平面直角坐标系(第一课时)教案导学案.doc

合集下载

4.3《平面直角坐标系》(一)导学案

4.3《平面直角坐标系》(一)导学案

4.3《平面直角坐标系》(一)学案学习目标:1、领会实际模型中确定位置的方法,会正确画出平面直角坐标系。

2、会在给定的平面直角坐标系中,根据点的坐标描出点的位置,会由点的位置写出点的坐标。

学习重点:平面直角坐标系的有关概念学习难点:在平面直角坐标系中由点写出坐标、由坐标描出对位点的位置。

学习过程: 1、情境创设1、如何描述你家在学校的位置?2、就课本P 123提问:小亮描述音乐喷泉的位置是否正确?能用其它方法描述吗?2、画出平面直角坐标系,并揭示概念如图,___________________________________________________构成平面直角坐标系。

简称为___________,水平方向的数轴称为____轴(或____轴),竖直方向的数轴称为____轴(或____轴),它们统称为______轴,公共原点O 称为__________。

3、由有序实数对(a 、b )所描点的点位置4、练习:在下列坐标系中分别描出有序实数对所对应的点。

(―1,2) (2,―1) (―3,―2)5、由坐标系中的点,找所对应的有序实数对。

6、练习:课本P 125练习17、坐标的概念:在平面直角坐标系中,______________可以确定一个点的位置;反之,任意一点的位置都可以用_____________来表示,这样的___________叫做点的坐标。

8、象限的概念:两条坐标轴将平面分成的_________称为象限,按逆时针________象限,坐标轴上的点________。

9、例题教学xy30 20 1010-10-50 -40 -30 -20 -10 xy baP(a ,b)xybaP-3 -2 -1 12-1 -2 -312 3 y x -3 -2 -1 12-1 -2 -3123 y x-3 -2 -1 12-1 -2 -312 3 y x例1、例2见课本 10、课内练习P 125,2 11、补充例题:如图,线段OA 的端点O 在坐标原点,A 点坐标为(2,0), 当线段OA 绕端点O 逆时针方向旋转下列角度时,分别求出 另一端点A 的坐标。

平面直角坐标系(一)

平面直角坐标系(一)

平面直角坐标系(1)导学案审核人:时间:学习目标:1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念;2.认识并能画出平面直角坐标系;3.能在给定的直角坐标系中,由点的位置写出它的坐标。

教学重点:1.理解平面直角坐标系的有关知识;2.在给定的平面直角坐标系中,会根据点的位置写出它的坐标;3.由观察点的坐标、纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点。

教学难点:1.横(或纵)坐标相同的点的连线与坐标轴的关系的探究;2.坐标轴上点的坐标有什么特点的总结。

学习过程:一自主学习自主学习活动一认识并平面直角坐标系;自学指导:1 自学内容:P152---153内容2自学时间:10分钟3 自学要求:通过自学完成以下问题(1)___________________________________________________________叫平面直角坐标系;____________________________叫X轴或横轴,_______________________叫Y轴或纵轴,____________________________称为平面直角坐标系的原点。

(2)平面直角坐标系象限的划分(填写在图18-4)(3)对于平面内任意一点p,过点p分别向X轴、Y轴作垂线,垂足在X轴、Y轴上对应的数a,b分别叫做点p的______ 、________,有序数对 __________叫做点p的坐标。

自主学习活动二自学指导:1 自学内容:P153例12自学时间:10分钟3 自学要求:通过自学完成以下问题(1)写出图中的多边形ABCDEF各顶点的坐标。

(2)完成想一想1.点B 与点C 的纵坐标相同,线段BC 的位置有什么特点?2.线段CE 位置有什么特点?3.坐标轴上点的坐标有什么特点?自学检测:1.在下图中,确定A ,B ,C ,D ,E ,F ,G 的坐标。

