初中数学图形的旋转
【最新浙教版初中】初三九年级数学上册:3.2《图形的旋转》ppt课件

13.(12 分)如图,在方格纸中,△ABC 的三个顶点和点 P 都在小方格的顶点 上.按要求画一个三角形,使它的顶点在方格的顶点上. (1)将△ABC 平移,使点 P 落在平移后的三角形内部,在图甲中画出示意图; (2)以点 C 为旋转中心,将△ABC 旋转,使点 P 落在旋转后的三角形内部, 在图乙中画出示意图.
解:(1)
(2)
14.(14分)在数学活动课中,小辉将边长为和3的两个正方形放置 在直线l上,如图①,他连结AD,CF,经测量发现AD=CF. (1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图②,试判 断AD与CF还相等吗?说明你的理由; (2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如 图③,请你求出CF的长.
第4题图
第5题图
6.(4分)如图,在直角△OAB中,∠AOB=30°,将△AOB绕 点 O 逆时针方向旋转 100 °得到△ OA 1 B 1 , 则∠ A 1 OB 的度数为 ____ 70 °.
7.(4分)如图,Rt△ABC的斜边AB=16,Rt△ABC绕点O顺时
针旋转后得到Rt△A′B′C′,则Rt△A′B′C′的斜边A′B′上的中线C′D 的长度为____. 8
3.2 图形的旋 转
1.(4分)把下列各英文字母旋转180°后,仍是原来英文字母的 是( D) V H L Z W B I ① ② ③ ④ ⑤ ⑥ ⑦ A.②④⑤⑦ B.②③⑦ C.①③⑤⑦ D.②④⑦ 2.(4分)有下列四个说法,其中正确的有 ( C ) ①图形旋转时,位置保持不变的点只有旋转中心; ②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同 的角度; ③图形旋转时,对应点与旋转中心的距离相等; ④图形旋转时,对应线段相等,对应角相等,图形的形状和大 小都没有发生变化. A.1个 B.2个 C.3个 D.4个
初中数学专题复习:旋转(类型全面)

旋转旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度成为与原来相等的图形,这样的图形运动叫做图形的旋转,这个定点叫做旋转中心,图形转动的角叫做旋转角.旋转特征:图形旋转时,图形中的每一点旋转的角都相等,都等于图形的旋转角。
(一)正三角形类型在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转600,使得AB与AC重合。
经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP'CP中,此时ΔP'AP也为正三角形。
例1. 如图:(1-1):设P是等边ΔABC内的一点,PA=3,PB=4,PC=5,∠APB的度数是________.(二)正方形类型在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转900,使得BA与BC重合。
经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中的ΔCPP'中,此时ΔBPP'为等腰直角三角形。
例2. 如图(2-1):P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。
求此正方形ABCD面积。
(三)等腰直角三角形类型在等腰直角三角形ΔABC中,∠C=90°, P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转900,使得AC与BC重合。
经过这样旋转变化,在图(3-1-b)中的一个ΔP'CP为等腰直角三角形。
例3.如图,在ΔABC中,∠ACB =900,BC=AC,P为ΔABC内一点,且PA=3,PB=1,PC=2。
求∠BPC的度数。
旋转实际上是一种全等变换,由于具有可操作性,因而是考查同学们动手能力、观察能力的好素材,也就成了近几年中考试题中频繁出现的内容。
题型多以填空题、计算题呈现。
在解答此类问题时,我们通常将其转换成全等求解。
根据变换的特征,找到对应的全等形,通过线段、角的转换达到求解的目的。
初中数学旋转的知识点归纳总结

