苏科版-数学-九年级上册-圆 教学学案(一)
九年级数学上圆教案苏科版

圆教学目标1、使学生理解弦、弧、弓形、同心圆、等圆、等孤的概念;初步会运用这些概念判断真假命题。
2、逐步培养学生阅读教材、亲自动手实践,总结出新概念的能力;进一步指导学生观察、比较、分析、概括知识的能力。
3、通过动手、动脑的全过程,调动学生主动学习的积极性,使学生从积极主动获得知识。
教学重点、难点和疑点1、重点:理解圆的有关概念.2、难点:对“等圆”、“等弧”的定义中的“互相重合”这一特征的理解.3、疑点:学生容易把长度相等的两条弧看成是等弧。
让学生阅读教材、理解、交流和与教师对话交流中排除疑难。
教学过程设计:(一)阅读、理解重点概念:1、弦:连结圆上任意两点的线段叫做弦.2、直径:经过圆心的弦是直径.3、圆弧:圆上任意两点间的部分叫做圆弧.简称弧.半圆弧:圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫做半圆;优弧:大于半圆的弧叫优弧;劣弧:小于半圆的弧叫做劣弧.4、弓形:由弦及其所对的弧组成的图形叫做弓形.5、同心圆:即圆心相同,半径不相等的两个圆叫做同心圆.6、等圆:能够重合的两个圆叫做等圆.7、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.(二)小组交流、师生对话问题:1、一个圆有多少条弦?最长的弦是什么?2、弧分为哪几种?怎样表示?3、弓形与弦有什么区别?在一个圆中一条弦能得到几个弓形?4、在等圆、等弧中,“互相重合”是什么含义?(通过问题,使学生与学生,学生与老师进行交流、学习,加深对概念的理解,排除疑难)(三)概念辨析:判断题目:(1)直径是弦()(2)弦是直径()(3)半圆是弧()(4)弧是半圆()(5)长度相等的两段弧是等弧()(6)等弧的长度相等()(7)两个劣弧之和等于半圆()(8)半径相等的两个半圆是等弧()(主要理解以下概念:(1)弦与直径;(2)弧与半圆;(3)同心圆、等圆指两个图形;(4)等圆、等弧是互相重合得到,等弧的条件作用.)(四)应用、练习例1、已知:如图,AB、CB为⊙O的两条弦,试写出图中的所有弧.解:一共有6条弧.、、、、、.(目的:让学生会表示弧,并加深理解优弧和劣弧的概念)例2、已知:如图,在⊙O中,AB、CD为直径.求证:AD∥BC.(由学生分析,学生写出证明过程,学生纠正存在问题.锻炼学生动口、动脑、动手实践能力,调动学生主动学习的积极性,使学生从积极主动获得知识.)巩固练习:教材P66练习中2题(学生自己完成).(五)小结教师引导学生自己做出总结:1、本节所学似的知识点;2、概念理解:①弦与直径;②弧与半圆;③同心圆、等圆指两个图形;④等圆和等弧.3、弧的表示方法.。
苏科版九年级数学上册《圆》教案

《圆》教案学习目标:1.知识目标:圆的概念;2.能力目标:会解答关于圆的基本题型.教学过程:一、知识点回顾(知识准备):前段时间我们学习了图形的旋转,图形的旋转创造了生活中的许多美! 我们知道:一条线段至少旋转_____°能和自身重合;一个等边三角形至少旋转_____°能和自身重合;正方形至少旋转_____°能和自身重合;思考:圆绕其圆心旋转任何度数都能和自身重合吗?圆的基本要素是_______和________,其中_______确定了圆的位置,_______确定了圆的大小.A 点绕B 点旋转一周,A 点的运动轨迹其实就是一个圆,其中点____是圆心.二、自学要求:阅读课本P 38—P 42圆的定义:1.在同一平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆.2.到定点O 的距离等于定长r 的所有的点组成的图形.(含义也是判断点在圆上的方法) 表示方法:“⊙O ”读作“圆O ”.构成元素:1.圆心、半径(直径).2.弦:连接圆上任意两点的线段叫做弦.直径是经过圆心的弦,是圆中最长的弦.3.