(第1题) (第2题)2.如右图,求出A ,B ,C ,D ,E ,F 的坐标。

《平面直角坐标系1》导学案

《平面直角坐标系1》导学案

课题:平面直角坐标系(1)课型:新授课课时:1课时学科:学科年级:七年级主备课人:王旭军学习目标 1.了解平面直角坐标系的概念并会画平面直角坐标系.2.在平面直角坐标系中能由点的位置确定点的坐标.学习重点认识平面直角坐标系.学习难点根据点的位置写出点的坐标.学法指导学生自己动手用小字本建立平面直角坐标系,由组长给点,同组成员说点的坐标.(数形结合法)导学过程导学笔记自主学习一、自主预习案1.阅读P65-66页,用红笔勾画平面直角坐标系的关键词.平面直角坐标系由____条___________重合的_________组成,水平的数轴为_____轴(或____轴),习惯上取向_____为正方向;竖直的数轴称为_____轴(或_____轴),习惯上取向_____为正方向;两坐标轴的交点为平面直角坐标系的________.2.试写出点A、B、C、D的坐标A_____________B______________C_____________D_____________自己学会了什么?还有哪些疑问?我的疑问:合作交流二、课堂合作探究案1.用小字本自己建立平面直角坐标系(小组内交流并纠错)2.试写出点A、B、C、D的坐标A_____________ E_________B______________ F_________C_____________ G__________D_____________ H__________小组讨论:①写点的坐标的方法②写点的坐标时应该注意什么3.探究坐标轴上点的坐标特征4.探究点到x、y轴的距离分小组进行合作探究,并记录探究结果巩固提升三、巩固提升案:1.写出下列各点的坐标:2.若点P (x,y )的坐标满足xy =0,则点P 的位置是()A. 在x 轴上B.在y 轴上C.在坐标原点D.在x 轴上或在y 轴上 3.已知点M ()a a -+4,3在y 轴上,则点M 的坐标为 ___ . 4.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A.(3,2)B.(3,2--)C.(2,3-)D.(2,3-) 5.已知x 轴上点P 到y 轴的距离是3,则点P 坐标是_________. 6.若点P 到x 轴的距离为2,到y 轴的距离为3,则点P 的坐标为 ___学习体会我之前的预习效果如何呢?找到问题了吗?参与发言了吗?参与合作了吗?这节课你学到了什么?欢迎您的下载,资料仅供参考!。

平面直角坐标系(第一课时)教案导学案.doc

平面直角坐标系(第一课时)教案导学案.doc

3.2平面直角坐标系(第一课时)导学案一、学习目标1.理解平面直角坐标系的有关概念,能正确画出平面直角坐标系;2.能在平面直角坐标系中,根据坐标找点,根据点找坐标;3.理解平面直角坐标系的点与有序实数对是一一对应的关系。

二、学习重难点1.重点:理解平面直角坐标系的有关概念,根据坐标找点,根据点找坐标;2.难点:点的坐标的表示。

三、学习过程(一)温故知新1.什么是数轴?2.在生活中,确定点的位置需要几个数据?(二)学习新课1.精度课本59页的内容:理解并了解平面直角坐标系的概念。

在平面内,两条互相垂直且有公共原点的数轴组成_______________。

通常,两条数轴分别置于水平位置和铅直位置,取向__________和向__________为正方向。

其中水平的数轴称为轴或__________轴,铅直的数轴称为__________轴或__________轴。

横轴和纵轴统称__________,公共的原点O称为直角坐标系的原点。

两条数轴把平面分为四部分,右上部分为第__________象限,其余按逆时针分别为第二、三、四象限。

特别的坐标轴上的点__________任何象限。

2.点的坐标的表示在平面直角坐标系中,要想表示一个点的位置,就要用它的“坐标”来表示。

如图,对于平面内任意一点P,过点P分别向x轴、y轴作__________,垂足在x轴、y轴上对应的数a、b分别叫做点P的_______________;有序数对()叫做点P的__________例1:写出下列各点的坐标。

例2:在上面右图直角坐标系中,描出下列各点:A(4,3)、B(-2,3)、C(-4,-1)、D(2,-2)、E(0,-3)、F(5,0)(三)教材拓展1.象限内点的符号第一象限的符号是__________;第二象限的符号是__________;第三象限的符号是__________;第四象限的符号是__________.例3:点A(a,b)在第三象限,则点B(a-1,b-5)在第_______象限.2.坐标轴上的点有什么特征X轴上的点_________________;y 轴上的点_______________;原点既在x轴上,又在y轴上。

