流体机械三元流动理论

合集下载

第五章 液体三元流动基本原理w

第五章  液体三元流动基本原理w
本章内容 5.2 流线与迹线微分方程 5.3 液体三元流动的连续性方程 5.4 液体微团运动的基本形式
第 五 章 液 体 三 元 流 动 基 本 原 理
5.5 有旋运动简介
5.6 液体恒定平面势流 5.7 边界层简介
水力学
5.2 流线与迹线微分方程
1. 流线 (1)定义:流线是某 瞬时在流场中绘出的曲 线,曲线上各点的速度 矢量均与该曲线相切。
1、方程的推导
dt时段,x,y,z三个方向流出
与流入控制体积的液体
的质量差为:
dM x , dM y , dM z
dM dM x dM y dM z
水力学
dM dM x dM y dM z
第 u y dy u y dy dy dy 五 章 dM y [( y 2 )(u y y 2 )dxdz ( y 2 )(u y y 2 )dxdz ]dt 液 体 dM [( dy u u y dy ) ( dy u u y dy )]dxdzdt y y y 三 y 2 y 2 y 2 y 2 元 流 u y 动 dM y [( dyu y dy )]dxdzdt y y 基 本 u y 原 [(u y )]dxdydzdt y y 理
第 五 章 液 体 三 元 流 动 基 本 原 理
u dr 0
水力学
第 五 章 液 体 三 元 流 动 基 本 原 理
(2)流线方程:

u dr u x u y u z 0 dx dy dz
i
j
k
得出流线微分方程:
dx dy dz u x ( x, y , z , t ) u y ( x, y , z , t ) u z ( x, y , z , t )

流体机械三元流动理论

流体机械三元流动理论

流体机械三元流动理论三元流动理论在叶轮机械中的应用与发展所谓三元流动,其含义是指在实际流动中,所有流动参数都是空间坐标系上三个方向变量的函数。

其通用理论的中心思想是将叶轮机械内部非常复杂、难以求解的三元(空间)流动,分解为相交的两族相对流面上比较简单的二元(流片)流动,只使用这两族流面就可以很容易地得到三元流场的近似解,同时使用这两族流面进行迭代计算,可以得到三元流动的完整解。

三元流动是透平机械气动热力学的专门问题。

最初是航空上为了提高飞机性能,对压缩机的设计不断提出新的技术要求和性能指标,从而使压缩机的第一级由亚音速过渡到超音速。

流线的曲率和斜率对气流参数的影响就特别突出,要设计样的叶轮机械就必须突破“沿圆柱表面”流动的束缚,把流线的曲率和斜率考虑进去,同时还要考虑熵和功沿径向的变化。

因此,迫切需要建立新的流动模型,把二元流发展到三元流。

按三元流动理论设计出既弯又扭的三元叶轮,才能适应气流参数(如速度、压力等)在叶道各个空间点的不同,并使其既能满足大流量、高的级压力比,又具有高的效率和较宽的变工况范围。

图1:S1流面与S2流面相交叉模型叶轮中三元流动的理论大致可分为三类:通流理论、Sl与S2相对流面理论和直接三元流理论。

(1)通流理论通流理论最早是由劳伦茨(Lorenz)提出的。

这个理论假设叶片数趋于无穷多,叶片厚度趋于无限薄。

此时,介于两相邻叶片间的相对流面S2与叶片的几何中位面趋于重合,而其上的流动参数在圆周方向的变化量趋于零,但圆周方向的变化率却保持有限值。

所以,此时仍不是轴对称流动。

叶片的作用则通过引入一假想的质量力场来代替。

这样,只要求出在这个极限流面上流动的解即可。

但是,这样得出的解实际上只能是在叶栅密度较大时,作为某个大约与叶道按流量平均的中分面相重合的相对流面上的解。

(2)Sl、S2相对流面理论(如图1)1952年,吴仲华提出了用准三元方法求解三元流动的理论,即著名的叶轮机械两类相对流面(S1流面和S2流面)的普遍理论,把一个复杂的三元流动问题分解为两类二元流动问题来求解,使数学处理和数值计算大为简化。