优弧:大于半圆的弧;半圆弧:直径分成的两条弧;劣弧:小于半圆的弧.如图:优弧ABC 记作,半圆弧AB 记作,劣弧AC 记作. 4.同心圆:圆心相同,半径不同的两圆.5.等圆:能够重合的两个圆.6.等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.三、典型拓展例题:1.下列说法正确的是①直径是弦②弦是直径③半径是弦④半圆是弧,但弧不一定是半圆⑤半径相等的两个半圆是等弧⑥长度相等的两条弧是等弧⑦等弧的长度相等2.如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知∠的度数.AB2DE=,∠OCD=40°,求AOC3.求证:圆的直径是圆中最长的弦.。
2019-2020学年九年级数学上册 2.1 圆学案(1)(新版)苏科版.doc

2019-2020学年九年级数学上册 2.1 圆学案(1)(新版)苏科版学习目标:1.理解圆的定义(圆的描述概念和圆的集合概念);2.掌握点和圆的三种位置关系;3.会利用点到圆心的距离和圆的半径之间的数量关系判定点和圆的位置关系;4.初步会运用圆的定义证明四个点在同一个圆上.学习重、难点:确定点和圆的三种位置关系以及圆的集合概念的理解;点和圆的三种位置关系的理解和应用.学习过程:一、问题导入圆的描述定义:把一条线段OP的一个端点O固定,线段OP绕点O在平面内旋转一周,另一个端点P所形成的图形叫做_______.其中,定点O叫_______,线段OP叫_______.以点O为圆心的圆,记作_______,读作_______.注:(1)确定一个圆的两个要素是_______和________;(2)以定点A为圆心作圆,能作_______个圆;(3)以定长r为半径作圆,能作_______个圆;(4)以定点A为圆心、定长r为半径作圆,能且只能作_______个圆;(5)圆心确定_______,半径确定_______.二、自学探究1.操作与思考:请你在圆上任取3个点,分别量出这三个点到圆心的距离,你发现了什么?小结:(1)圆上的点到圆心的距离都_______半径;到圆心的距离等于半径的点都在圆______.(2)满足上述两个条件,我们可以把圆看成是一个集合.即圆是__________________________________________________.(圆的集合定义)请你在圆内任取3个点,分别量出这三个点到圆心的距离,你发现了什么?小结:(1)圆内的点到圆心的距离都_______半径;到圆心的距离小于半径的点都在圆______.(2)圆的内部是到圆心的距离______半径的点的集合.请你在圆外任取3个点,分别量出这三个点到圆心的距离,你发现了什么?小结:(1)圆外的点到圆心的距离都_______半径;到圆心的距离大于半径的点都在圆______.(2)圆的外部是到圆心的距离______半径的点的集合.因此,我们得到如下结论:2.尝试交流:已操作:(1)画线段PQ,使PQ=2 cm;(2)画出下列图形:到点P的距离等于1 cm的点的集合;到点Q的距离等于1.5 cm的点的集合.(3)在所画图中,到点P的距离等于1 cm,且到点Q的距离等于1.5 cm的点有几个?请在图中将它们表示出来.(4)在所画图中,到点P的距离小于或等于1 cm,且到点Q的距离大于或等于1.5 cm的点的集合是怎样的图形?把它画出来.三、学以致用活动一:已知⊙O的半径为5cm,A为线段OP的中点,当OP满足下列条件时,分别指出点A和⊙O的位置关系:(1)OP=6cm;(2)OP=10cm;(3)OP=14cm.活动二:已知RT△ABC,AC=3 cm,BC=4 cm,CD是斜边AB上的高.以点C为圆心,3 cm长度为半径画圆,判断点A、B、D与⊙C的位置关系.活动三:已知:如图,AC⊥BC,AD⊥BD.求证:点A、B、C、D在同一个圆上.四、当堂检测1.已知⊙O 的半径为4 cm .如果点P 到圆心O 的距离为4.5 cm ,那么点P 与⊙O 有怎样的位置关系?