含参变量的积分课件
含参变量积分(课件+例题+论文)

含参量反常积分
0
cos 1
xy x2
dx
在 (,) 上一致收敛.
例2 : 证明含参量反常积分 e xy sin x dx
0
x
在 [0,d] 上一致收敛.
证 : 由于反常积分 sin xdx 收敛
0x
(当然,对于参量y,它在[0, d ]上一致收敛)
函数g(x, y) exy对每个x [0, d ]单调且对任何
u 一致收敛的柯西准则:
含参量反常积分 f (x, y)dy 在 [a,b]上一致收敛的充要 c
条件是 0, M c,A1, A2 M ,x [a,b],都有
A2 f (x, y)dy . A1
u 一致收敛的充要条件;
含参量反常积分 f (x, y)dy 在 [a,b]上一致收敛的充要 c
解 :
记I ( )
1
1
dx x2
2
.
由于
,1
,
1
1 x2
2
都是和x的连续函数,
所以I( )在 0处连续,从而
lim
0
1
dx
1 x2 2
I(0)
1 dx 0 1 x2
. 4
例2 : 解:
求 I 1 xb x a dx (b a 0).
c
f
( x,
y)g( x,
y)dy
在[a , b]上一致收敛 .
例1 :
证明反常积分
0
cos 1
xy x2
dx
在 (,)上一致收敛.
证:
由于y R有
含参变量广义积分36页PPT

66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
含参变量广义积分
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
第9章 含参变量积分

∫N
f (x, y)dy ≤ M ;
c
(2)对每个 x ∈[a, b] ,函数 g(x, y) 关于 y 是单调递减的且当 y → ∞ 时,对参量 x ,
+∞
∫ g(x, y) 一致收敛于 0,则含参量反常积分 f (x, y)g(x, y)dy 在[a,b] 一致收敛。 c
定理 5(阿贝尔判别法)设
敛。
判别法则
定 理 1 ( 柯西 准 则 )含参 量 无 穷积分 (1 ) 在 [a,b] 上 一 致收 敛的 充 要条 件是 :
∀ε > 0, ∃M > c,当A1, A2 > M时,∀x ∈[a,b] ,有
∫| A2 f (x, y)dy |< ε A1
定理 2(魏尔斯特拉斯 M-判别法)设有函数 g( y) ,使得
∫ I '(x) =
+∞
c fx (x, y)dy
+∞
∫ 定理 3(可积性)设 f (x, y) 在[a,b]×[c, +∞) 上连续,若 I (x) = f (x, y)dy 在[a,b] 上 c
一致收敛,则 I (x) 在[a, b] 上可积,且
b
+∞
+∞
b
∫a dx∫c
∫ f (x, y)dy = c
∫ y(x) = 1
x
n−1
(x − t) f (t)dt, x ∈[a,b]
(n −1)! a
是微分方程 y(n) (x) = f (x) 的解,并且满足条件 y(a) = y' (a) = = y(n−1) (a) = 0 。
证明:设 F (x, t) = (x − t)n−1 f (t) ,则 f (x, t), fx (x,t) 在[a, b]×[a, b] 上连续,因此有
含参变量积分.ppt

定理2 如果函数 f ( x, y) 在矩形
R(a x b, y )
上连续,则
b
b
a [ f ( x, y)dy]dx [a f ( x, y)dx]dy.
公式(2)也可写成
b
b
a dx f ( x, y)dy dya f ( x, y)dx.
(2)
(2)
要点是:积分号与积分号的互换.
( xx )
( x)
f ( x x, y)dy f ( x, y)dy.
xx ( xx )
(x)f ( x ຫໍສະໝຸດ x, y)dy( xx )
(x)
( x)
f ( x x, y)dy f ( x x, y)dy
( xx )
(x)
( xx )
f ( x x, y)dy,
R(a x b, b )
上连续,那么由积分
(
x)
f
(
x,
y)dy
(a
x b)
确定的函数 ( x)在 [a, b]上也连续.