三元流

三元流

三元流技术我公司依托专业技术团队对需进行节能改造的水泵、风机用三元流理论进行定制设计。

对于高效节能水泵的设计,从考虑水力损失最小、效率最高和汽蚀性能最好着手,用三元流理论与CFD流体力学计算和优化相结合的方法,寻找不同的流动和几何参数的最优组合,从设计上保证产品的高效性能。

三元流叶轮设计技术水泵、风机由电机等原动机带动叶轮旋转,将原动机的机械能转变为被输送流体的动能和压力能。

在与叶轮同步旋转的空间坐标系(R、φ、Z)中,任何空间一点均可由此坐标系确定。

任何一点的流速W可表示为该点坐标的函数W=f(R,φ,Z),这就是三元流的基本概念。

计算图(1)流道中任何空间一点的流速W,这就是三元流动解法。

通过三元流动计算,可以得到水泵、风机任意点的流速。

三元流设计技术是根据“三元流动理论”将叶轮内部的三元立体空间无限地分割,通过对叶轮流道内各工作点的分析,建立起完整、真实的叶轮内流体流动的数学模型,进行网格划分和流场计算。

运用三元流设计方法优化叶片的进出安放角、叶片数、扭曲叶片各截面形状等要素,其结构可适应流体的真实流态,从而避免叶片工作面的流动分离,减少流动损失,并能控制内部全部流体质点的速度分布,获得水泵、风机内部的最佳流动状态,保证流体输送的效率达到最佳。

三元流叶轮制造工艺对于中小型三元流叶轮,采用金属模精密铸造,保证叶轮的精度和表面质量。

大型三元流叶轮,叶片毛坯采用铸造或锻造,叶片和叶轮的前后盖板均采用数控加工,叶轮部件采用拼焊工艺。

依据三元流动理论设计出来的叶轮配以先进的三元流叶轮制造工艺,使叶轮的叶片型线完全达到设计要求,最大限度地降低了泵内的损失、冲击和噪音,泵的效率和运行可靠性得以显著提高。

三元流叶轮特点●子午流道三元流叶片宽,轮毂减少,通流能力增大,提高了水力效率;●子午流道三元流叶轮直径减少,而出口宽度增大,提高了水力效率;●三元流叶轮槽道更宽,叶轮槽道水流速减小,因此可以避免汽蚀或减缓汽蚀现象发生。

离心水泵叶轮的三元流技术原理及应用

离心水泵叶轮的三元流技术原理及应用

离心水泵叶轮的三元流技术原理及应用LI前,节能降耗已成为全国各行各业,特别是高耗能企业的重要任务。

我国已把节能降耗提到了国民经济发展非常重要的位置。

离心泵是把原动机的机械能通过离心泵叶轮产生的离心力使液体产生动能,从而达到输送液体的LI的,它广泛应用于国民经济的各个领域。

因此,通过优化离心泵的性能做好离心泵的节能工作,是节能降耗中至关重要的一环。

1.三元流技术概述我国离心泵多年来一直采用一元流理论设讣离心泵叶轮,它的设计理念是假定进出口流通截面及流道内部任何流通截面的水流分布是均匀的,而流速仅为一个自变量的函数。

据此而设计出叶片的儿何形状,制作出多种模型进行试验,择优选用。

由于离心泵在不同工况下其流量、压力变化范围很大,而这种叶轮的模型只能是有限的数种,因而无法保证优选模型与实际工况一致。

这就导致离心泵叶轮偏离设讣最佳效率点,进而影响泵的实用效率。

我国科学家吴仲华教授创立的si、S2两类流面概念,奠定了叶轮机械三元流动理论的基础,中科院研究员刘殿魁教授于1986年提出了叶轮机械内“射流-尾迹的完全三元流”的解法。

应用这一计算方法对叶轮流道进行设讣,有效地解决了尾迹区的影响,提高了叶轮的水力效力,同时增大了有效流通面积,提高了离心泵的工作效率。

离心泵的水力效率受水泵叶轮的进口轮径、出口轮径、轮毂比、子午流道的曲率变化、叶型中心线的形状、叶片厚度分布、安装角、进口角、出口角及泵的工作流量、压力变化等多种因素的影响。