初中数学-平面直角坐标系(第1课时)导学案

初中数学-平面直角坐标系(第1课时)导学案

初中数学-平面直角坐标系(第1课时)导学案学习目标1.掌握平面直角坐标系的有关概念,了解点的坐标的意义.2.根据点的位置定出点的坐标,由坐标找出点.3.通过建立平面直角坐标系的过程,进一步掌握数形结合的思想.自主学习1.什么是数轴?2.如图,写出数轴上A和B两点所对应的数,反过来,描出数-4,0和1所对应的点.3.我们已经知道,平面内点的位置的确定需要两个数,而借用一条数轴只能确定直线上的点的位置,那么平面内的点我们借用几条数轴来确定它的位置呢?合作探究一1.什么是平面直角坐标系?2.在平面直角坐标系中,什么是横轴、纵轴、原点?3.在坐标平面内如何求一个点的坐标?合作探究二课本P68练习1,2.深化探究1.在平面内,两条的数轴组成平面直角坐标系.2.两条数轴通常分别置于位置与位置,取与的方向分别为两条数轴的正方向,水平的数轴叫做或,竖直的数轴叫做或,其交点O称为.3.如图,笑脸左边嘴角的坐标是()A.(1,-1)B.(-3,-1)C.(-1,1)D.(-1,-3)4.如图,六边形ABCDEF各个顶点的坐标依次为.课堂练习1.点P位于y轴左边,距y轴3个单位长,位于x轴上方,距x轴4个单位长,则点P的坐标是()A.(3,-4)B.(-3,4)C.(4,-3)D.(-4,3)2.点A(2,-7)到x轴的距离为,到y轴的距离为.3.(1)画出以点A(5,7),B(2,3),C(5,3)为顶点的△ABC,并求其面积;(2)画出以点A(0,0),B(5,0),C(6,4),D(1,4)为顶点的四边形ABCD,并求其面积.参考答案合作探究一1.平面内两条互相垂直、原点重合的数轴,组成平面直角坐标系.2.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴为y轴或纵轴,取向上为正方向;两个坐标轴的交点为平面直角坐标系的原点.3.点的坐标:由该点出发向x轴作垂线,交在x轴上的点表示的数是几,这个数就是该点的横坐标;同样,由该点出发向y轴作垂线,交在y轴上的点表示的数是几,这个数就是该点的纵坐标.注意:(1)画平面直角坐标系时,别忘了标x轴、y轴的正方向及x轴、y轴的名称.(2)写坐标时要加括号,括号内先横后纵,中间用逗号隔开,如(2,3).合作探究二1.A(-2,-2),B(-5,4),C(5,-4),D(0,-3),E(2,5),F(-3,0)2.略深化探究1.互相垂直2.水平竖直向右向上x轴横轴y轴纵轴原点3.B4.A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3)课堂练习1.B2.7 23.(图略)(1)S△ABC=6(2)S四边形ABCD=20。

北师大版高二下平面直角坐标系 第1课时导学案

北师大版高二下平面直角坐标系 第1课时导学案
(2)P是点Q关于直线l:x-y+4=0的对称点(Q不在直线1上)
*变式训练
用两种以上的方法证明:三角形的三条高线交于一点。
思考
通过平面变换可以把曲线 变为中心在原点的单位圆,请求出该复合变换?
学生小结:谈谈本节课学习的感受?
反思栏
情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。
问题1:如何刻画一个几何图形的位置?
问题2:如何创建坐标系?
[导学释疑]
1、数轴它使直线上任一点P都可以由惟一的实数x确定
【检测反馈】
例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。
*变式训练
如何通过它们到点O的距离以及它们相对于点O的方位来刻画,即用”距离和方向”确定点的位置?
例2已知B村位于A村的正西方1公里处,原计划经过B村沿着北偏东60 的方向设一条地下管线m.但在A村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W周围100米范围划为禁区.试问:埋设地下管线m的计划需要修改吗?
*变式训练
1.一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B两地相距800米,并且此时的声速为340m/s,求曲线的方程
2.在面积为1的 中, ,建立适当的坐标系下列条件求出P的坐标
(1)P是点Q关于点M(m,n)的对称点
2、平面直角坐标系
在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定
3、空间直角坐标系

