圆的标准方程1中职数学

合集下载

中职数学 圆的标准方程

中职数学 圆的标准方程
例1 写出圆心为 A(2,3) ,半径长等于5的圆的方
程,并判断点 M1(5,7) , M 2 ( 5,1)是否在这个圆上。
解:圆心是 A(2,3) ,半径长等于5的圆的标准方程 是:
(x 2)2 ( y 3)2 25
把M1(5,7) 的坐标代入方程(x 2)2 (y 3)2 25 左右两边相等,点M 1 的坐标适合圆的方程,所以点
M 1 在这个圆上;
把点M 2 ( 5,1) 的坐标代入此方程,左右两边 不相等,M点2 的坐标不适合圆的方程,所以点M 2 不 在这个圆上.
点与圆的位置关系
怎样判断点 M0 (x0, y0 ) 在圆 (x a)2 ( y b)2 r2
内呢?圆上?还是在圆外呢? M0
M0 O
O M0
O
点在圆内
点在圆上
点在圆外
| OM 0 | <r
| OM 0 | =r
(x0-a)2+(y0-b)2<r2; (x0-a)2+(y0-b)2=r2
| OM 0 | >r
(x0-a)2+(y0-b)2>r2
点与圆的位置关系
练习3.请判断点A(m, 4)与圆x2 + y2 =16的位置关 系是( D )
A、圆内
B、圆上
C、圆外
D、圆上或圆外
待定系数法
y P(3,4)
x O
小结
1.圆的标准方程
(x a)2 (y b)2 r2 (圆心C(a,b),半径r)
2.点与圆的位置关系
3.求圆的标准方程的方法:
4.1.1 圆的标准何定义圆的?
平面内到定点距离等于定长的点的轨迹是圆.

中职数学公式大全

中职数学公式大全

中职数学常用公式及常用结论1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系 4.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.5.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 6.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}m in m a x m ax ()(),()(),()2b f x f f x f p f qa=-=;[]q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p abx ,2∈-=,则{}m i n()m i n (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.7.一元二次方程的实根分布 8充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 9.函数的单调性(1)任取 []2121,,,x x b a x x ≠∈那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.10.如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.11.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.12.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 13.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=- 14.两个函数图象的对称性15.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;16.几个常见的函数方程 (1)正比例函数()f x cx =,(2)指数函数()xf x a =,. (3)对数函数()log a f x x =,. (4)幂函数()f x x α=,(5)余弦函数()cos f x x =,正弦函数()sin g x x =,17.分数指数幂(1)m na =(0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).18.根式的性质(1)na =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.19.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈. (3)()(0,0,)rr rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.20.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.21.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).22.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N =-; (3)log log ()na a M n M n R =∈.23. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.24.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).25.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为211()22d n a d n =+-. 26.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.27.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 28.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s ()2(1)s i n ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩29.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).30.二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 31.三角函数的周期公式函数sin()y x ωϕ=+, x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=.32.正弦定理?2sin sin sin a b cR A B C===. 33.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.34.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.35.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 36.平面向量基本定理?如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 37.向量平行的坐标表示??设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a //b(b ≠0)12210x y x y ⇔-=.38. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 39.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212x x y y +. 40.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).41.平面两点间的距离公式||AB =11(,)x y ,B 22(,)x y ).42.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=.43.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.44.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.45.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;46.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).47直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).48.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=;49.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.50.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).51. 圆的2种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0). 52.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.53.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;54.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-by a x 有公共渐近线,可设为λ=-2222b y a x (0>λ,焦点在x轴上,0<λ,焦点在y 轴上).55.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a--;56.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y p x p => (2)点00(,)P x y 在抛物线22(0)y p x p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->.57.直线与圆锥曲线相交的弦长公式 AB =AB =A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F bkx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).58.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.59.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.60.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.61.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 62.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 63.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直. 向向量)64.直线AB 与平面所成角 65.二面角l αβ--的平面角 66.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=..67.点B 到平面α的距离68.分类计数原理(加法原理) 12n N m m m =+++. 69.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯. 70.排列数公式m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. 71.组合数公式mnC =m n m mA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤).72.组合数的两个性质 (1)mn C =mn nC - ; (2) m n C +1-m nC =mn C 1+.注:规定10=n C .(6)nn n r n n n n C C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n n C C C C C C .73.排列数与组合数的关系m m n n A m C =⋅! .74.二项式定理n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ;二项展开式的通项公式r r n r n r b a C T -+=1)210(n r ,,, =.75.等可能性事件的概率()mP A n=. 76.互斥事件A ,B 分别发生的概率的和 P(A +B)=P(A)+P(B).77.n 个互斥事件分别发生的概率的和P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ). 78.独立事件A ,B 同时发生的概率 P(A ·B)= P(A)·P(B).79.n 次独立重复试验中某事件恰好发生k 次的概率 80.离散型随机变量的分布列的两个性质(1)0(1,2,)i P i ≥=; (2)121P P ++=.。