如果点P 到圆心O 的距离分别为4 cm 、3 cm 呢?2.用图形表示到点A 的距离小于或等于2 cm 的点的集合.3.如图,已知矩形ABCD 的边AB =3 cm ,AD =4 cm (直接写出答案)(1)以点A 为圆心,3厘米为半径作圆A ,则点B 、C 、D 与圆A 的位置关系如何?(2)以点A 为圆心,4厘米为半径作圆A ,则点B 、C 、D 与圆A 的位置关系如何?(3)以点A 为圆心,5厘米为半径作圆A ,则点B 、C 、D 与圆A 的位置关系如何?4.已知矩形ABCD 的对角线AC 、BD 相交于点O .点A 、B 、C 、D 是否在以点O 为圆心的同一个圆上?为什么?五、课后反馈A 组题:1.已知⊙O 的直径为6 cm ,且点P 在⊙O 内,线段PO 的长度范围是() A .小于6 cm B .6 cm C .3 cm D .小于3 cm2.两圆的圆心都是O ,半径分别是1r 、2r (21r r <).若21r op r <<,则() A .点P 在大圆外、小圆外B .点P 在大圆内、小圆外C .点P 在大圆外、小圆内D .点P 在大圆内、小圆内3.在直径AB =5 cm 的圆上,到AB 的距离为2.5 cm 的点有( )A .无数个B .1个C .2个D .4个 B 组题: 4.在Rt △ABC 中,∠C =90°,AC =2 cm ,BC =4 cm ,若以C 为圆心,2 cm 为半径作圆,•则点A 在⊙C _______,点B 在⊙C ________.若以AB 为直径作⊙O ,则点C 在⊙O ________.5.有一张矩形的纸片,AB =3 cm ,AD =4 cm,若以A 为圆心作圆,并且要使点D 在⊙A 内,而点C 在⊙A 外,A CD⊙A的半径r的取值范围是_____________.6.设AB=5 cm,点C在边AB上,且AC=2 cm,分别画出具有下列性质的点的集合的图形:(1)和点C的距离为2 cm的点的集合;(2)和点A的距离为3 cm的点的集合;(3)和点B、C的距离都为2 cm的点的集合.C组题:7.(1)矩形ABCD的对角线AC、BD相交于点O.求证:点A、B、C、D在以点O为圆心的圆上.(2)如果E、F、G、H分别为OA、OB、OC、OD的中点,求证:点E、F、G、H在同一个圆上.。
苏科版数学九年级上册2.1 圆(第1课时)教学设计

苏科版数学九年级上册2.1 圆(第1课时)教学设计一. 教材分析苏科版数学九年级上册2.1圆是学生在学习了平面几何基本概念和性质的基础上接触到的一个新的几何图形。
本节课主要介绍了圆的定义、圆心和半径等基本概念,以及圆的性质。
教材通过丰富的图片和实例,激发学生的学习兴趣,引导学生探索圆的性质,培养学生观察、思考、交流的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何图形有了一定的了解。
但是,对于圆这一几何图形的认识还比较模糊,需要通过本节课的学习,使学生对圆有一个清晰的认识。
此外,学生对于圆的性质的探索和发现,需要教师引导启发,激发学生的学习兴趣和探索欲望。
三. 教学目标1.知识与技能:理解圆的定义,掌握圆心和半径等基本概念,了解圆的性质。
2.过程与方法:通过观察、操作、交流等活动,培养学生的观察能力、动手能力和语言表达能力。
3.情感态度价值观:激发学生对数学的兴趣,培养学生积极思考、合作交流的学习态度。
四. 教学重难点1.重点:圆的定义,圆心和半径的概念,圆的性质。
2.难点:圆的性质的探索和发现。
五. 教学方法1.引导法:教师通过提问、设疑,引导学生思考,激发学生的学习兴趣。
2.观察法:学生通过观察实例,发现圆的性质。
3.操作法:学生通过动手操作,加深对圆的认识。
4.交流法:学生通过合作交流,分享学习心得,提高语言表达能力。
六. 教学准备1.教具:圆的模型、圆规、直尺、多媒体设备。