同理
x
x
x
f
x,
ydy
3
也是参变量 x的函数.
要点是:积分号与极限号的互换.
高等数学(下)
例1 求
lim 1 e xydx.
y0 0
高等数学(下)
定理1证 设 x 和 x x 是[a,b]上的两点,则 ( x x) ( x)
x 0
高等数学(下)
证 因为 ( x) lim ( x x) ( x) ,
x0
x
为了求 ( x),先利用公式(1)作出增量之比
( x x) ( x)
x
f ( x x, y) x
数学分析课件第12章

根据α(y)β(y)的连续性可知,当y→y0时, 右端→0,从而 lim I 2 ( y ) = 0, lim I 3 ( y ) = 0 ,即证。 y→ y y→ y
0 0
定理5 定理5
设 f ( x, y ) 与 f y′( x, y ) 都在闭矩形:a≤x≤b, c≤y≤d上连续,又设α(y),β(y)在c≤y≤d 上有连续的导函数,且满足 a≤α(y)≤b,a≤β(y)≤b (c≤y≤d),则 函数I(y)在[c,d]上有连续的导函数,且
∀ε > 0 ,由f(x,y)在闭矩形上连续可得一致 连续,因此,必有δ>0存在,使当 ∆y < δ 时,对一切 x(a ≤ x ≤ b) 都有 ε f ( x, y0 + ∆y ) − f ( x, y0 ) < ∆y < δ b − a ,从而当
b
I ( y0 + ∆y ) − I ( y0 ) = ∫ [ f ( x, y0 + ∆y ) − f ( x, y0 )]dx
证明: 证明:
∀y0 ∈ [ c, d ] ,需证 lim I ( y ) = I ( y0 )
α ( y0 )
y → y0
I ( y) = ∫ =∫
β ( y0 ) α ( y0 )
α ( y)
f ( x, y )dx + ∫
β ( y) β ( y0 )
β ( y0 )
α ( y0 )
f ( x, y )dx + ∫
I ( y ) = I1 ( y ) + I 2 ( y ) − I 3 ( y ) ,则
′ ′ I ′( y ) = I1′( y ) + I 2 ( y ) − I 3 ( y )
含参变量的积分

ξ12.3 含参变量的积分一、含参变量的有限积分设二元函数f (x,u)在矩形域R (βα≤≤≤≤u b x a ,)有定义,],,[βα∈∀u 一元函数f(x,u)在[a,b]可积,即积分dxu x f a b),(⎰存在 ],[βα∈∀u 都对应唯一一个确定的积分(值)),(u x f a b⎰dx .于是,积分dx u x f a b),(⎰是定义在区间],[βα的函数,记为],[,),()(βαϕ∈=⎰u dx u x f ab u ,称为含参变量的有限积分,u 称为参变量。
下面讨论函数)(u ϕ在区间 ],[βα的分析性质,即连续性、可微性与可积性定理 1 若函数),(u x f 在矩形域R ),(βα≤≤≤≤u b x a 连续,则函数dx u x f abu ),()(⎰=ϕ在区间也连续。
证明有,使取],,[u ],,[βαβα∈∆+∆∈∀u u u.),(),()()(.)],(),([)()dx u x f u u x f abu u u dx u x f u u x f abu u u -∆+≤-∆+-∆+=-∆+⎰⎰ϕϕϕϕ(根据ξ10.2定理8,函数),(u x f 在闭矩形域R 一致连续,即,,:),(),(,0,02121221,1δδδε<-<-∈∀>∃>∀y y x x R y x y x 有ε<-),(),(2211y x f y x f .特别地,.:),(),,(δ<∆∈∆+∀u R u u x u x 有 .),(),(ε<-∆+u x f u u x f 于是,,δ<∆u 有)(),(),()()(a b dx u x f u u x f ab u u u -<-∆+≤-∆+⎰εϕϕ 即函数在区间连续.设[]βα,0∈u ,由连续定义,有)()(lim ),(limu u dx u x f a bu u u u ϕϕ==→→⎰=dx u x f a b dx u x f a b u u ),(lim ),(00→⎰⎰=. 由此可见,当函数),(u x f 满足定理1的条件时,积分与极限可以交换次序. 定理2 若函数),(u x f 与uf∂∂在矩形域R(βα≤≤≤≤u b x a ,)连续,则函数在区间[βα,]可导,且[]βα,∈∀u ,有dxu u x f a b u du d∂∂=⎰),()(ϕ 或dx u u x f a b dx u x f abdu d ∂∂=⎰⎰),(),(. 简称积分号下可微分.