常用制动元件(制动阀、继动阀、调压阀、四回路保护阀等)工作原理简介
四回路阀工作原理

四回路阀工作原理
四回路阀的工作原理是基于阀芯的运动来控制流体的方向和流量。
四回路阀通常由阀体、阀芯、弹簧、密封件等部件组成。
在四回路阀中,阀体是一个中空的金属壳体,内部有多个通道和孔道,阀芯则是一个可以在阀体内部移动的部件,通过不同的位置和位移来控制流体的流向和流量。
弹簧用于提供阀芯的复位力和稳定性,密封件则用于确保阀体和阀芯之间的密封性,防止流体泄漏。
四回路阀通常有四个控制通道和四个工作通道。
控制通道用于控制阀芯的位置和位移,从而控制流体的流向和流量。
工作通道则用于实现流体的输送或转向。
当控制通道中的流体压力和流量发生变化时,阀芯会根据这些变化来移动,并改变工作通道的流体流向和流量。
四回路阀的工作原理是通过控制通道和工作通道之间的流体压力和流量差异来驱动阀芯的移动。
当控制通道中的压力和流量达到一定的条件时,阀芯会移动到相应的位置,改变工作通道中流体的流向和流量。
阀芯的移动通常是由液压或气动力驱动的,通过控制控制通道中的液压或气压来实现。
在四回路保护阀中,四个限压止回阀按一定关系排布,部分适当附加了其余功能机构,以实现商用车刹车系统中气源的分路供给能保证各回路独立正常
工作。
在正常情况下,四回路保护阀实际上就是一个五通接头,只有某一回路发生断、漏故障时才起保护作用。
当某一回路发生故障时,其余回路仍能正常工作,并可适当对失效回路气压进行补充。
常用制动元件(制动阀、继动阀、调压阀、四回路保护阀等)工作原理简介教学文案

常用制动元件(制动阀、继动阀、调压阀、四回路保护阀等)工作原理简介常用气制动元件工作原理简介装设在车辆上的所有各种制动系总称为制动装备。
任何制动系都具有四个基本组成部分:供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。
其中产生制动能量的部分称为制动能源。
如空压机、人的肌体控制装置——包括产生制动动作和控制制动效果的各种部件。
如制动踏板机构,制动阀。
传动装置——包括将制动能量传输到制动器的各个部件,如制动总泵、制动轮缸制动器——产生阻碍车辆的运动或运动趋势的力(制动力)的部件,其中也包括辅助制动系中的缓速装置。
较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。
制动系还可按照制动能源来分类:以驾驶员的肌体作为唯一制动能源的制动系称为人力制动系;完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的则是动力制动系。
其制动能源可以是发动机驱动的空气压缩机或油泵。
兼用人力和发动机动力进行制动的制动系称为伺服制动系,如真空助力。
按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁式等,我厂现有车型主要采用液压制动和气压制动两种传输方式。
液压制动式结构简单,主要用于490发动机以下小型工程车和平板车上,气压制动结构复杂,用于中型及以上车型。
下面只讨论一下我厂最常用的动力制动系中的气压制动。
气压制动系是发展最早的一种动力制动系,也是我厂现在最主要采用的制动形式。
图为气压双回路气压制动系示意图:由发动机驱动的双缸活塞式空气压缩机将压缩空气经调压阀首先输入湿储气筒,压缩空气在湿储气筒内冷却并进行油水分离之后,再经过四回路保护阀,分别进入前桥储气筒、后桥储气筒和驻车储气筒,将气路分成三个回路;前、后储气筒分别与制动阀的上、下两腔相连,当驾驶员踩下踏板时,前筒气体通过制动阀上腔经快放阀到达前桥制动气室,实现前桥制动;后储气筒气体通过制动阀下腔,打开继动阀控制口,使后储气筒压缩空气直接经继动阀进入后桥制动气室,实现后桥制动;驻车储气筒与手控阀相连,在正常行车状态,驻车储气筒与手控阀和弹簧气室处于常通状态,当车辆停止时,将手刹手柄达到停车位置,阻断气源,弹簧气室内的压缩空气通过快放阀排入大气,实现驻车制动。