初中数学旋转的知识点归纳总结
初中数学旋转的知识点归纳总结
旋转章节的要求是让学生经历观察、操作等过程了解旋转的概念,探索旋转的性质,进一步发展空间观察。
那么接下来的旋转内容请同学们认真记忆了。
旋转知识概念
1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。
这个定点叫做旋转中心,转动的角度叫做旋转角。
(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的.位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。
)
2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。
3.中心对称图形与中心对称:
中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。
中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。
4.中心对称的性质:
关于中心对称的两个图形是全等形。
关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。
全国初中数学优质课一等奖《图形的旋转》教学设计

23.1图形的旋转一、设计理念数学教学是数学活动的教学,是师生之间、学生之间,交流互动与共同发展的过程.在教学中应力求从学生实际出发,创设有助于学生自主学习的情境,引导学生通过实践、探索、交流,获得知识,形成技能,发展思维,学会学习.二、教材分析1. 教材的内容、地位与作用《图形的旋转》选自人教版义务教育标课程标准实验教科书九年级上册第二十三章第一课时。
内容主要是研究旋转的有关概念,旋转性质及应用旋转解决有关问题.旋转变换是继平移变换、轴对称变换之后的另外一种全等变换,它既是全等知识的深化,又是学习中心对称的基础,在教材中起着承上启下的作用.在有关旋转的动态几何问题中,蕴含着重要的转化思想.同时,旋转在生活中应用也十分广泛,利用旋转可以帮我们解决许多生活中的问题.2.教学重点、难点教学重点:理解图形旋转有关概念,通过合作探究得出旋转的性质及应用.教学难点:旋转性质探究及灵活应用.3.目标分析知识技能:由生活中广泛存在的旋转现象,让学生感受旋转;在合作探究中归纳旋转的性质.数学思考:在图形旋转的过程中,理解旋转概念,体会旋转特性;解决问题:学生能根据自己的操作,画出旋转前、后的图形,归纳出旋转性质,利用旋转,转化图形,解决问题;情感态度:感受旋转与生活的紧密联系,体会数学的应用价值.三、教法学法分析九年级学生具有一定的数学基础和思维能力. 因此我借助多媒体辅助教学,分散教学难点.以学生活动为主线,引导学生在观察、操作、合作、交流等具体过程中突破本节课的难点,理解图形旋转的形成过程及归纳旋转的性质.在学习活动中,尽量让每一位学生积极参与,最终让他们学会学习.本节课主要采用实验探索法,利用实验探究,突破重难点,并设置了“感受旋转---认识旋转—探索旋转—应用旋转—内化旋转”五个环节来展开教学.本着学生已有经验,以学生熟悉的游戏为出发点,利用多媒体创设情境,引导学生观察、理解旋转有关概念,体会旋转三要素.以通俗易懂,简单活泼的风格呈现教学内容,利用自制教具引导学生在动手操作、合作交流中探究问题.四、教学程序环节名称具体内容与呈现形式学生行为预设教师行为预设设计意图(一)感受旋转屏幕上显示学生熟悉的“俄罗斯方块”游戏,设置关卡,学生在寻求解决方法情景中自然引入“旋转”.引入课题《23.1图形的旋转》.学生观看屏幕演示游戏,回答问题.估计学生凭借自己已有经验,可以考虑到平移,旋转.教师播放课件,提出问题:同学们都玩过这个游戏吗?要怎样消掉下面三行小方块呢?那这个要怎么办呢?(第二个)然后引入课题.用游戏的方式迅速集中学生的注意力,使学生明确本节课的学习内容,自然进入到新课程中来.(二) 认识旋转1.实际上,现实生活中,旋转现象随处可见,都有哪些物体的运动属于旋转呢?2.如果把钟表时针、电扇的叶片看成一个平面图形,那么这些图形的运动有什么特点?能描述一下什么是旋转吗?3.以三角形的旋转为例,设置旋转概念有关的问题学生举出生活中旋转实例.估计绝大多数的学生都可以答出图形都绕某一定点转动,也可能答出顺时针方向,角度教师要求学生举出生活中常见旋转的例子,学生在举例中初步感受旋转.