证明 [][],,u,,,βαβα∈∆+∆∈∀u u u 使取有[].),(),()()(dx u x f u u x f abu u u -∆+=-∆+⎰ϕϕ (1) 已知uf∂∂在R 存在,根据微分中值定理,有 .10,),(),(),('<<∆∆+=-∆+θθu u u x f u x f u u x f u 将它代入(1)式,等号两端除以u ∆,有.10,),()()('<<∆+=∆-∆+⎰θθϕϕdx u u x f ab u u u u u 在上面等式等号两端减去dx u x f abu ),('⎰,有d x u x f abu u u u u ),()()('⎰-∆-∆+ϕϕ dx u x f u u x f ab u u ),(),(''-∆+≤⎰θ. 根据 ξ10.2定理8,函数),('u x f u 在闭矩形域R 一致连续,即,0,0>∃>∀δε,:),(),,(δ<∆∈∆+∀u R u u x u x 有.),(),(''εθ<-∆+u x f u u x f u u 从而,有),(),()()('a b dx u x f abu u u u u -≤-∆-∆+⎰εϕϕ即 dx u x f abuu u u u u ),()()(lim '0⎰=∆-∆+→∆ϕϕ 或.),()(dx u u x f a b u dud∂∂=⎰ϕ 定理2指出,当函数),(u x f 满足定理2的条件时,导数与积分可以交换次序. 定理 3 若函数),(u x f 在矩形域R (βα≤≤≤≤u b x a ,)连续,则函数dx u x f abu ),()(⎰=ϕ在区间[]βα,可积,且.).(),(dx du u x f a b du dx u x f a b ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎰⎰⎰⎰αβαβ (2) 简称积分号下可积分.证明 根据定理1,函数)(u ϕ在[]βα,连续,则函数)(u ϕ在区间[]βα,可积.下面证明等式(2)成立.[]βα,∈∀t ,设.),()(,),()(21dx du u x f t a b t L du dx u x f a b t t L ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎰⎰⎰⎰αα根据4.8ξ定理1,有.),()('1dx t x f abt L ⎰=已知du u x f t ),(⎰α与du u x f tt ),(⎰∂∂α都在R 连续,根据定理2,有dx du u x f ta b dt d t L ⎥⎦⎤⎢⎣⎡=⎰⎰),()('2α =dx du u x f t t a b ⎥⎦⎤⎢⎣⎡∂∂⎰⎰),(α =dx t x f ab),(⎰.于是,[]βα,∈∀t ,有()().'2'1t L t L =.由1.6ξ例1,()(),21C t L t L =-其中C 是常数.特别地,当α=t 时,()(),021==ααL L 则C=0,即()()β==t t L t L 当.21时,有()(),21ββL L =即.),(),(dx du u x f a b du dx u x f a b ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎰⎰⎰⎰αβαβ定理3指出,当函数),(u x f 满足定理3的条件时,关于不同变量的积分可以交换次序。
第17章含参变量的积分

2019年2月26日星期二
7
§17 含参变量的正常积分
0, 0,只要 x , 就有
f ( x x, y ) f ( x, y ) f x ( x, y ) x f x (x x,y)-f x (x,y) , 其中 (0,1).因此
第十七章 含参变量的积分
级数与积分是构造函数的两个重要分 析工具。我们已经介绍了一种利用定积分 构造的函数──积分上限的函数。 本章和 下章介绍另一种利用 Riemann 积分与广义 积分构造的函数──含参变量的正常积分与 含参变量的广义积分,并研究它们的分析 性质:连续性、可微性、可积性。
2019年2月26日星期二
J ( y ) 在 [c, d ] 上可积。记为
b
a
I ( x ) dx J ( y)
d
c
f ( x, y) dy dx dy f ( x, y ) dx dy
b d a c d b c a
b
a d
dx dy
d
c b
f ( x, y ) dy f ( x, y ) dx
x 取 [a, b] 上某定值时,函数
上以 y为自变量的一元函数.若此时 f ( x, y)在 [c, d ]上可积,
则其积分值是 x 在 [a, b]上取值的函数,表为
I(x) f ( x, y)dy, x [a, b (定义域) ]
c
d
称为含参量 x 的正常积分,或简称含参量积分.
