ABE 的面积比三角形ACE 大4平方米.但EC=25BC ,所以三角形ACE 的面积是三角形ABE 的225-23 ,从而三角形ABE 的面积是4÷(1-32)=12(平方米),梯形ABCD 的面积 =12×(1+32×2)=28(平方米)【例6】(难度等级 ※※※※)如图,平行四边形的花池边长分别为60米与30米.小明和小华同时从A 点出发,沿着平行四边形的边由A →B →C →D →A …顺序走下去.小明每分钟走50米,小华每分钟走20米,出发5分钟后小明走到E 点,小华走到F 点.连结AE 、AF ,则四边形AECF 的面积与平行四边形ABCD 的面积的比是______. 【分析与解】 小明5分钟共走了 50×5=250(米),这时,小明走过了路线是A →B →C →D →A →B →E ,其中CE=20米(如图).小华5分钟共走了20×5=100(米),这时,小华走过的路线是A →B →C →F ,其中CF=10米(如图).连结辅助线AC ,S△AEC :S△ABC =20:60=1:3, S△ACF :S△ACD =10:30=l :3. 所以S△AEC + S△ACF =31(S△ABC +S△ACD ), 即四边形AECF 与平行四边形ABCD 的面积之比是1:3.【例7】(难度等级 ※※)图中正方形周长是20厘米.那么图形的总面积是_____平方厘米.【分析与解】从图中可以看出,正方形的边长也是圆的半径.由此可知这两个圆是等圆.因为正方形的每个角都是90。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四讲 平面几何部分知识点拨一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如右图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 二、鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上), 则:():()ABC ADE S S AB AC AD AE =⨯⨯△△EDCBAEDCB A图⑴ 图⑵三、蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.四、相似模型(一)金字塔模型 (二) 沙漏模型ba S 2S 1DC BA S 4S 3S 2S 1O DCBA A BC DO ba S 3S 2S 1S 4GF E ABCDAB CDEF G①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形. 五、燕尾定理在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么::ABO ACO S S BD DC ∆∆=. 上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.典型例题【例 1】 长方形ABCD 的面积为362cm ,E 、F 、G 为各边中点,H 为AD 边上任意一点,问阴影部分面积是多少?E【巩固】在边长为6厘米的正方形ABCD 内任取一点P ,将正方形的一组对边二等分,另一组对边三等分,分别与P 点连接,求阴影部分面积.【例 2】 如图所示,长方形ABCD 内的阴影部分的面积之和为70,8AB =,15AD =,四边形EFGO 的面积为 .OFE DC B AB【巩固】如图,长方形ABCD 的面积是36,E 是AD 的三等分点,2AE ED =,则阴影部分的面积为 .AB【例 3】 已知ABC 为等边三角形,面积为400,D 、E 、F 分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形HBC)B【例 4】 如图,已知5CD =,7DE =,15EF =,6FG =,线段AB 将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG 的面积是 .GFE DC BA【例 5】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘米,求ABC △的面积.EDCBA【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那么三角形ABC 的面积是多少?EDCBA【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面积是甲部分面积的几倍?乙甲E D CBA【例 6】 如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =,:3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.EDCBA【例 7】 如图,平行四边形ABCD ,BE AB =,2CF CB =,3GD DC =,4HA AD =,平行四边形ABCD 的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比.HGAB CD EF【例 8】 如图所示的四边形的面积等于多少?DB13131212【例 9】 如图所示,ABC ∆中,90ABC ∠=︒,3AB =,5BC =,以AC 为一边向ABC ∆外作正方形ACDE ,中心为O ,求OBC ∆的面积.【例 10】 如图,以正方形的边AB 为斜边在正方形内作直角三角形ABE ,90AEB ∠=︒,AC 、BD 交于O .已知AE 、BE 的长分别为3cm 、5cm ,求三角形OBE 的面积.【例 11】 如下图,六边形ABCDEF 中,AB ED =,AF CD =,BC EF =,且有AB 平行于ED ,AF 平行于CD ,BC 平行于EF ,对角线FD 垂直于BD ,已知24FD =厘米,18BD =厘米,请问六边形ABCDEF 的面积是多少平方厘米?FEABDC【例 12】 如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBA【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?x yy x ABCD E FGE D CBA【例 13】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示).如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍.ABC DO【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC 的面积;⑵:AG GC =?BC【例 14】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积依次是2、4、4和6.求:⑴求OCF △的面积;⑵求GCE △的面积.OGF EDCBA【例 15】 如图,长方形ABCD 中,:2:3BE EC =,:1:2DF FC =,三角形DFG 的面积为2平方厘米,求长方形ABCD 的面积.ABCD EF G【例 16】 如图,正方形ABCD 面积为3平方厘米,M 是AD 边上的中点.求图中阴影部分的面积.【巩固】在下图的正方形ABCD 中,E 是BC 边的中点,AE 与BD 相交于F 点,三角形BEF 的面积为1平方厘米,那么正方形ABCD 面积是 平方厘米.A BCDEF【例 17】 已知ABCD 是平行四边形,:3:2BC CE =,三角形ODE 的面积为6平方厘米.则阴影部分的面积是平方厘米.BB【巩固】右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是 平方厘米.B【巩固】右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是 平方厘米.B【例 18】 如图,长方形ABCD 被CE 、DF 分成四块,已知其中3块的面积分别为2、5、8平方厘米,那么余下的四边形OFBC 的面积为___________平方厘米.?852O A BCD EF【例 19】 如图,ABC ∆是等腰直角三角形,DEFG 是正方形,线段AB 与CD 相交于K 点.已知正方形DEFG 的面积48,:1:3AK KB =,则BKD ∆的面积是多少?B【例 20】 下图中,四边形ABCD 都是边长为1的正方形,E 、F 、G 、H 分别是AB ,BC ,CD ,DA 的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数mn,那么,()m n +的值等于 .BE【例 21】 如图, ABC △中,DE ,FG ,BC 互相平行,AD DF FB ==,则::ADE DEGF FGCB S S S =△四边形四边形 .EGF A D CB【巩固】如图,DE 平行BC ,且2AD =,5AB =,4AE =,求AC 的长.A ED CB【例 22】 如图,已知正方形ABCD 的边长为4,F 是BC 边的中点,E 是DC 边上的点,且:1:3DE EC =,AF 与BE 相交于点G ,求ABG S △GFAEDB【例 23】 如图所示,已知平行四边形ABCD 的面积是1,E 、F 是AB 、AD 的中点, BF 交EC 于M ,求BMG∆的面积.MHGF E D CBA【例 24】 如图,ABCD 为正方形,1cm AM NB DE FC ====且2cm MN =,请问四边形PQRS 的面积为多少?CA【例 25】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .O F EDCBA【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .O F EDCBA【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .O F EDCBA【例 26】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.I HGFEDC BA【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形ABC 的面积.IH G FEDCBA【巩固】如图,ABC ∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.B【巩固】如图在ABC △中,12DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值.IHG FEDCBA【例 27】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?GFE D CBA【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?K JI HABC D EF G【例 28】 右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米?N M GA BCD EF【例 29】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.CBA【例 30】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.。

相关文档
最新文档