制动阀工作原理

制动阀工作原理
制动阀是用于控制汽车制动系统的一种重要部件,它的作用是控制制动气压的输入和释放,从而实现对车辆制动力的精确调节。
制动阀的工作原理如下:
1. 气压输入:当车辆上方制动踏板被踩下时,踏板力会通过连杆传递到制动阀上。
制动阀中的压缩室接收到来自制动踏板的力量,使其内部的活塞向下移动。
2. 活塞运动:当制动阀的活塞向下移动时,它会打开制动气路的入口,允许气压进入制动系统。
同时,活塞还会封闭气路的回路,防止制动气压向制动系统回流。
这样,制动阀就实现了气压输入的功能。
3. 制动释放:当制动踏板松开时,连杆不再施加力量到制动阀上。
此时,弹簧的作用下,制动阀的活塞会回到初始位置。
回到初始位置的活塞会关闭制动气路的入口,停止气压输入到制动系统。
同时,它会打开回路,允许制动气压回流,实现制动的释放。
通过以上工作原理,制动阀能够实现准确的制动力调节,从而保证车辆在制动过程中的稳定性和安全性。
制动阀的灵敏度和精度会直接影响到制动系统的性能,因此在设计和制造过程中需要严格控制每个零部件的质量和尺寸精度。
四回路保护阀工作原理

四回路保护阀工作原理
四回路保护阀是一种常用的液压控制元件,用于实现液压系统的过载保护。
它主要由一个主阀和几个辅助阀组成。
工作原理如下:
1. 主阀开启:当液压系统工作在额定压力范围内时,主阀处于关闭状态,液压油从系统进口流入主阀,并通过主阀流出。
2. 过载情况发生:当液压系统中的负载超过了设定的安全限制时,系统中的压力将升高。
当压力达到预设值时,主阀开始开启,允许液压油回流至油箱,从而减小系统内的压力。
3. 辅助阀作用:当主阀开启后,辅助阀会同时开启,它们与主阀并联,可以增加流量通道,以加快液压油回流的速度。
这样可以更快地降低系统压力,有效防止过载损坏。
4. 重置阀关闭:一旦系统压力恢复到安全范围内,主阀和辅助阀将关闭,液压系统恢复正常工作状态。
四回路保护阀的工作原理简单明了,通过监测和控制液压系统的压力,实现对系统的过载保护。
它可以有效防止液压系统因负载过大而损坏,提高系统的安全性和稳定性。
常用制动元件(制动阀、继动阀、调压阀、四回路保护阀等)工作原理简介

常用气制动元件工作原理简介装设在车辆上得所有各种制动系总称为制动装备。
任何制动系都具有四个基本组成部分:供能装置——包括供给、调节制动所需能量以及改善传能介质状态得各种部件。
其中产生制动能量得部分称为制动能源。
如空压机、人得肌体控制装置——包括产生制动动作与控制制动效果得各种部件。
如制动踏板机构,制动阀。
传动装置——包括将制动能量传输到制动器得各个部件,如制动总泵、制动轮缸制动器——产生阻碍车辆得运动或运动趋势得力(制动力)得部件,其中也包括辅助制动系中得缓速装置。
较为完善得制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。
制动系还可按照制动能源来分类:以驾驶员得肌体作为唯一制动能源得制动系称为人力制动系;完全靠由发动机得动力转化而成得气压或液压形式得势能进行制动得则就是动力制动系。
其制动能源可以就是发动机驱动得空气压缩机或油泵。
兼用人力与发动机动力进行制动得制动系称为伺服制动系,如真空助力。
按照制动能量得传输方式,制动系又可分为机械式、液压式、气压式与电磁式等,我厂现有车型主要采用液压制动与气压制动两种传输方式。
液压制动式结构简单,主要用于490发动机以下小型工程车与平板车上,气压制动结构复杂,用于中型及以上车型。
下面只讨论一下我厂最常用得动力制动系中得气压制动。
气压制动系就是发展最早得一种动力制动系,也就是我厂现在最主要采用得制动形式。