2019年2月26日星期二 3
(证毕)
2019年2月26日星期二 8
§17 含参变量的正常积分
下面讨论可积性. 设 f ( x, y) 在矩形 [a, b; c, d ]上连续,那末由定理1 ,函数
5_含参变量的积分

2007年8月 南京航空航天大学 理学院 数学系
(1)
3
由于 f ( x , y )在闭区域 R上连续,从而一致连续. 因此对于任意取定的 0 ,存在 0,使得对于 R内 的任意两点( x1 , y1 ) 及( x2 , y2 ) ,只要它们之间的距离 小于 ,即
2007年8月 南京航空航天大学 理学院 数学系 12
( x x ) ( x )
其中 0 1 , 可小于任意给定的正数 ,只要 x 小于某个正数 . 因此
( x , y , x )dy dy ( ) ( x ),
( x2 x1 )2 ( y2 y1 )2 ,
就有
f ( x2 , y2 ) f ( x1 , y1 ) .
因为点( x x , y )与 ( x , y ) 的距离等于 x ,所以当 x 时,就有
f ( x x , y ) f ( x , y ) .
2007年8月
南京航空航天大学 理学院 数学系
7
定理3
R(a x b, y ) 上连续,又函数 ( x ) 与 ( x ) 在区间 [a , b]上连续,
并且 ( x )
如果函数 f ( x , y ) 在矩形
, ( x )
(a x b),
( x x )
( x)
x x
( x x ) ( x)
f ( x x , y )dy f ( x x , y )dy
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十五章含参变量的积分教学目的与要求1 掌握含参变量的常义积分的定义及分析性质;2 能应用含参变量的常义积分的分析性质证明某些理论问题.3 理解含参变量的反常积分的一致收敛的定义;4 掌握含参变量的反常积分的一致收敛性的判别法及分析性质;5 能利用参变量的反常积分的分析性质求函数的导数、积分等;6 掌握Beta函数和Gamma函数的定义及其相互关系;7 掌握Beta函数和Gamma函数的性质。
教学重点1 应用含参变量的常义积分的分析性质证明某些理论问题;2 求含参变量的常义积分的极限、导数、积分;3 含参变量的反常积分的一致收敛的定义;4 掌握含参变量的反常积分的一致收敛性的判别法及分析性质;5 利用参变量的反常积分的分析性质求函数的导数、积分等6 Beta函数和Gamma函数的性质。
教学难点1 应用含参变量的常义积分的分析性质证明某些理论问题;2 含参变量的反常积分的一致收敛的定义;3 掌握含参变量的反常积分的一致收敛性的判别法及分析性质;§1 含参变量的常义积分教学目的1 掌握含参变量的常义积分的定义及分析性质;2 能应用含参变量的常义积分的分析性质证明某些理论问题.教学过程1 含参变量的常义积分的定义 (P373)2 含参变量的常义积分的分析性质 连续性定理P374Theorem 1 若函数),(y x f 在矩形域] , [ ] , [d c b a D ⨯=上连续 , 则函数⎰=dcdy y x f x I ),()(在] , [b a 上连续 .Theorem 2 若函数),(y x f 在矩形域] , [ ] , [d c b a D ⨯=上连续, 函数)(1x y 和)(2x y 在] , [b a 上连续 , 则函数⎰=)()(21),()(x y x y dy y x f x G 在] , [b a 上连续.例 1 求下列极限 (1)dx y x y ⎰-→+11220lim(2) dx nxnn ⎰++∞→1)1(11lim积分次序交换定理P375 例2 见教材P375.