圆的标准方程学案

圆的标准方程学案

圆的标准方程学案圆的标准方程学案一、教学目标1、理解圆的标准方程的意义,掌握圆的标准方程的推导过程;2、会根据圆的标准方程求出圆心坐标和半径,掌握圆的标准方程的应用;3、通过对圆的标准方程的学习,初步了解解析几何的基本思想和方法,提高数学思维能力和解决实际问题的能力。

二、教学内容1、圆的标准方程的推导2、圆的标准方程的形式及其意义3、圆的标准方程的应用三、教学过程1、引入:通过实例展示圆的结构和特点,引出圆的标准方程的概念。

2、圆的标准方程的推导:通过几何法和代数法两种方法,推导出圆的标准方程。

3、圆的标准方程的形式及其意义:介绍圆的标准方程的形式,解释各项参数的意义,明确圆心坐标和半径的求解方法。

4、圆的标准方程的应用:通过实例演示,说明圆的标准方程在解决实际问题中的应用,如求圆与直线的交点、求圆的外接正方形边长等。

四、教学步骤1、教师引导学生通过实例理解圆的结构和特点,引出圆的标准方程的概念。

2、教师介绍圆的标准方程的推导过程,通过几何法和代数法两种方法,推导出圆的标准方程。

3、教师解释圆的标准方程的形式,说明各项参数的意义,明确圆心坐标和半径的求解方法。

4、教师通过实例演示,说明圆的标准方程在解决实际问题中的应用,如求圆与直线的交点、求圆的外接正方形边长等。

五、教学重点与难点1、教学重点:掌握圆的标准方程的推导过程,理解圆的标准方程的意义,掌握圆的标准方程的应用。

2、教学难点:理解圆的标准方程的意义,掌握圆的标准方程的应用。

六、教学方法与手段1、教学方法:讲解、演示、练习、互动交流。

2、教学手段:PPT、板书、实物展示。

七、教学评估1、课堂练习:通过练习题检验学生对圆的标准方程的理解和掌握情况。

2、课后作业:布置相关题目,加强学生对圆的标准方程的掌握和应用能力。

3、课堂讨论:引导学生对圆的标准方程的应用进行讨论,提高学生对该知识的理解和应用能力。

八、教学反思1、总结课堂效果:对本次课程的教学效果进行总结,分析学生的掌握情况。

圆的标准方程与一般方程的特点与分析

圆的标准方程与一般方程的特点与分析

圆的标准方程与一般方程的特点与分析圆的标准方程与一般方程各具特点,但都是我们所需要掌握的重要内容。

通过标准方程能够对一般方程进行推导,能够让我们更好地理解圆的特点和相关知识。

本文对圆的标准方程与一般方程进行分析,以供参考。

标签:圆的标准方程圆的一般方程分析研究一、圆的标准方程分析圆的标准方程为。

在圆的标准方程中,包含有a、b、r这三个参数,也就是圆心坐标为(a,b),只需要将a、b、r计算出来,就可以确定圆的方程。

所以,在对圆方程进行确定的过程中,应当具备三个独立的条件,圆的定位条件就是圆心坐标,圓的定形条件就是其半径。

[1]1.圆的方程当时,则圆心O的坐标为(0,0),我们将其称之为1单位的圆;当时,则圆心O的坐标为(0,0),其半径为r;当时,则圆心O的坐标为(a,b),其半径为r。

在对圆的方程进行确定的过程中,主要是对待定系数法这一方法进行运用,也就是将有关a、b、r的方程组列出来,将a、b、r分别计算出来,亦或是将圆心(a,b)与半径r计算出来,通常情况下,其步骤是:依据有关题意,将圆的标准方程列出来;依据相关已知条件,对有关a、b、r的方程组进行建构;对所建构的方程组进行计算,分别将a、b、r的数值计算出来,将所计算的数值带入到圆的标准方程中去,进而就可以将所求圆的方程计算出来。

2.方程推导平面直角坐标系中,圆心O的坐标为(a,b),点P是圆中任意一点,其坐标为(x,y)。

圆属于平面到定点距离等于定长的所有点的集合。

[2]因此,,分别将两边平方,可以得出。

3.点与圆关于点P(x1,y1)与圆(x-a)2+(y-b)2=r2的位置关系:当的情况下,那么点P位于圆外;当的情况下,那么点P位于圆上;当的情况下,那么点P位于圆内。