2.学具:圆的模型、圆规、直尺、学习资料。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的圆的实例,如硬币、地球、太阳等,引导学生观察并思考:这些图形有什么共同特征?学生通过观察,发现这些图形都是圆形,进而引出圆的概念。
2.呈现(10分钟)教师通过多媒体展示圆的定义和基本概念,如圆心、半径等,同时进行解释和说明。
学生跟随教师的讲解,理解圆的相关概念。
3.操练(10分钟)教师引导学生进行圆的绘制和测量练习,如用圆规和直尺画圆,测量圆的半径和直径等。
九年级数学上册《5.1 圆》教案 苏科版

《5.1 圆》教案一.情境创设多媒体展示圆在生活中各领域的应用。
提出问题:体育老师上铅球课,需要在操场上画一个半径为2米的圆。
你能帮他想想办法吗? 二.实验探究1.圆的描述定义:学生尝试解决师引导:从数学的角度,我们可以把固定的一端看成一个点(点O),拉直的绳子看作线段OP,你能从数学的角度来描述这一运动过程吗?(多媒体演示运动过程)同桌互说----学生反馈------师引导----归纳得出圆的定义给出圆心、半径、及圆的符号语言。
强调:圆是一条封闭的曲线,不包括圆心,不是一个圆面问题(1)画一个以点O为圆心的圆,这样的圆你能画出几个?(2)画一个半径为2cm的圆,这样的圆你能画出几个?(3)画一个唯一确定的圆,你需要明确哪些要素?强调:圆的两要素:圆心确定位置,半径确定大小。
2.点与直线的位置关系及圆的集合定义:活动1:在你们的帮助下,体育老师已经把圆画好了,这时正好一只足球踢过来,从圆上穿过去。
如果我们把球抽象成一个点(点A),它会和圆(⊙O)产生几种不同的位置关系呢?动手画一画(同桌交流-----实物投影展示)提问:(多媒体演示点的运动过程)这一运动过程中,什么量不变?什么量发生变化?它们之间有什么联系?作一个半径为3cm的⊙O⑴作一点A,使得OA=3cm,则点A在⊙O ,这样的点你能作出几个?它们与⊙O有怎样的位置关系?引导提问:①这无数个点都满足什么数量关系?(到点O的距离等于半径即d=r)它们与圆有怎样的位置关系?(在圆上)因此由数量关系可推位置关系,引出“等价于”②画出这无数个点,构成什么图形?(圆)多媒体演示③我们把无数个满足同一条件的点称为点的集合。
因此,我们可以把⊙O看作满足什么条件的所有点的集合?④若一个半径为5cm的⊙P,从集合的角度可以怎样描述这个圆。
⑤由此,你能从集合的角度对圆进行描述吗?我们可以把圆看作满足什么条件的点的集合?-- 引出圆的集合定义.⑵作一点A,使OA<3cm, 则点A在⊙O , 这样的点你能作出几个?它们与⊙O有怎么的位置关系?⑶作一点A,使OA<3cm, 则点A在⊙O , 这样的点你能作出几个?它们与⊙O 有怎么的位置关系?(引出“等价于”,同时从集合的角度定义点在圆内,点在圆上,点在圆外)巩固练习:1、已知⊙O 的半径为5(1)若PO=5.5,则点P 在 ;(2)若PO=4,则点P 在 ;(3)若PO = ,则点P 在圆上。
苏科版九年级上圆的教案2.5-1

钟吾中学九年级(上)数学导学案(20 )
【导评促学】
1.已知圆的直径为13cm。
如果直线和圆心的距离为4.5cm,那么直线和圆
有 2 个公共点;
如果直线和圆心的距离为6.5cm,那么直线和圆
有唯一个公共点;
如果直线和圆心的距离为8cm,那么直线和圆
有没有公共点。
2.设⊙O的半径为r,点O到直线l的距离d.
当直线l与⊙O相离时,d与r的大小关系是 d >r ;
当直线l与⊙O相交时,d与r的大小关系是 d < r ;
当直线l与⊙O相切时,d与r的大小关系是 d= r。
3.如果圆的最大弦长是m,直线与圆心的距离为d,且直线与圆
不相交,那么( B )。
A. d>m
B. d>m
C. d≥m
D. d≤m
4、已知:如图,直线l与⊙O相交于A、B两点,点O到直线
l的距离为3,AB=8。
(1)求⊙O的直径;(2)⊙O满足什么条件时,它与直线l
不相交?