积分号下求导定理P375—376Theorem 3 若函数),(y x f 及其偏导数x f 都在矩形域] , [ ] , [d c b a D ⨯=上连续, 则函数⎰=dcdy y x f x I ),()(在] , [b a 上可导 , 且⎰⎰=dc d c x dy y x f dy y x f dxd ),(),(. ( 即积分和求导次序可换 ) .Theorem 4设函数),(y x f 及其偏导数x f 都在矩形域] , [ ] , [d c b a D ⨯=上连续, 函数)(1x y 和)(2x y 定义在] , [b a , 值域在] , [d c 上, 且可微 , 则含参积分⎰=)()(21),()(x y x y dy y x f x G 在] , [b a 上可微 , 且()())()(,)()(,),()(1122)()(21x y x y x f x y x y x f dy y x f x G x y x y x '-'+='⎰. 例2 求下列函数的导数 (1) ⎰>+=122)0()ln()(y dx y xy F (2) ⎰-=22)(x xxy dx ey F例3 计算积分 dx x x I ⎰++=1021)1ln(.例 4 设函数)(x f 在点0=x 的某邻域内连续 . 验证当||x 充分小时 , 函数 ⎰---=x n dt t f t x n x 01)()()!1(1)(φ 的1-n 阶导数存在 , 且 )()()(x f x n =φ.(P376定理15.1.4) 例4 求⎰++=yb y a dx x yxy F sin )(的导数例5 研究函数 ⎰+=10 22)()(dx y x x yf y F 的连续性,其中)(x f 是]1,0[上连续且为正的函数。
解 令22)(),(yx x yf y x g +=,则),(y x g 在],[]1,0[d c ⨯连续,其中],[0d c ∉。
从而)(y F 在0≠y 连续。
当0=y 时,0)0(=F当0>y 时,记 0)(min ]1,0[>=∈x f m x ,则⎰+=10 22)()(dx y x x yf y F ⎰+≥1 0 22dx y x y m y m 1arctan = 若)(lim 0y F y +→存在,则 ≥+→)(lim 0y F y y m y 1arctanlim 0+→)0(02F m =>=π故)(y F 在0=y 不连续。
或用定积分中值定理,当0>y 时, ]1,0[∈∃ξ,使⎰+=10 22)()(dx y x x yf y F ⎰+=1 0 22)(dx y x yf ξ yf yxf 1arctan )(arctan)(1ξξ==若)(lim 0y F y +→存在,则=+→)(lim 0y F y y f y 1arctan)(lim 0ξ+→02>≥m π故)(y F 在0=y 不连续。
问题1 上面最后一个式子能否写为y f y 1arctan)(lim 0ξ→0)(2>=ξπf 。
事实上,ξ是依赖于y 的,极限的存在性还难以确定。
例6 设)(x f 在],[b a 连续,求证⎰-=xcdt t x k t f k x y )(sin )(1)( (其中 ],[,b a c a ∈)满足微分方程 )(2x f y k y =+''。
证 令)(sin )(),(t x k t f t x g -=,则)(cos )(),(t x k t kf t x g x -=, )(sin )(),(2t x k t f k t x g xx --=它们都在],[],[b a b a ⨯上连续,则⎰-='xcdt t x k t f x y )(cos )()()()(sin )()( x f dt t x k t f kx y xc+--=''⎰y k y 2+'')()(sin )( x f dt t x k t f k x c +⎰--=⎰-+x c dt t x k t f k )(sin )()(x f =例7 设)(x f 为连续函数,ξηηξd d x f x F hh ])([)(00⎰⎰++=求)(x F ''。