4.直线与圆的位置关系在平面图形中,在判定直线和圆的位置关系时,通常运用以下方法:通过其中B不等于0,可以得出关于x的一元二次方程。

通过判别式的符号,就可以对圆与直线的位置关系进行确定,其位置关系如下:倘若,那么圆与直线存在两个交点,二者是相交关系;倘若,那么圆与直线存在一个交点,二者是相切关系;倘若,那么圆与直线不存在交点,二者是相离关系。

圆的标准方程说课稿

圆的标准方程说课稿

圆的标准方程说课稿圆的标准方程说课稿1(一)说教材1、教材结构编排:本节课位于直线方程之后和圆的一般方程之前,学习直线方程为后边学习圆的方程奠定了基础,而学好圆的标准方程是为了进一步学习圆的一般方程和切线方程打好基础,因此在结构上起承上启下的作用。

2、教学目标知识目标:(1)掌握圆的标准方程,并能根据圆的标准方程写出圆心坐标和半径、(2)已知圆心和半径会写出圆的标准方程、能力目标:(1)培养学生数形结合能力、(2)培养学生应用数学知识解决实际问题的能力情感目标:(1)培养学生主动探究知识,合作交流的意识。

(2)在体验数学美的过程中激发学生学习的兴趣。

3、教学重点(1)圆的标准方程(2)已知圆的标准方程会写出圆的圆心和半径(3)已知圆心坐标和半径会写出圆的标准方程4、教学难点(1)圆的标准方程的推导(2)圆的标准方程的应用(二)说教法本节课采用讲练结合,启发式教学(三)说学法1、主动探究学习2、小组合作学习(四)说教学过程1、导入通过钟表的图片让学生了解钟表的指针头运行的轨迹是一个圆,第二个钟表是让学生了解圆是一系列的点来构成的,第三个图是抽象出圆是由动点运行的轨迹有此形成圆的定义。

2、知识衔接(1)圆的定义,圆上的点具备的特征性质(2)平面上两点间的距离公式通过复习为后边推导圆的标准方程奠定基础,降低难度。

3、新课学习(1)推导圆的标准方程(化解难点)怎么推出圆的标准方程,为了降低难度,可以把圆看成一个动点,既然是动点,那他的坐标是变化的,就用(x,y)表示,既然是圆上的点就应具备圆的特征性质即|CM|=r接下来就容易推出圆的标准方程。

(2)圆的标准方程(突出重点)先分析它的结构,圆心的横纵坐标及半径与圆的标准方程之间的关系。

为了巩固这个知识安排两个练习,练习一是已知圆心坐标及半径写出圆的标准方程,练习二是已知圆的标准方程写出圆的圆心坐标和半径(3)为了加强知识的应用,我加了一道用圆的标准方程解决实际问题的例子。

(完整版)中职数学常用公式及常用结论大全(最新整理)

(完整版)中职数学常用公式及常用结论大全(最新整理)

中职数学常用公式及常用结论大全1. 常见数集:N---自然数集 ---正整数集 Z---整数集 Q---有理数集 R---实数集*N 2、充要条件:(1)充分条件:若,则是充分条件.p q ⇒p q (2)必要条件:若,则是必要条件.q p ⇒p q (3)充要条件:若,且,则是充要条件.p q ⇒q p ⇒p q 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.3、一元二次方程20(0)ax bx c a ++=≠(1)求根公式:x =(2)根与系数的关系:,12b x x a +=-12c x x a⋅=4、不等式的基本性质:(1)若 ,则;a b >a c b c ±>±(2)若 ,且 ,则a b >0c >ac bc>(3)若 ,且 ,则a b >0c <ac bc<5、一元一次不等式(1)0(0)bax b a ax b x a->>⇒>⇒>(2)0(0)b ax b a ax b x a -<>⇒<⇒<(3)注意在解一元一次不等式组时,最后一定要求两个不等式解集的交集才是整个一元一次不等式组的解集。

6、一元二次不等式(1)的解集: 、是对应方程的两个根且<20(0)ax bx c a ++>>{}12x x x x x <>或1x 2x 1x 2x (2)的解集:、是对应方程的两个根且<20(0)ax bx c a ++<>{}12x x x x <<1x 2x 1x 2x 7、含绝对值的不等式(1)()(0),x a a a a <>⇒-(2)()()(0),,x a a a a >>⇒-∞-⋃+∞(3)(0)ax b c c ax b c ax b c +>>⇒+<-+>⇒或(4)(0)ax b c c c ax b c +<>⇒-<+<⇒8、定义域口诀:函数定义域好求,分母不能等于零;偶次方根非负,零和负数无对数;零的零次方无意义,正切函数角不直;其余函数实数集,多种情况求交集。