而根据“射流-尾迹三元流动”理论结合离心泵的实际流量、扬程等参数设计制作的高效三元流叶轮,在不变动泵体安装结构的情况下,换装于原泵体内。

以投资最少,见效最快的技改方式,达到节能降耗的H 的。

2.三元流技术原理三元流技术,实质上就是通过使用先进的泵设计软件,结合生产现场实际的运行工况,重新进行泵内水力部件(主要是叶轮)的优化设计。

具体步骤是:先对在用离心泵的流量、压力、电机耗功等进行测试,并提出常年运行的工艺参数要求,作为泵的设计参数;再使用泵设计软件设计出新叶轮,保证可以和原型互换,在不动管路电路、泵体等条件下实现节能或扩大生产能力的H 标。

3.2 流体运动学基本概念

3.2 流体运动学基本概念
dx dy 即 x y
y t 1
dy vy y dt 积分得 ln xy C 由过 (1, 1) 点得 C 0
得迹线方程为
xy 1
可以看出,当流动恒定时流线和迹线重合。
四、流管、流束、微小流束和总流 流管:流场中过封闭曲线上各点作流线所围成的管状 曲面,见图。
流体运动学基本概念
宫汝志
§3-2 流体运动学基本概念
一、流场,运动参数和一、二、三元流动 运动参数指表征流体运动特征的物理量。
一、二、三元流动又称为一、二、三维流动。 一元流动(One-dimensional Flow):流体的运动 参数只是一个坐标的函数,如 v v(s) ,见图。
二元流动(Two-dimensional Flow):流体的运动 参数为两个坐标的函数,如 v v(r , x) ,见图。
流线可以形象的描述流场状态,见动画。
(2)流线的作法:欲作流场中某瞬时过A点的流线,可 在该瞬时作A点速度 v1 ;在 v1 上靠近A点找点 2,并在同 一时刻作 2点速度 v 2 ;再在 v 2 上靠近2点找点3,也在同一 时刻作速度 v3 ;依次作到 N点,得到折线A-2-3-…-N,当 各点无限靠近时得到的光滑曲线即为流线。
积分得:ln x ln c1 ln y 则: y c1 x 此外,由 vz 0 得 dz 0 z c2 因此,流线为xoy平面上的一簇通过原点的直线, 这种流动称为平面点源流动(c>0时)或平面点汇 流动(c<0时)。
例二 已知某平面流场流速分布为 vx x (t 3), vy y 2 求其流线和迹线方程。
4a 1 a 4 a
2( a b) ab 2( a b) 2ab ab

三元流动资料资料

三元流动资料资料

一.流体机械设计水平及科研状况1.1 设计水平及科研动向透平压缩机械研究的最终目标是致力于改善机器性能和提高装置可靠性。

这些研究包括理论研究,实用技术,测试手段等方面的课题,它们大多数来自工程设计和应用研究,其成果又不断推动着本行业的发展。

随着计算机的进步,上述研究在深度和广度上都发生了很大变化。

1.1.1 现代设计方法概况透平压缩机械内部流动分析已进入了三元N-S方程的数值模拟时代。

不管是离心式还是轴流式,都有人提出了相应的实际流动模型,离心式叶轮中的尾迹,射流模型以及低能流体的集积过程;高负荷轴流压缩机轮毂处三元分离的形式和结构,动叶顶端间隙流动特性等。

但对于包括损失、阻塞、喘振在内的压缩机总性能预测等有关问题,数值模拟还不够充分。

对于设计问题,完全的数值模拟方法不仅耗时太多,而且大量的自由度使得难于工程应用。

相反,在已积累有丰富经验数据的情况下,比较简单的一元方法还有相当的精度。

因此,许多设计问题,仍用一元、二元、准三元的方法是必要和可取的。

目前国外较普遍而又行之有效的方法是将低元和高元结合使用,即设计初始阶段用一元流动理论,详细计算时用准三元或全三元理论的方法。

图1-1轴头平机械流动解析以轴流透平机械为例,图1-1示出了各种流动解析的关系。

双实线内的解析法是纯理论解法,实线箭头表示解析法发展路线。

为了修正纯理论解法的不足,还辅助应用单实线内的方法。

纯理论解法和辅助方法必须与实验方法或资料(双实线箭头表示)结合起来,现在,准三元解析虽然还留下若干问题,但基本上达到了实用的程度,利用准三元理论成功地设计透平压缩机械的例子很多。