接着教师请学生看屏幕,演示生活中常见的旋转:①钟表指针的转通过生活中旋转现象的举例,让学生初步认识旋转.从学生熟悉的生活经验入如图,在硬纸板上,挖一个三角形洞,再挖一个小洞O 作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形洞(△ABC ),然后围绕O 转动硬纸板,再描出这个挖掉的三角形洞(△A'B'C'),移开硬纸板.A BCA′B′C′O试探究:线段OA 和OA′有什么关系?∠AOA′与∠BOB′有什么关系?△ABC 与△A'B'C'的形状和大小有什么关系?1.如图将△AOB 绕点O 逆时针旋转80°得到△COD ,若∠A 的度数为110°,∠D 的度数为40°,则∠α的度数是()A.60°B.50°C.40°D.30°ABOCDαB2.如图,在等腰直角三角形ABC 中,∠B=90°,将△ABC 绕点A 顺时针方向旋转一个角度后得到△AB ′C ′,若∠BAC ′=15°,则旋转角等于()A.50°B.55°C.60°D.65°AB'C′B CC 3.如图,△ABC 是等腰直角三角形,BC 是斜边,P 为△ABC 内一点,将△ABP 绕点A 逆时针旋转后与△ACP′重合.(1)旋转角是哪个角?等于多少度?(2)线段AP 旋转到哪里?(3)如果AP=3,则线段PP′等于多少?ABP′PC(1)∠BAC 和∠PAP′=90°(2)AP′的位置.(3) 231.如图∠ADC=∠B=90°,DE ⊥AB ,E 为AB 上的一点,且AD=CD ,DE=5.请用旋转的方法求出四边形ABCD 的面积.FA BCDE2.如图是一个直角三角形的苗圃,由正方形花坛和两块直角三角形草皮组成,如果直角三角形的两条斜边长分别为3米和6米,你能求出草皮的面积吗?BCA DEF A′识体系,感悟数学思想方法.作业必做题: P60第5题和第8题选做题:如图,P 为正方形ABCD 内一点,PA=1,PB=2,PC=3,求∠APB 的度数.让每一次作业成为学生数学思维能力的成长点,深化认识、提高能力.板书设计板书设计力求简洁美观,重点突出.五、设计说明1.本节课体现“做数学”的特点,问题串设计得合理、有效,力求使教学条理清晰,学生活动充分,体现“数学·活动·思维”的理念.23.1图形的旋转一定义:把一个平面图形绕着平面内的某一个点转动一个角度,叫图形的旋转.二性质:(1)对应点与旋转中心的距离相等.(2)对应点与旋转中心所连线段的夹角等于旋转角.(3)旋转前、后的图形全等.ABCDE例题12.教学中,要努力营造自主探究的课堂氛围,让学生在亲身体验中“认识数学,学习数学”.归纳与演绎的有机结合,力求使教学张弛有度,在充分发展学生能力的同时实现方法的迁移.3.为了“达到面向全体,实现有差异的发展”,我们必须认真审视自己的教学.用好的问题来充实我们的课堂,发展学生的思维,让数学教学焕发出生命与活力.《图形的旋转》评课稿《图形的旋转》一课体现“以生为本”的教育理念。
新人教版初中数学九年级上册第23章《图形的旋转》教案

探究
二、自主
探究
1.旋转中心不变,改变旋转角
画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.
2.旋转角不变,改变旋转中心
画出以下图,四边形ABCD分别为O、O为中心,旋转角都为30 °的旋转图形.
3、图案设计:(1)、如下图是菊花一叶和中心与圆圈,现以O 为旋转中心画出分别旋转45°、90°、135°的菊花图案.
(2)、 如图,如果上面的菊花一叶,绕下面的点O′为旋转中心, 请同学画出图案,它还是原来的菊花吗?
选择不同的旋转中心、不同的旋转角来进行研究.
学生独立作图,两名同学上台展示。
画完之后相互批改、评价。
从画图中,师生共同归纳出:旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.
(3)旋转前、后的图形全等.
根据图形思考老师所给的问题,然后分组讨论,教师参与讨论交流,最后一组推荐一人上台回答结论
1.OA=OA′,OB=OB′,OC=OC′
2.∠AOA′=∠BOB′=∠COC′
3.△ABC和△A′B′C′形状相同和大小相等,即全等.
综合以上的实验操作,师生共同归纳出旋转的性质。
(5)由平面图形转动而产生的奇妙图案。
2、提出问题:
这些情境中的转动现象,有什么共同特征?