先独立完成,互相批阅,
找出错误,教师点拨
⊙O的直径为10
⊙O满足半径小于3条
件时,它与直线l不相
交
教学反思:。
苏科版数学九年级上册第2章《圆》教学设计1
苏科版数学九年级上册第2章《圆》教学设计1一. 教材分析《苏科版数学九年级上册第2章《圆》》是学生在学习了平面几何基本概念和性质的基础上,进一步研究圆的相关知识。
本章内容包括圆的定义、性质、圆的方程、圆与直线的关系等。
通过本章的学习,使学生了解圆的基本概念和性质,掌握圆的方程的求法,培养学生解决实际问题的能力。
二. 学情分析学生在学习本章内容前,已经掌握了平面几何的基本概念和性质,具备了一定的逻辑思维能力和空间想象能力。
但部分学生对圆的概念和性质理解不深,对于圆的方程的求法和解题方法还不够熟练。
因此,在教学过程中,要注重引导学生深入理解圆的概念和性质,并通过大量的练习,提高学生解决实际问题的能力。
三. 教学目标1.理解圆的定义和性质,掌握圆的方程的求法。
2.培养学生解决实际问题的能力,提高学生的逻辑思维能力和空间想象能力。
3.培养学生合作学习的意识,提高学生的沟通能力和团队协作能力。
四. 教学重难点1.圆的定义和性质的理解。
2.圆的方程的求法和解题方法的掌握。
五. 教学方法1.采用问题驱动法,引导学生主动探究圆的定义和性质。
2.采用案例分析法,分析实际问题,培养学生解决实际问题的能力。
3.采用小组合作学习法,培养学生合作学习的意识,提高学生的沟通能力和团队协作能力。
六. 教学准备1.准备相关的教学案例和实际问题,用于课堂分析和讨论。
2.准备教学PPT,用于辅助教学。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过展示一些与圆相关的实际问题,引导学生思考圆的定义和性质,激发学生的学习兴趣。
2.呈现(10分钟)讲解圆的定义和性质,引导学生通过PPT了解圆的相关知识。
在此过程中,注重引导学生主动参与,提问学生对圆的定义和性质的理解。
3.操练(10分钟)通过PPT展示一些例题,讲解圆的方程的求法。
在此过程中,引导学生主动思考,解答问题。
同时,提醒学生注意解题方法的总结。
4.巩固(10分钟)布置练习题,让学生独立完成。
2.1 圆 教案 2022-2023学年苏科版九年级数学上册
2.1 圆教案一、教学目标1.了解圆的定义及其相关术语;2.掌握圆的性质,包括圆心、半径、直径、弦、弧和圆周角的概念;3.理解圆的切线和切点的概念与性质。
二、教学重点1.圆的定义及相关术语;2.圆的性质。
三、教学难点1.圆的切线和切点的概念与性质。
四、教学过程4.1 导入新知教师可以通过引入一个问题或一个有趣的场景来引起学生对于圆形的兴趣,例如:“你身边有哪些东西是圆的?它们有什么共同的特点?”学生可以自由发言,教师引导学生总结出圆形的共同特点,并引出圆的定义。
4.2 圆的定义及相关术语1.引入圆的定义:教师向学生展示一个圆形的图形,并解释圆的定义:“在平面上,如果一个点到另外一个点的距离等于一个常数,那么这个点构成的图形就叫做圆。
”2.圆的相关术语解释:–圆心:圆上所有点到圆心的距离相等,用字母O表示。
–半径:圆心到圆上任意一点的距离,用字母r表示。
–直径:穿过圆心的一条线段,两端点在圆上,长度为两倍的半径,用字母d 表示。
–弦:圆上任意两点间的线段,用字母AB或CD表示。
–弧:圆上两点间的部分,用字母AB表示。
–圆周角:以圆心为顶点的角,用字母∠AOB表示。
4.3 圆的性质1.圆的性质1:圆的半径相等。
–教师引导学生观察一个圆的图形,并让学生测量不同半径上的距离。
–学生发现不论在圆上选择哪两个点,他们到圆心的距离总是相等的。
2.圆的性质2:圆的直径是半径的两倍。
–教师引导学生通过测量圆的直径和半径的长度来验证圆的这一性质。
–学生发现圆的直径是半径长度的两倍。
3.圆的性质3:相等弧所对的圆周角相等。
–教师向学生展示两个相等的弧,然后让学生观察与这两个弧对应的圆周角。
–学生发现圆周角的大小与弧长无关,只与它所对的弧是否相等有关。
4.圆的性质4:一个圆被两条平行弦所分成的两个弧相等。
–教师向学生展示一个圆,并画出两个平行的弦,让学生观察与这两个弦对应的两个弧的关系。
–学生发现当两个平行弦分割的两个弧有一条公共的弦时,这两个弧的长度相等。
数学:5.1圆教案(1)(苏科版九年级上)
课本P108第1、2、3题
五、小结
1、圆是怎样定义和形成的?