作为基础研究,完全的三元数值模拟是很有意义的。

然而,在通风机、压缩机整体设计中选取主要参数时,若有许多性能试验结果的积累,一元的方法也是足够的。

将子午面流动和叶栅间流动简单地结合起来的二元解析,对设计点附近的内部流动的预测也有一定的精度。

对于低元解析法,改善辅助手段能提高预测性能的精度。

流体机械现代设计方法-华中科技大学研究生院

流体机械现代设计方法-华中科技大学研究生院
教育经历:
1984年中国矿业大学机械设计学士学位;1993年西安科技大学机械工程工学硕士学位1999年获西北工业大学“航空宇航推进理论及工程”工学博士学位;2000.4~2002.5华中科技大学热能与动力工程博士后流动站,美的集团企业博士后科研工作站从事“空调风机内流特性”的课题研究,课题主要针对开式空调风机系统的噪声开展研究,获广东省科技进步和顺德科技进步奖和美的集团的重大奖励;2002.5完成第一站课题研究;2002.10~2004.9,进入本校流动站,东方电机企业工作站承担第二站博士后课题“水轮机尾水管压力脉动的全三维数值预测”研究,达到了国内领先和国际先进水平。2002.4~今,现任华中科技大学能源与动力工程学院流体机械及工程系系主任,从事本专业的本科、研究生的教学与科研工作。
(5)流体机械设计水平及科研动态(4学时)
3、教学方式方面:
(1)课堂讲授24学时
(2)课堂研讨与分析计算交流8学时
4、教材方面:
(1)近年来三元流动基础与设计动态方法的基础上,综合最新文献资料形成专业讲义;
(2)软件BLADEGEN使用说明与过程分析参考
5、其它:
4新能源领域相关流体机械新产品的开发(低压风机基础上-高压透平领域\微型化)风能利用技术及新型风力机开发
完成的主要科研项目有:1.空调风机内流特性研究:(1).弯掠轴流风机应用;(2).研究平台建设(CFD/CAE/PIV) 2.水轮机尾水管压力脉动全三维数值仿真及机理研究(DFEM);3.矿用对旋轴流风机设计技术研究;4.自流冷却系统流动特性计算;5.带小翼风力机气动稳定性研究; 6.空调室外机(120)风道系统现代设计方法研究(美的); 7.三峡电站2-6F启动及2F/6F相对效率研究;8.叶轮机械内二次流动的机理研究;9.燃料电池用微型压缩机的研究;10.150万吨制盐系统配套设备节能优化研究11.空调风机设计技术研究;12.烤烟用高温风机系列化及国家规范标准制定。

叶轮机械三元流动通用原理

叶轮机械三元流动通用原理

叶轮机械三元流动通用原理The principles of the three-element flow in centrifugal machinery are essential to understand in the field of mechanical engineering. 叶轮机械三元流动原理是机械工程领域中必须理解的基本原理之一。

This concept involves the study of the interactions between the flow of fluid, the rotation of the impeller, and the resulting pressure and velocity changes within the centrifugal pump. 这个概念涉及了流体流动、叶轮的旋转以及离心泵内因此产生的压力和速度变化之间的相互作用。

With a deep understanding of these principles, engineers can design and optimize centrifugal machinery for various applications. 有了对这些原理的深刻理解,工程师可以设计和优化适用于各种应用的离心机械。

One of the fundamental aspects of the three-element flow in centrifugal machinery is the study of fluid dynamics. 叶轮机械三元流动的一个基本方面就是流体动力学的研究。

It involves the analysis of how fluids behave in motion, including the principles of conservation of mass, momentum, and energy. 它涉及流体在运动中的行为分析,包括质量、动量和能量守恒原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三元流动理论在叶轮机械中的应用与发展
所谓三元流动,其含义是指在实际流动中,所有流动参数都是空间坐标系上三个方向变量的函数。

其通用理论的中心思想是将叶轮机械内部非常复杂、难以求解的三元(空间)流动,分解为相交的两族相对流面上比较简单的二元(流片)流动,只使用这两族流面就可以很容易地得到三元流场的近似解,同时使用这两族流面进行迭代计算,可以得到三元流动的完整解。