图为气压双回路气压制动系示意图:由发动机驱动得双缸活塞式空气压缩机将压缩空气经调压阀首先输入湿储气筒,压缩空气在湿储气筒内冷却并进行油水分离之后,再经过四回路保护阀,分别进入前桥储气筒、后桥储气筒与驻车储气筒,将气路分成三个回路;前、后储气筒分别与制动阀得上、下两腔相连,当驾驶员踩下踏板时,前筒气体通过制动阀上腔经快放阀到达前桥制动气室,实现前桥制动;后储气筒气体通过制动阀下腔,打开继动阀控制口,使后储气筒压缩空气直接经继动阀进入后桥制动气室,实现后桥制动;驻车储气筒与手控阀相连,在正常行车状态,驻车储气筒与手控阀与弹簧气室处于常通状态,当车辆停止时,将手刹手柄达到停车位置,阻断气源,弹簧气室内得压缩空气通过快放阀排入大气,实现驻车制动。
制动阀的作用原理

制动阀的作用原理制动阀是汽车制动系统中的重要组成部分,它的作用是控制制动系统的压力,使车辆能够稳定地制动。
下面我将详细介绍制动阀的作用原理。
制动阀的作用原理主要涉及到制动液的压力传递和控制。
制动液是一种特殊的液体,它能够在高压下传递力量,并且具有一定的粘度和稳定性。
制动液通过制动阀传递到制动器上,从而实现制动的目的。
制动阀通常由主缸、分泵、分配阀和减压阀等组成。
主缸是制动系统的核心部件,它通过踏板的踩踏力量将力量传递给制动液。
当踏板被踩下时,主缸内的活塞会向前移动,从而增加制动液的压力。
这时,制动液会通过分泵进入制动阀。
分泵是制动阀的一个重要组成部分,它的作用是将主缸传递过来的制动液分配到各个制动器上。
分泵通常由一个或多个活塞组成,当制动液进入分泵时,活塞会受到压力的作用而向前移动,从而将制动液分配到各个制动器上。
分配阀是制动阀的另一个重要组成部分,它的作用是控制制动液的流向。
分配阀通常由一个或多个阀芯组成,当制动液进入分配阀时,阀芯会根据制动系统的需求来控制制动液的流向。
例如,当需要制动时,阀芯会将制动液引导到制动器上,从而实现制动的目的。
减压阀是制动阀的最后一个重要组成部分,它的作用是控制制动液的压力。
减压阀通常由一个或多个弹簧和阀芯组成,当制动液的压力超过一定值时,阀芯会受到压力的作用而向下移动,从而减小制动液的压力。
这样可以保证制动系统的压力在一个安全范围内,避免制动过程中产生过大的压力。
综上所述,制动阀的作用原理主要涉及到制动液的压力传递和控制。
通过主缸、分泵、分配阀和减压阀等组成部分的协调工作,制动阀能够将制动液的压力传递到制动器上,从而实现车辆的制动。
制动阀的作用原理对于保证车辆的制动安全和稳定性非常重要,因此在汽车制动系统中起着至关重要的作用。
制动阀的工作原理

制动阀的工作原理
制动阀是汽车制动系统中的一个重要部件,它的主要功能是控制制动器的开关状态,从而实现车辆制动过程的控制。
制动阀的工作原理如下:
1. 压力调节:制动阀通过调节液压系统中的压力来控制制动器的工作状态。
当驾驶员踩下制动踏板时,制动阀会感知到压力的变化,并相应地调节系统中的液压压力。
2. 液压传递:制动阀将来自制动踏板的力通过液压传递到制动器上,使制动器产生所需的制动力。
制动阀内部包含有压力传感器和液压阀门,能够准确地感知和调节液压系统中的压力。
3. 控制制动力分配:制动阀能够根据车辆的制动需求,合理分配制动力到各个车轮。
例如,在紧急制动情况下,制动阀会通过调节液压系统中不同回路的液压压力,使各个车轮的制动力分配更均衡,提高制动效果。
4. 制动力释放:当驾驶员松开制动踏板时,制动阀能够快速释放液压系统中的压力,使制动器迅速解除制动状态,车辆恢复正常行驶。
总的来说,制动阀通过感知和调节液压系统中的压力,控制制动器的工作状态和制动力的分配,从而实现车辆的制动控制。
它是汽车制动系统中不可或缺的一个重要组成部分。
制动阀原理

制动阀原理
制动阀是一种常见的液压控制元件,广泛应用于工程机械、农业机械、汽车等
领域。
它的主要作用是控制液压系统中液压缸或液压马达的运动速度和方向,从而实现对机械设备的制动和控制。
那么,制动阀的原理是怎样的呢?