2、怎样确定一个圆?
3、点和圆有哪几种位置关系?怎样判定?
六、布置作业课本P109习题1、2
操作与思考并回答
学生思考后回答
学生回答,教者板演解答过程
口答与板演相结合
通过操作使学生感受到点和圆的位置关系
使学生感悟到根据点和圆的数量关系可以确定点和圆的位置关系,反之也成立
⑶归纳:把线段OP的一个端点O固定,使线段OP绕着点O在平面内旋转一周,另一个端点P运动所形成的图形叫做圆。
2、圆的有关概念及圆的表示法:
⑴圆心和半径的概念和作用
定点O叫做圆心,圆心确定圆的位置。
⑵线段OP叫做半径,半径确定圆的大小
⑶圆的表示法和读法
3、操作与思考:
⑴在平面内,点与圆有哪几种位置关系
课题
§5.1圆(1)
课型
新授
教学目标
1、理解圆的有关概念
2、经历探索点与圆的位置关系的过程,会运用点到圆心的距离与圆的半径之间的数量关系判断点与圆的位置关系
教学重点
点和圆的位置关系
教学难点
点和圆的位置关系的判定
教具准备
投影仪、画圆工具
教学过程
教学内容
教师活动内容、方式
学生活动方式
设计意图
一、情境创设、引入新知
讨论、回答
动手操作,并观察比较发现圆的特征
通过设问,激发学生学习圆的兴趣
从画圆出发,借助学生的感性认识,通过描述圆的发生过程给出圆的定义
使学生认识到确定一个圆的条件是两者缺一不可
教师活动内容、方式
学生活动方式
设计意图
⑵画一个圆,分别在圆内、圆上、圆外各取一个点,并比较圆内的、圆上的、圆外的点到圆心的距离与半径的大小,你发现了什么?把你的想法说出来。
苏科版-数学-九年级上册-圆(1)教案
示的P、Q两点处.
如果你是甲同学,你会有怎样的看法?
(3)再后来,小兵同学也来参加游戏,他站的位置是图中所示的M点,但他发现地上的线几乎看不清了,请问小兵同学怎样才能知道自己恰好站在圆上?
2.请你总结一下点与圆有哪些关系?如何判断?
知识应用
例1 已知⊙O的半径为4cm,如果点P到圆心O的距离为4.5cm,那么点P与⊙O有怎样的位置关系?如果点P 到圆心O的距离为4cm、3cm呢?
2.如图,已知点A,请作出到点A的距离等于2cm的点的集合.
(1)这个圆的外部是满足什么条件的点的集合?