3.2平面直角坐标系第1课时教案

3.2平面直角坐标系第1课时教案
3.重点难点解析:在讲授过程中,我会特别强调坐标系中点的坐标表示和各象限内点的坐标特征这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解,例如,第二象限的点横坐标为负,纵坐标为正。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与坐标系相关的实际问题,如如何在坐标系中表示学校周围的主要建筑。
-对于实际问题的建模,难点在于如何将问题中的信息转化为坐标平面上的点,如地图上两个地点的距离计算;
-坐标轴上的原点是一个特殊的点,需要强调其坐标表示为(0,0),而坐标轴上的其他点只有一个坐标为零,另一个坐标为非零值;
-通过动态演示或实际操作,如移动点在坐标系中的变化,帮助学生形象理解坐标与点的关系。
五、教学反思
在今天的教学中,我发现学生们对平面直角坐标系的概念和运用表现出较大的兴趣。通过引入日常生活中的例子,他们能够更好地理解坐标系的作用。在理论讲授环节,我注意到了几个关键点:首先,学生对坐标轴的理解比较直观,但对象限的概念需要更多的时间去消化。我通过画图和实际操作,帮助他们理解不同象限内点的坐标特征。
教学难点方面,我发现学生们对于坐标轴上点的特殊坐标表示理解得不够透彻,特别是原点的坐标(0,0)。在今后的教学中,我需要用更直观的方式解释这一点,例如通过数轴的对比来加深理解。
最后,我会在课后收集学生的反馈,了解他们在学习过程中遇到的困难和问题,以便在下一节课中进行针对性的讲解和辅导。通过不断反思和改进,我希望能够使我的教学更加有效,帮助学生更好地掌握平面直角坐标系的知识。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。学生将在坐标纸上标出一些点,然后测量和分析这些点之间的距离和关系。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。

《平面直角坐标系第一课时》教学设计

《平面直角坐标系第一课时》教学设计
活动6
典型例题与练习
例1、将平面直角坐标系作在方格纸中,确定所给点的坐标(题略)
例2、确定下列各点在平面直角坐标系中所处的位置
(3,2);(5,-3);(-2,-3);(-1,3);
(0,-1);(3,0)
练习:下列各点在第四象限的有()
A(-2,1)B(-5,-1)
C(3,-2)D(3,3)
拓展: 已知(a,b)在第四象限,那么点(-a,b),(-b,a)分别在哪个象限?
2、注意的问题
(1)画平面直角坐标系时,别忘了标x轴、y轴的正方向及x轴、y轴的名称。
(2)写坐标时要加小括号,括号内先横后纵,中间用逗号隔开。
通过反思和总结,增强学生的总结能力和表述能力,以及勇于探索的精神。
在平面直角坐标系确定点的位置
引导观察:过P 点分别作x轴、y轴的垂线,垂足分别记为M,N,则将M在横轴上所对应的数a称为P的横坐标,将N点在纵轴上所对应的数b称为P的纵坐标,则此时将有序数对(a,b)称为P点坐标
在给定的平面直角坐标系中,能根据点的位置写出点的坐标
让学生在确定点的过程中,渗透数形结合的数学思想
让学生积极思考,充分发表意见,揭示平面直角坐标系的构成与特点,培养学生的观察和归纳能力。
活动3熟悉平面直角坐标系的画法
平面直角坐标系画法的三个要求: 两轴互相垂直 标出两轴的正方向及名称 横纵两轴上的单位长度要统一
使学生在使用平面直角坐标系时先能画出一个准确的,同时进一步熟悉平面直角坐标系的特征
活动4
《平面直角坐标系第一课时》教学设计
教学任务分析




知识目标
掌握平面指教坐标系的有关概念,了解点的坐标的含义。
能力目标
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2平面直角坐标系(第一课时)导学案
一、学习目标
1.理解平面直角坐标系的有关概念,能正确画出平面直角坐标系;
2.能在平面直角坐标系中,根据坐标找点,根据点找坐标;
3.理解平面直角坐标系的点与有序实数对是一一对应的关系。