三元流动是透平机械气动热力学的专门问题。

最初是航空上为了提高飞机性能,对压缩机的设计不断提出新的技术要求和性能指标,从而使压缩机的第一级由亚音速过渡到超音速。

流线的曲率和斜率对气流参数的影响就特别突出,要设计样的叶轮机械就必须突破“沿圆柱表面”流动的束缚,把流线的曲率和斜率考虑进去,同时还要考虑熵和功沿径向的变化。

因此,迫切需要建立新的流动模型,把二元流发展到三元流。

按三元流动理论设计出既弯又扭的三元叶轮,才能适应气流参数(如速度、压力等)在叶道各个空间点的不同,并使其既能满足大流量、高的级压力比,又具有高的效率和较宽的变工况范围。

图1:S1流面与S2流面相交叉模型
叶轮中三元流动的理论大致可分为三类:通流理论、Sl与S2相对流面理论和直接三元流理论。

(1)通流理论
通流理论最早是由劳伦茨(Lorenz)提出的。

这个理论假设叶片数趋于无穷多,叶片厚度趋于无限薄。

此时,介于两相邻叶片间的相对流面S2与叶片的几何中位面趋于重合,而其上的流动参数在圆周方向的变化量趋于零,但圆周方向的变化率却保持有限值。

所以,此时仍不是轴对称流动。

叶片的作用则通过引入一假想的质量力场来代替。

这样,只要求出在这个极限流面上流动的解即可。

但是,这样得出的解实际上只能是在叶栅密度较大时,作为某个大约与叶道按流量平均的中分面相重合的相对流面上的解。

(2)Sl、S2相对流面理论(如图1)
1952年,吴仲华提出了用准三元方法求解三元流动的理论,即著名的叶轮机械两类相对流面(S1流面和S2流面)的普遍理论,把一个复杂的三元流动问题分解为两类二元流动问题来求解,使数学处理和数值计算大为简化。

这两类相对流面是这样的:第一类相对流面(Sl流面),它与某一个位于叶栅前或叶栅中z=常数的平面的交线是一条圆弧线{第二类相对流面(S2流面),它与某一个位于叶栅前或叶栅中Z=常数的平面的交线是一条径向线。

一般来讲,Sl流面并非是任意旋转面(或称回转面),该曲面可能是扭曲的;而S2流面也可能根本不含任何径向线或直线。

它们都是较复杂的空间曲面。

可以用一个数学上适当的组合两类相对流面上二元流动的方法得到三元流动的解。

这是一大进步,因为二元问题,无论在数学处理上或数值计算上,与三元问题相比都是比较简单和方便的。

实践证明,只要经过四、五轮的迭代,就可能得到满足工程精度要求的收敛解,同时也具体地看出了这两类流面互相关联的程度。

(3)直接解三元流动的理论
近年来,国内外都在进行直接求解叶轮中三元流动的尝试,有任定准正交面法以及应用势函数、双流函数或Euler方法直接求解叶片式流体机械中的三元流动。

前者实际上是将一个三元流动问题近似地转化为多个相关的一元流问题来迭代求解。

计算工作量比S1、S2相对流面理论要小得多,但误差也较大。

后者特别是应用势函数直接求得三元流场,变量少,近来发展十分迅速。

三元流动技术已广泛应用于我国叶轮机械行业。

其实质上就是通过使用先进的设计软件“射流一尾迹三元流动理论计算方法”,结合生产现场的实际运行工况,重新进行叶轮的优化设计,在不改变管路、电路、泵体等前提下实现节能和提高效率的目的。

图 2左边是叶轮的局部视图,右边是把叶轮内两个相邻叶片和前、后盖板形成的流道abcdefgh作为一个计算分析研究的单元。

Aehd,bfgc是两个相邻的叶片,dcnghi是叶轮前盖板,bkfeja是叶轮后盖板。

传统的“一元流理论”,就是把叶轮内的曲形流道abcdefgh视为一个截面变化的弯曲流管,认为沿流线的流速大小仅随截面大小而变化,但假定在每个横断面上如 abcd,ijkn,efgh等等,流速是相同的。