(2)请用阴影表示出到点A的距离小于或等于2cm的点的集合.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P
南沙初中初三数学教学案
教学内容: 圆 (1)
课 型:新授课 学生姓名:______ 教学目标
1、理解圆的定义(圆的描述概念和圆的集合概念);
2、掌握点和圆的三种位置关系;
3、会利用点到圆心的距离和圆的半径之间的数量关系判定点和圆的位置关系;
4、初步会运用圆的定义证明四个点在同一个圆上。
教学重点:确定点和圆的三种位置关系以及圆的集合概念的理解
教学难点:点和圆的三种位置关系的理解和应用
教学过程:
一、探索活动
1、圆的描述定义:
把一条线段OP (用你手边的圆珠笔代替)的一个端点O 固定,
使线段OP 绕点O 在平面内旋转一周,另一个端点P 所形成的图形
是______。
其中,定点O 叫______,线段OP 叫______。
以点O 为圆心的圆,记作______,读作______。
2、思考:
确定一个圆的两个要素是_______和________,以定点A 为圆心作圆,能作______个圆;以定长r 为半径作圆,能作______个圆;以定点A 为圆心、定长r 为半径作圆,能且只能作_______个圆。
二、观察、思考与小结:
1、请你在圆上任取3小结:(1)圆上各点到圆心(定点)的距离都______定长______;
反之,到圆心的距离等于半径的点都在______上。
(2)满足上述两个条件,我们可以把圆看成是一个集合。
圆的集合定义:圆是________________________________。
2、请你在圆内任取3个点,你发现了什么?
小结:(1)圆内的点到圆心(定点)的距离都______定长______;反之,到圆心的距离小于半径的点都在______。
(2)圆的内部可以看作是____________________________________。
3、请你在圆外任取3个点,你发现了什么?
小结:(1)圆外的点到圆心(定点)的距离都______定长______;反之,到圆心的距离大于半径的点都在______。
(2)圆的外部可以看作是____________________________________。
如果⊙O的半径为r,点P到圆心O的距离为d,那么
点P在圆内⇔_____________;
点P在圆上⇔_____________;
点P在圆外⇔_____________。
三、尝试与交流
已知点P、Q,且PQ=4cm.
(1)画出下列图形:
到点P的距离等于2cm的点的集合;到点Q的距离等于3cm的点的集合。
(2)在所画图中,到点P的距离等于2cm,且到点Q的距离等于3cm的点有几个?请在图中将它们表示出来。
(3)在所画图中,到点P的距离小于或等于2cm,且到点Q的距离大于或等于3cm的点的集合是怎样的图形?把它画出来。
Q
C D
B
A
四、例题:
例1、已知⊙O 的半径为5cm ,A 为线段OP 的中点,当OP 满足下列条件时,分别指出点A
和⊙O 的位置关系:
(1)OP =6cm ;(2)OP =10cm ;(3)OP =14cm 。
例2、已知:正方形ABCD 的边长为a ,以A 为圆心,a 为半径作⊙A ,分别判断点B 、C 、D
与⊙A 的位置关系。
例3、已知:如图,AC ⊥BC ,AD ⊥BD 。
求证:点A 、B 、C 、D 在同一个圆上。
五、课堂小结 六、课堂作业(见作业纸)
南沙初中初三数学课堂作业(24)
(命题,审核:王猛)
班级__________姓名___________学号_________得分_________
1.已知⊙O的直径为6cm,且点P在⊙O内,线段PO的长度(范围)()A.小于6cm B.6cm C.3cm D.小于3cm
2.两圆的圆心都是O,半径分别是r1、r2(r1<r2).若r1<OP<r2,则()A.点P在大圆外、小圆外B.点P在大圆内、小圆外
C.点P在大圆外、小圆内D.点P在大圆内、小圆内
3.在直径AB=5cm的圆上,到AB的距离为2.5cm的点有()A.无数个B.1个C.2个D.4个
4.在Rt△ABC中,∠C=90°,AC=2cm,BC=4cm,若以C为圆心,2cm为半径作圆,•则点A在⊙C_______,点B在⊙C________.若以AB为直径作⊙O,则点C在⊙O________.5.有一张矩形的纸片,AB=3cm,AD=4cm,若以A为圆心作圆,并且要使点D在⊙A内,而点C在⊙A外,⊙A的半径r的取值范围是_____________。
6.设AB=5cm,点C在边AB上,且AC=2cm,分别画出具有下列性质的点的集合的图形:(1)和点C的距离为2cm的点的集合;
(2)和点A的距离为3cm的点的集合;
(3)和点B、C的距离都为2cm的点的集合.
7.(1)矩形ABCD的对角线AC、BD相交于点O.求证:点A、B、C、D在以点O为圆心的圆
上。
(2)如果E、F、G、H分别为OA、OB、OC、OD、的中点,求证:点E、F、G、H在同一个圆上。