二、学习重难点
1.重点:理解平面直角坐标系的有关概念,根据坐标找点,根据点找坐标;
2.难点:点的坐标的表示。

三、学习过程
(一)温故知新
1.什么是数轴?
2.在生活中,确定点的位置需要几个数据?
(二)学习新课
1.精度课本59页的内容:理解并了解平面直角坐标系的概念。

在平面内,两条互相垂直且有公共原点的数轴组成
_______________。

通常,两条数轴分别置于水平位置和
铅直位置,取向__________和向__________为正方向。

其中水平的数轴称为轴或__________轴,铅直的数
轴称为__________轴或__________轴。

横轴和纵轴统称
__________,公共的原点O称为直角坐标系的原点。

两条数轴把平面分为四部分,右上部分为第__________
象限,其余按逆时针分别为第二、三、四象限。

特别
的坐标轴上的点__________任何象限。

2.点的坐标的表示
在平面直角坐标系中,要想表示一个点的位置,就要
用它的“坐标”来表示。

如图,对于平面内任意一点P,
过点P分别向x轴、y轴作__________,垂足在x轴、
y轴上对应的数a、b分别叫做点P的_______________;有序数对()叫做点P的__________
例1:写出下列各点的坐标。

例2:在上面右图直角坐标系中,描出下列各点:A(4,3)、B(-2,3)、C(-4,-1)、
D(2,-2)、E(0,-3)、F(5,0)
(三)教材拓展
1.象限内点的符号
第一象限的符号是__________;第二象限的符号是__________;
第三象限的符号是__________;第四象限的符号是__________.
例3:点A(a,b)在第三象限,则点B(a-1,b-5)在第_______象限.
2.坐标轴上的点有什么特征
X轴上的点_________________;y 轴上的点_______________;原点既在x轴上,又在y轴上。

例4:点A(a+4,a-1)在x轴上,则a=__________;若在y轴上,则a=__________.
3.点到x轴,y轴的距离
例5:A点到x轴的距离是________,y轴的距离是
________;
B点到x轴的距离是________,y轴的距离是________;
C点到x轴的距离是________,y轴的距离是________.
4.平面直角坐标系内,两点间的距离
例6:求下列条件下线段AB的长度
①A(-6,0),B(-2,0);②A(0,-3),B(0,2)
③A(1,0),B(-3,0);④A(0,5),B(0,0)
⑤A(1,2),B(-2,-1);⑥A(-3,1),B(4,5)
课外导读《平面直角坐标系又叫笛卡尔坐标系》
笛卡尔和笛卡尔坐标系的产生
据说有一天,法国哲学家、数学家笛卡尔生病卧床,病情很重,尽管如此他还反复思考一个问题:几何图形是直观的,而代数方程是比较抽象的,能不能把几何图形与代数方程结合起来,也就是说能不能用几何图形来表示方程呢?要想达到此目的,关键是如何把组成几何图形的点和满足方程的每一组“数”挂上钩,他苦苦思索,拼命琢磨,通过什么样的方法,才能把“点”和“数”联系起来。

突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会功夫,蜘蛛又顺着丝爬上去,在上边左右拉丝。

蜘蛛的“表演”使笛卡尔的思路豁然开朗。

他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置就可以用这三根数轴上找到有顺序的三个数。

反过来,任意给一组三个有顺序的数也可以在空间中找出一点P与之对应,同样道理,用一组数(x、y)可以表示平面上的一个点,平面上的一个点也可以有用一组两个有顺序的数来表示,这就是坐标系的雏形。

直角坐标系的创建,在代数和几何上架起了一座桥梁,它使几何概念用数来表示,几何图
形也可以用代数形式来表示。

由此笛卡尔在创立直角坐标系的基础上,创造了用代数的方法来研究几何图形的数学分支——解析几何,他大胆设想:如果把几何图形看成是动点的运动轨迹,就可以把几何图形看成是由具有某种共同特征的点组成的。

举一个例子来说,我们可以把圆看作是动点到定点距离相等的点的轨迹,如果我们再把点看作是组成几何图形的基本元素,把数看作是组成方程的解,于是代数和几何就这样合为一家人了。

精品文档。

相关文档
最新文档