这样在流体力学计算中,流动速度w就只是流线长度坐标s的一元函数。

这种简化使泵内部流体力学的计算可以用手工算法得以实现。

国内电厂广为采用的双吸水平中开泵,就是采用这种理论设计的。

然而由于叶轮流道abcdefgh的三元曲线形状又是高速旋转的,流速(或压力)不但沿流线变化,而且沿横截面abcd,ijkn,efgh等任一点都是不相同的,即流速是三元空间圆柱坐标(R、Φ、Z)的函数。

特别是叶片数也是有限的,流速和压力沿旋转周向(Φ坐标)的变化,正是水泵向流体输入功的最终体现,忽略这一点就无法计算水泵内部的压力变化,水泵的效率显然与其内部流动状况的好坏是密不可分的。

图2:叶轮圆柱坐标(R 、Φ、Z )及流动速度w 最早在航空用离心压气机中,用激光测速技术观察到“射流-尾迹”现象,如下图所示,弧状弯曲线dh 和cg 分别代表两个相邻的叶片,dc 为叶片进口边,hg 为叶片出口边,w1为叶片进口流速,w2为叶片出口流速,都是不均匀的。

t 是流动分离点,htv 既是尾迹区,是一些低能量流体组成,类似一个漩涡。

cdtvg 则是射流区可视为无粘性的位流区,可按通常的三元流计算。

图3: 射流-尾迹模型
关于尾迹区的计算,目前还没有准确的方法,只能依靠半经验的方法加以计算。

研究表明,由于粘性和压力梯度的存在,泵轮出口沿叶片吸力面及前盖板表面都会有流体的脱流,形成的“尾迹”区不但消耗了有用功,降低泵效率。

完全三元流动的计算方法,数学上是极端困难的。

作为一大突破,我国科学家吴仲华在世界上首次把三元降为二元,提出了S1、S2两类流面的概念,称为叶轮机械三元流动理论的基础。

其运动方程为:
1312111c dL dw c w c ds dw ++=
2322211c dL dw c w c ds dw ++=
式中:w 为液体在叶轮中的相对流速,系数2311~c c 等均为流线几何形状的函数;L 为流线(1s 、
2s 两类流面的交线,定名为流面坐标)。

连续方程可写为:
b I J n z Q w /cos )cos(00=-⎰⎰αα
为图2中通流截面上一个微元流管的面积,β为流线与轴面的夹角,α为流线
与Z 轴的夹角,n α为通流截面与R 轴的夹角,Q 为流量,I 0为s 1流面的个数,J 0为s 2流面的个数,
z b 为叶片数量。

在电子计算机上实现了两类流面交叉迭代求出三元流动的方法,并用于离心泵叶轮的流动计算,与通常三元解不同的是还需对旋涡分离区——尾迹的形状作修正。

经计算可以得出叶轮内的完全三元分离流场中空间各点的流速及压力分布,为设计高效率叶轮提供理论依据。

近几十年三元流动理论在世界叶轮机械行业取得了重大发展:
(1)实现了S1和S2相对流面交叉迭代计算,取得了很好的三元流动收敛解,证明了流面模型的正确性。

(2)提出了使用以相应与任何非正交曲线坐标的非正交速度分量来表达的叶轮机械三元流动基本方程组。

(3)建立和发展了粘性气体的叶轮机械三元流动理论
(4)根据方程的特点,编制了 整套方便适用的计算程序,已在全国逐步推广应用。

(5)通过大量分析、计算,认识了不少叶轮机械内部的三元流动规律。

(6)发现了转子叶片三元通道中气流通过激波时出现的重要物理现象,发展了跨声速压气机中激波对气流影响规律的理论。

随着时间的推移,三元流动理论日益受到国内外的重视。

如:英国罗·罗·公司
(Rolls--Royceltd .)和美国普赖特—怀特尼(Prat &twhiteney )飞机发动机公司(分别是英、美最大的航空发动机公司)都已将S1和S2两族流面迭代得到三元(空间)流动的理论,用于设计高性能的跨声速叶轮机械。

我们坚信,三元流动技术会推动国内叶轮机械行业的发展。

相关文档
最新文档