首先,制动阀的工作原理与液压传动系统的工作原理密切相关。
液压传动系统
是利用液体的流动和压力传递能量的一种动力传动系统,它由液压泵、液压阀、液压缸(马达)等组成。
在液压传动系统中,液压泵会产生液压能,通过液压管路输送给液压执行元件(液压缸或液压马达),从而驱动机械设备运动。
制动阀作为液压系统中的控制元件,主要通过控制液压油的流动和压力来实现
对液压缸或液压马达的控制。
在液压系统中,制动阀通常包括节流阀、溢流阀、换向阀等。
其中,节流阀通过调节液压油的流量来控制液压缸或液压马达的运动速度;溢流阀则通过调节液压油的压力来控制液压系统的工作压力;换向阀则通过改变液压油的流向来实现液压缸或液压马达的正反转。
在液压系统中,制动阀起着重要的作用。
它不仅可以实现对液压系统的控制,
还可以实现对机械设备的制动和调速。
比如,在液压制动系统中,制动阀可以通过控制液压缸的运动速度和力度来实现对机械设备的制动;在液压调速系统中,制动阀可以通过控制液压马达的转速和扭矩来实现对机械设备的调速。
总之,制动阀的原理是基于液压传动系统的工作原理,通过控制液压油的流动
和压力来实现对液压缸或液压马达的控制。
它在液压系统中起着重要的作用,不仅可以实现对液压系统的控制,还可以实现对机械设备的制动和调速。
因此,对制动阀的原理和工作原理有深入的了解,对于液压系统的设计和维护具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用气制动元件工作原理简介装设在车辆上的所有各种制动系总称为制动装备。
任何制动系都具有四个基本组成部分:供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。
其中产生制动能量的部分称为制动能源。
如空压机、人的肌体控制装置——包括产生制动动作和控制制动效果的各种部件。
如制动踏板机构,制动阀。
传动装置——包括将制动能量传输到制动器的各个部件,如制动总泵、制动轮缸制动器——产生阻碍车辆的运动或运动趋势的力(制动力)的部件,其中也包括辅助制动系中的缓速装置。
较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。
制动系还可按照制动能源来分类:以驾驶员的肌体作为唯一制动能源的制动系称为人力制动系;完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的则是动力制动系。
其制动能源可以是发动机驱动的空气压缩机或油泵。
兼用人力和发动机动力进行制动的制动系称为伺服制动系,如真空助力。
按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁式等,我厂现有车型主要采用液压制动和气压制动两种传输方式。
液压制动式结构简单,主要用于490发动机以下小型工程车和平板车上,气压制动结构复杂,用于中型及以上车型。
下面只讨论一下我厂最常用的动力制动系中的气压制动。
气压制动系是发展最早的一种动力制动系,也是我厂现在最主要采用的制动形式。
图为气压双回路气压制动系示意图:由发动机驱动的双缸活塞式空气压缩机将压缩空气经调压阀首先输入湿储气筒,压缩空气在湿储气筒内冷却并进行油水分离之后,再经过四回路保护阀,分别进入前桥储气筒、后桥储气筒和驻车储气筒,将气路分成三个回路;前、后储气筒分别与制动阀的上、下两腔相连,当驾驶员踩下踏板时,前筒气体通过制动阀上腔经快放阀到达前桥制动气室,实现前桥制动;后储气筒气体通过制动阀下腔,打开继动阀控制口,使后储气筒压缩空气直接经继动阀进入后桥制动气室,实现后桥制动;驻车储气筒与手控阀相连,在正常行车状态,驻车储气筒与手控阀和弹簧气室处于常通状态,当车辆停止时,将手刹手柄达到停车位置,阻断气源,弹簧气室内的压缩空气通过快放阀排入大气,实现驻车制动。
下面分别简单介绍一下各气制动元件的作用和工作原理:一、调压阀调压阀的作用:能自动调节制动系统的工作压力,防止气路过载,即压力过载保护,去除水、油等污染物,并能向轮胎充气。