用课件展示图片并显示现实生活中部分物体的旋转现象
学生观察图片
学生思考,归纳它们的共同特征。
让学生再举一些类似的例子
通过这些画面的展示让学生切身感受到我们身边除了平移、轴对称变换等图形变换之外,生产、生活中广泛存在着转动现象,从而产生对这种变换进一步探究的强烈欲望,为本节课探究问题作好铺垫。
初中数学旋转的六大模型,初中几何旋转经典例题

初中数学旋转的六大模型,初中几何旋转经典例题标题:初中数学旋转的六创作者,初中几何旋转经典例题在初中的数学学习中,旋转是一个重要的概念,它不仅在几何学中占据着核心地位,还在代数学、统计学等其他领域有着广泛的应用。
本文将详细介绍初中数学旋转的六创作者,并通过经典例题来深化理解。
旋转是指一个图形绕着某一点转动一定的角度。
在这个过程中,图形上任意一点所经过的路径形成一个圆,这个圆叫做旋转圆,点叫做旋转中心。
旋转的角度一般用角度或者弧度来表示。
中心对称旋转:图形以旋转中心为对称中心,旋转角度为偶数倍的180度。
绕固定点旋转:图形围绕一个固定点旋转,这个固定点称为旋转中心。
旋转对称图形:图形可以通过旋转得到,这种图形称为旋转对称图形。
旋转角相等:如果两个图形可以通过旋转互相得到,那么它们的旋转角必然相等。
旋转角互补:如果两个图形的一条边和另一条边的延长线组成一个平角,那么这两个图形的旋转角互补。
旋转改变形状:旋转可以改变图形的形状,但不会改变图形的面积。
例1:在正方形ABCD中,E是BC的中点,F是AC上一点,且CF=2AF。
求证:EF平分∠AEB。
证明:我们可以通过旋转证明。
把△ABE绕B点按逆时针方向旋转60°,得到△CBG,则BG//AE,所以∠FGB=∠FEA。
因为CF=2AF,所以FG=2FE。
所以可以得出∠FEB=∠FGB+∠GBF=∠FEA+∠AEB+∠ABE=∠FEA+∠AEB+∠EAB=180°即∠FEA+∠AEB=180°-∠EAB=∠BEF所以∠BEF = ∠FEA即 EF平分∠AEB。
例2:在Rt△ABC中,∠C=90°,D是AB的中点,E、F分别在AC和BC上,且DE⊥DF。
求证:EF^2=AE^2+BF^2。
证明:把Rt△ABC绕D点按顺时针方向旋转90°得到Rt△AB’C’,则可知:△ABC≌△AB’C’,所以可知DE=DF,因为DE⊥DF,所以可知四边形DECF’是正方形。
九年级数学第9讲 图形的旋转_教案

教学过程一、课堂导入请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.二、复习预习图形的平移:把一个图形沿着某一直线方向移动,会得到一个新的图形,新图形与原图形的形状,大小完全相同。
图形的这种移动,叫做平移。
轴对称:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线就是它的对称轴。
同轴对称、平移一样,图形的旋转也是一种常见的图形变换,从以下几个方面可全面把握图形的旋转。
三、知识讲解考点1图形的旋转(1)定义:在平面内,将一个圆形绕一个定点沿某个方向(顺时针或逆时针)转动一个角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,转动的角称为旋转角。
(2)生活中的旋转现象大致有两大类:一类是物体的旋转运动,如时钟的时针、分针、秒针的转动,风车的转动等;另一类则是由某一基本图形通过旋转而形成的图案,如香港特别行政区区旗上的紫荆花图案。
(3)图形的旋转不改变图形的大小和形状,旋转是由旋转中心和旋转角所决定,旋转中心可以在图形上也可以在图形外。
(4)会找对应点,对应线段和对应角。
考点2旋转的基本特征(1)图形在旋转时,图形中的每一个点都绕旋转中心旋转了同样大小的角度。
(2)图形在旋转时,对应点到旋转中心的距离相等,对应线段相等,对应角相等;(3)图形在旋转时,图形的大小和形状都没有发生改变。
几点说明:(1)在理解旋转特征时,首先要对照图形,找出旋转中心、旋转方向、对应点、旋转角。
(2)旋转的角度是对应线段的夹角或对应顶点与旋转中心连线的夹角。
(3)旋转中心的确定分两种情况,即在图形上或在图形外,若在图形上,哪一点旋转过程中位置没有改变,哪一点就是旋转中心;若在图形外,对应点连线的垂直平分线的交点就是旋转中心。
2023年人教版初中九年级数学图形的旋转(精华版教案三)

2023年人教版初中九年级数学图形的旋转(精华版教案三)教材分析:图形的旋转是在学习了图形的两种变换——轴对称和平移的基础上,进一步学习的一种图形基本变换,是将来进一步研究图形全等及其有关性质的基础。
本课通过多媒体课件展示实际生活中经常看到的一些图形旋转现象,给出图形旋转的大致形象,然后引导学生探索研究平面图形的旋转变换。