解 令u x =++ηξ,则ξηηξd d x f x F hh ])([)(00⎰⎰++=⎰⎰+++=hx x hdu u f d ξξξ)(0])()([)(0⎰⎰+-++='hhd x f d h x f x F ξξξξ在第一项中令u h x =++ξ,在第二项中令u x =+ξ,则])()([)(2⎰⎰+++-='hx xhx hx du u f du u f x F)]()(2)2([)(x f h x f h x f x F ++-+=''问题2 是否有ξηηξd d x f x x F h h ])([)(00⎰⎰++∂∂='ξηηξd d x f x hh ])([00⎰⎰++∂∂=例8 利用积分号下求导法求积分dx xx a a I ⎰=2/0tan )tan arctan()(π, 1||<a解 令 xx a a x f tan )tan arctan(),(=2,0π=x 时,f 无定义,但a a x f x =+→),(lim 0,0),(lim 2=-→a x f x π,故补充定义a a f =),0(, 0),2(=a f π则f 在],[]2,0[b b -⨯π连续(10<<b ),从而)(a I 在)1,1(-连续。
⎪⎪⎩⎪⎪⎨⎧<=<∈+=1|| ,2,0 ,01|| ),2,0( ,tan 11),(22a x a x x a a x f a ππ显然)0,(x f a 在2π=x 点不连续,但),(a x f a 分别在)0,1(]2,0[-⨯π和)1,0(]2,0[⨯π连续,故有⎰='2/0),()(πdx a x f a I a ⎰+=2/022tan 11πdx xa , )0,1(-∈a 或)1,0(∈a令t x =tan⎰+∞++='0222)1)(1(1)(dt t a t a I ⎰+∞++--+-=0222222222)1)(1(111dt t a t a t a t a a ⎰+∞+-+-=022222])1()1(1[11dt t a a t a |)|1(2a +=π, )0,1(-∈a 或)1,0(∈a积分之1)1ln(2)(C a a I ++=π, )1,0(∈a2)1ln(2)(C a a I +--=π, )0,1(-∈a因为)(a I 在)1,1(-连续,故0)(lim )0(0==+→a I I a )(lim 0a I a -→=得021==C C ,从而得 |)|1ln(sgn 2)(a a a I +=π, 1||<a作业:P378----379 2、3、5、6、8(2)(3)、11§2 含参变量的反常积分教学目的1 理解含参变量的反常积分的一致收敛的定义;2 掌握含参变量的反常积分的一致收敛性的判别法及分析性质;3 能利用参变量的反常积分的分析性质求函数的导数、积分等;教学过程1 含参变量的反常积分的一致收敛含参变量的反常积分有两种: 无穷区间上的含参变量的反常积分和无界函数的含参变量的反常积分.定义P379---381 无穷积分⎰+∞adx y x f ),(在区间],[d c :一致收敛: ],[,,0,000d c y A A A ∈∀>∀>∃>∀ε有ε<⎰+∞Adx y x f ),(;非一致收敛: ],[,,0,0000d c y A A A ∈∃>∃>∀>∃ε有00),(ε≥⎰+∞A dx y x f .2 一致收敛性的判别法 (Cauchy 收敛原理) P381 (s Weierstras 判别法)P382 例1 证明:无穷积分⎰+∞+122cos dx y x xy在R 一致收敛.(Abel 判别法和Dirichlet 判别法) P382----385(Dini 定理)P3853 一致收敛积分的分析性质 连续性定理积分次序交换定理 积分号下求导定理例 2 利用积分号下求导求积分⎰+∞++=12)()(n n a x dxa I , (n 为正整数,0>a ) 解 因为10212)(1)(1+++≤+n n a x a x , 00>≥a a而 ⎰+∞++0102)(n a x dx收敛,故 ⎰+∞++=012)()(n n a x dxa I 在00>≥a a 一致收敛。