调压阀工作原理示意图:技术参数:使用温度范围环境温度:-40~+100°C介质(空气)温度:-40~+150°C切断压力:810±20KPa(我厂现用)压力调节范围:60400 KPa安全阀开启压力(集成式):1.2~1.3Mpa调压阀工作原理:空压机输出的压缩空气从1口进入A腔经由滤清器9,单向阀门6从21口输出,同时一部分压缩空气到达B腔。
当B腔压力达到810±20Kpa时,膜片总成4克服弹簧3的预压力而上移,阀门5打开,气压推动活塞10下移,打开排气门11,气流经排气门11从3口排出,空压机卸荷。
当21口的压力下降了60±070KPa时,由于B腔压力下降,膜片总成4下移,将阀门5关闭,活塞10上移将排气门11关闭,空压机恢复向系统供气。
当系统压力过载时,调压阀内部的集成安全阀门11打开,从而实现过载保护。
向轮胎充气时,拔下保护盖,接上轮胎充气装置,此时附加阀杆7向左移动,阀门8将21口隔开,贮气筒处于被隔开状态,安全阀仍起作用。
二、四回路保护阀双回路制动系统中,来自空压机的压缩空气可经四回路压力保护阀分别向各回路的储气筒充气,四个出气口各自独立,当有一回路损坏漏气时,压力保护阀能保证其余完好回路不会再漏,还能正常进行相关操作,四回路保护阀的每个回路开启压力可以根据需要由生产厂家调定,为使用安全,四回路阀的调整螺钉不能随意调整。
基本开启压力顺序一般为:21口—22口—24口—23口,一般情况21、22口接前后桥行车制动,24口接辅助制动或其他辅助气路,23口接驻车制动气路,这样就使得在系统气压达不到要求时,不能起步,保证车辆起步行车安全。
四回路保护阀的结构原理示意图:四回路保护阀的工作原理:四回路保护阀具有四个单向阀单元,气压从1口进入,同时到达A、D腔和B、C腔。
当达到阀门开启压力时,阀门2,3,5,6被打开,压缩空气经21,22,23,24口输送到贮气筒。
当某一回路例如21回路失效时,由于阀门3,5,6的单向作用,保证22,23,24回路的气压不致经21口泄漏掉,从1口来的气压将阀门3,5和6打开可以继续向22,23,24回路供气,只有当充气气压达到或超过阀门2的开启压力时,气压才从损坏的回路21中泄露,而尚未失效的其它回路中的压力仍得到保证。
三、快放阀和继动阀储气筒和制动气室二者之间一般只通过制动阀用管路连接的话,储气筒向制动气室以及制动气室内压缩空气排入大气,都必须迂回流经制动阀。
在储气筒、制动气室都与制动阀相距较远的情况下,这种迂回充气和排气将导致制动和解除制动的滞后时间过长,不利于汽车的及时制动和制动过后的及时加速。
因此在制动阀和制动气室的管路上靠近制动气室处,设置快放阀或继动阀,可以保证解除制动时制动气室迅速排气。
快放阀的作用:可以迅速地将制动气室中的压缩空气排入大气,以便迅速解除制动。
快放阀结构原理示意图:气路中没有压力时,阀片a在本身弹力的作用下,使进气口和排气口处于关闭状态。
制动时,压缩空气从1口进入,将阀片a紧压在排气口上,气流经A腔从2口进入制动气室。
解除制动时,1口压力下降阀片a在气室压力作用下,关闭进气口,气室压力从2口进入3口迅速排入大气。
继动阀的作用:继动阀用来缩短操纵气路中的制动反应时间和解除制动时间,起加速及快放的作用。
继动阀的结构原理示意图:汽车正常行驶时,从贮气筒来的压缩空气从1口进入,使进气阀门5关闭,排气阀门6开启,与制动分气室相连的输出口2通大气。
当制动时,从制动阀来的压缩空气作为制动阀的控制压力从4口进入A腔,使活塞7连同芯管下行关闭排气阀门6,继而打开进气阀门5,于是压缩空气便由储气筒直接通过进气口1和出气口2充入制动分气室,而毋需流经制动阀。
这样大大缩短了制动气室的充气管路,加速了气室充气过程。
在达到平衡时,进、排气阀门同时关闭。
当解除制动时,A腔气压为零,活塞7上升,排气阀门6打开,进气阀门5关闭,制动分气室压缩空气经2口、排气阀门6和排气口3迅速排入大气,起快放作用。
2口和双通单向阀相连接,防止行车与驻车制动系统同时操作,组合式储能弹簧气室中力的重叠,从而避免机械传递元件超负荷。