通过学生的自主探索、合作研究、交流体会,培养学生的观察能力、图形辨析能力和探索学习的能力。
教学目标:1、通过多媒体课件展示实际生活中经常看到的一些图形旋转现象和学生自己动手操作观察认识旋转,探索它的基本性质。
2、在发现、探究的过程中,完成对旋转这一图形变化从直观到抽象、从感性认识到理性认识的转变,发展学生直观想象能力,分析、归纳、抽象概括的思维能力。
3、学生在经历了实验探究、知识应用以及知识内化等数学活动中,体验数学的具体、生动、灵活,调动学生学习数学的主动性。
教学重点:归纳图形旋转的特征,并能根据这些特征绘制旋转后的几何图形。
教学难点:对图形进行旋转变换。
教学方式:按照学生认知规律,遵循以“学生为主体,教师为主导,数学活动为主线”的指导思想,采用以实验观察法为主,直观演示法为辅的教学方法。
教学资源准备:教师准备多媒体课件(开拓学生视野,激发学生学习兴趣)、课堂练习题、课堂达标测试题。
学生准备硬纸板、剪刀(训练学生的动手能力)。
教学过程:一、创设情境,导入新课问题:1.观察实例(课件展示)。
①钟表的指针在不停地旋转,从3点到5点,时针转动了多少度?②风车风轮的每个叶片在风的吹动下转动到新的位置。
这些现象有哪些共同特点?教师应关注:(1)学生观察实例的角度;(2)在学生发现实例现象的共同特点后,要求学生试着描述出旋转的定义。
归纳定义:把一个图形绕着某一点O 转动一个角度的图形变换叫做旋转.点O 叫做旋转中心,转动的角叫做旋转角。
(设计意图:旋转是属于动态的问题,对于运动的图形学生在学习掌握上会存在一定的困难。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习3: 下列图形中,哪些是一个长方形由 另一个长方形绕中心按顺时针方向 旋转90°后形成的?
1
2
3
4
性质运用3:
性质运用3:
课本P76 练习2
拓展应用1:
如图,△ABC是等边三角形,D是BC上一
点,△ABD经过旋转后到达△ACD’的位置。
A
(1)旋转中心是哪一点?
M
M'
(2)旋转了多少度?
D'
B
D
C
(3)如果M是AB的中点,那么经过上 述旋转后,点M转到了什么位置?
拓展应用2:
香港特别行政区区旗中央的紫 荆花图案由5个相同的花瓣组成, 它是由其中一瓣经过几次旋转得 到的?
拓展应用3:
如图:画出AB绕点O旋转后,线段AB的对 应线段是A′B′,试确定旋转中心点O的位置.
1.旋转中心与对应点满
A E D B
C
如图,是△AOB绕点O按逆时 针方向旋转450所得的。
B'
O 旋转中心是点______
A' D' B
450 旋转的角度是 ______
A D
O
旋转角为
下图是由正方形ABCD逆时针旋转而成。
C C' D B' B A
点A (1)旋转中心是__________
0 45 (2) 旋转的角度是_________
⑤钟摆的运动; A.2 B.3 ⑥荡秋千. C.4 D.5
你能说一说风车、摩天轮、时钟的运 动有什么共同特征吗?
它们都可以进行这样的运动
将一块三角尺ABC绕点C按逆时针方向 旋转到另一个位置,得△DEC. B
C
A
观察概括
在平面内,将一个图形绕一个定点 旋转一定的角度,这样的图形运动称为 图形的旋转,这个定点称为旋转中心, ∠BCD、 ∠ACE称为旋转角.
足什么样的关系?
2.你能找出到A、A′
B A′
A B′
O
两点距离相等的点吗? 你能找出到B、B′两 点距离相等的点吗?
3.你能找出同时满足上
面两个条件的点吗?
图形的旋转有三要素:
一、旋转中心 二、旋转方向 三、旋转角
下列现象中属于旋转的有(
) 个.
①地下水位逐年下降;②传送带的运动;
③方向盘的转动; ④水龙头开关的动;
D'
(3) 若正方形的边长是1, 则C’D=_________
旋转前、后的图形全等。
对应点到旋转中心的距离相等。
每一对对应点与旋转中心的连线 所成的角彼此相等。
1.已知线段AB和点O,画出AB绕点O逆时 针旋转100°后的图形。
⑴.连接OA
⑵.作∠AOC=100°,
D B' A'
C B
在OC上截取OA'=OA ⑶.连接OB ⑷.作∠BOD=100°, 在OD上截取OB'=OB
⑸.连接A’B’
线段A’B’就是线段AB绕点O按逆时针方向旋转 100°后的对应线段。 注:作旋转后的图形可以转化为作旋转后的对应点
O
A
练习1: 如图:将RtΔABCRtΔADE怎样旋转 就能重合?旋转了多少度?
D
A
E
B
C
练习2:
如图:有两个正方形ABCD和CDEF,点O为CD 的中点,要将正方形DEFC旋转到正方形 ABCD的位置,共有 个旋转中 心. D E