数学课程标准——中职院校公共基础课课程标准

数学课程标准——中职院校公共基础课课程标准

数学课程标准——中等职业院校前言1.1课程基本信息本课程总课时数为290学时,适用于3+2教学班级1.2课程性质数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。

数学课程是中等职业学校学生必修的一门公共基础课。

本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。

课程目标1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。

2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。

3、引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。

课程内容和要求第一章:集合一、教学要求1.理解集合的概念,掌握用符号表示元素与集合的关系的方法。

2.掌握集合的表示方法中的列举法,理解性质描述法。

3.理解空集、子集、真子集和全集的概念,理解集合相等与包含关系,掌握集合的交、并、补的简单运算。

4.了解充分条件,必要条件和充要条件。

二、重点:集合的表示和集合之间的关系三、难点:集合的性质描述法,充要条件第二章:不等式一、教学要求:1.通过比较实数大小理解并掌握不等式的基本性质。

2.掌握区间的概念。

3.掌握一元一次不等式(组)的解法,了解含绝对值的不等式。

4.理解一元二次不等式的解法,会求解简单的一元二次不等式。

5.能用解不等式的方法解决一些简单的实际应用问题二、重点:不等式的基本性质和解不等式的原理三、难点:不等式的证明第三章:函数一、教学要求:1.理解函数的概念,掌握函数的符号f(x)的意义和运用,能求出函数的定义域和简单的值域。

2.理解函数的三种表示法。

3.理解函数单调性的概念,能判断一些简单函数的单调性,了解函数奇偶性的概念。

4.掌握一次函数的图象及性质,理解二次函数的图象及性质,理解二次函数与一元二次不等式的关系。

中职数学直线与圆的方程单元测试含参考答案

中职数学直线与圆的方程单元测试含参考答案

中职数学直线与圆的方程单元测试(一)含参考答案一、单项选择题1.已知A(2,3),B(2,5),则线段AB 的中点坐标为( )A .(1,2) B.(0,-1) C .(0,-2) D .(2,4)2.若直线l 的倾斜角是o 120,则该直线的斜率是( )A .-1B .0 C.3- D .33.已知33+-=x y ,斜率为( ).A .3B .-3C .-1D .04.直线012=--y x 在y 轴上的截距为( )A .1B .1-C .2D .2-5.经过点P(l ,3),且斜率为2的直线方程是( )。

A .012=++y xB .012=+-y xC .012=--y xD .052=++y x6.直线x y 5=与直线3-=ax y 平行,则a =( ).A .-1B .0C . 1D .57.直线52-+y x =0与直线x =3的交点坐标为( ).A. (3,1)B. (1,3)C. (3,2)D. (2,3)8.点M(-3,1)到直线0543=-+y x 的距离为( ).A .2-B .1-C . 2D .19.圆心为C(2,-1),半径为3的圆的方程为( ).A .9)1(222=-++y x )(B .3)1(222=-++y x )( C .9)1(222=++-y x )( D .3)1(222=++-y x )(10.圆6)5(222=++-y x )(的圆心坐标与半径分别是( )A .),(52-,6=rB .),(52-,6=r C . ),(52-,6=r D .),(52-,6=r 11. 直线02=+-m y x 过圆046422=+--+y x y x 的圆心,则m =( ).A .1B .0C .1-D .212.经过圆25)2(122=-++y x )(的圆心且与直线04=--y x 垂直的直线方程为( )A .01=++y xB .01=+-y xC .01=-+y xD .01=+-y x二、填空题13.已知两点A(0,6),B (-8,0),则线段AB 的长度为14.倾斜角为45。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文详细讲解了中职数学中圆的标准方程的相关知识。首先,给出了圆的标准方程(x-a)²+(y-b)²=r²的定义,其中(a,b)为圆心坐标,r为半径。接着,通过丰富的例题和练习,深入阐述了如何应用这一公式。例如,在已知圆心坐标和半径的情况下,可以直接套用此公式求出圆的标准方程。此外,还介绍了如何通过圆上的已知点、圆的直径或与圆相切的直线等条件,来求解圆的直线的关系等更深层次的知识点。通过学习本文,读者将能够熟练掌握圆的标准方程的应用,为后续的数学学习打下坚实的基础。
相关文档
最新文档