四、制动阀制动阀的作用:制动阀作为气压行车制动系的主要控制装置,用以起随动作用并保证有足够强的踏板感,即在输入压力一定的情况下,使其输出压力与输入的控制信号——踏板行程和踏板成一定的递增函数关系。
其输出压力的变化在一定范围内应足够精微,(即变化应是渐近的)。
制动阀输出压力可以作为促动管路压力直接输入作为传动装置的制动气室,但也可作为控制信号输入另一控制装置(如继动阀),制动阀在双回路主制动系统的制动过程中和释放过程中实现灵敏的随动控制。
制动阀的结构原理示意图:制动时,在顶杆座a施加制动力,推动活塞c下移,关闭排气门d,打开进气门j,从11口来的压缩空气到达A腔,随后从21口输出到制动管路Ⅰ。
同时气流经孔D到达B腔,作用在活塞f上,使活塞f下行,关闭排气门h,打开进气门g,由12口来的压缩空气到达c腔,从22口输送到制动管路Ⅱ。
解除制动时,21、22口的气压分别经排气门d和h从排气口3排向大气。
当第一回路失效时,阀门总成e推动活塞f向下移动,关闭排气门h,打开进气门g,使第二回路正常工作。
当第二回路失效时,不影响第一回路正常工作。
第一回路相对第二回路压力越前δP=30+10-20KPa。
制动阀之所以能起到随动作用,保证制动的渐近性,主要是因为推杆与芯管之间是依靠平衡弹簧来传力的,而平衡弹簧的工作长度和作用力则随自制动阀到制动气室的促动管路压力而变化。
故只要自踏板传到推杆的力大于平衡弹簧预紧力,不论踏板停留在哪一个工作位置,制动阀都能自动达到并保持以进气阀和排气阀二者都关闭为特征的平衡状态。
这也是现有的各种动力制动系和私服制动系中的控制阀等随动装置的基本工作原理。
五、手制动阀手制动阀用于具有弹簧制动的牵引车的紧急制动和停车制动,如断气刹车型。
在行车位置或停车位置之间,操纵手柄能自动回到行车位置,处于停车位置时能够锁止。
示意图:当手柄处于0~10°时进气阀门A全开,排气阀门B关闭,气压从1口进,从2口输出,整个牵引车处于完全解除制动状态;当手柄处于10°~55°时,在平衡活塞b和平衡弹簧g 的作用下,2口压力P2随手柄转角的增加而呈线性下降至零;当手柄处在紧急制动止推点时,整个牵引车处于完全制动状态。
当手柄处在73°时手柄被锁止,整个牵引车完全处于全制动状态。
六、双通单向阀双通单向阀的作用:是以两个气源交替向一个气源充气,或者两个不同的操纵元件,交替操纵一个气压元件。
双通单向阀的工作原理示意图:当气压从输入口11进入时,活塞a将输入口12关闭,气压从输出口2输出。
当气压从12口进入时,活塞a被气压推向左面,将11口关闭,气压从2口输出。
七、制动气室单就气压系统而言,制动气室是执行装置,其作用是将输入的气压能转换成机械能而输出。
但从整个制动系看来,制动气室还是属于传动装置,其输出的机械能还要传到制动凸轮之类的促动装置,使制动器产生制动力矩。
踩下制动踏板时,压缩空气自制动阀充入制动气室工作腔,使膜片向右拱,将推杆推出,使制动调整臂和制动凸轮转动实现制动。
放开制动踏板,工作腔则经由快放阀的排气口通大气。
膜片与推杆都在弹簧4作用下回位而解除制动。
储能弹簧制动气室用于为车轮提供制动力,它由两部分组成,膜片制动部分用于行车制动,弹簧制动部分用于辅助制动和驻车制动,而弹簧制动部分与膜片制动部分是完全独立工作的。
在汽车起步之前,应将手控制动阀的操纵杆扳回解除制动位置,使压缩空气自驻车制动储气罐充入驻车制动气室Ⅱ,压缩储能弹簧f,使驻车制动活塞e回到不制动位置,同时行车制动活塞a也在回位弹簧c的作用下回位。
此时驻车制动解除,汽车方能起步。
如果储气罐气压未达到最小安全值,一般起步气压400KPa,则不可能压缩储能弹簧,因而汽车也不可能起步。
这是利用储能弹簧施行驻车制动的主要优点。
单独施行行车制动时,踩下制动踏板,既有压缩空气自后储气筒经通气口11充入行车制动气室Ⅰ腔,将行车制动活塞a推到制动位置,而驻车制动仍保持在不制动位置。
在行车制动系失效情况下,如果行车遇险需要紧急制动,可急扳手控制动阀操纵杆,使驻车制动气室放气,储能弹簧便立即伸张而将两个活塞都推到制动位置。