6.1 算术平方根 教学设计

合集下载

6.1平方根(第1课时) 教学设计

6.1平方根(第1课时)  教学设计

6.1平方根(第1课时)教学目标1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性;2.了解开方与乘方互为逆运算,会求某些非负数的算术平方根,能化简某些带根号的数,掌握计算根式范围的方法;3.通过学习算术平方根,提升学生的数感和符号感,发展抽象思维;4.通过解决实际生活中的问题,让学生体会数学与生活是紧密联系的.教学重点表示正数的算数平方根教学难点√2多大探究教学过程一、情景引入讲述数学史第一次数学危机:的出现,却在当时的数学界掀起了一场巨大风暴。

它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。

实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。

对于当时所有古希腊人的观念这都是一个极大的冲击。

这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。

这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。

更糟糕的是,面对这一荒谬人们竟然毫无办法。

这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。

二、新知探究活动一:算数平方根探究:问题1:学校要举行美术作品比赛,你想裁出一块面积为25 dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?说一说,你是怎样算出来的?因为52=25,所以这个正方形画布的边长应取5 dm.问题2:完成表1:正方形的边长/dm 1 3 9 2 3正方形的面积/dm²1 9 81 49思考:你能从表1发现什么共同点吗?已知一个正数,求这个正数的平方,这是平方运算问题3:完成表2:正方形的面积/dm² 4 49 0.36964正方形的边长/dm 2 7 0.6 3 8思考:你能从表2发现什么共同点吗?表1与表2中两种运算有什么关系?已知一个正数的平方,求这个正数;互为逆运算归纳:一般地,如果一个正数x的平方等于a,即x²=a,那么这个正数x叫做a 的算术平方根。

人教版七年级数学下册教学设计:6.1平方根概念教学

人教版七年级数学下册教学设计:6.1平方根概念教学
3.培养学生勇于探索、善于思考、严谨求实的科学态度,使学生形成良好的学习习惯和道德品质。
4.借助平方根的教学,引导学生认识到数学知识的力量,激发学生为国家和民族的发展贡献自己的力量的责任感。
二、学情分析
七年级下册的学生在数学学习上已经有了一定的基础,掌握了基本的算术运算和简单的代数知识。在此基础上,他们对平方根概念的学习具备了一定的接受能力。然而,由于平方根概念较为抽象,学生可能在理解上存在一定困难。因此,在教学过程中,教师需要关注以下几点:
3.通过实际例题的分析和解答,培养学生将数学知识应用于解决实际问题的能力,提高学生的应用意识。
4.通过课堂练习和课后作业,巩固学生对平方根概念和方法的理解,提高学生的计算速度和准确性。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,使学生认识到数学在生活中的重要性,增强学生的数学自信心。
2.通过平方根的学习,引导学生体会数学的简洁美和逻辑美,培养学生对数学的审美情趣。
(3)通过学生的课堂反馈,了解教学效果,不断调整教学方法和策略。
四、教学内容与过程
(一)导入新课,500字
1.教师出示一张正方形图片,提出问题:“如果这个正方形的边长是a,那么它的面积是多少?”引导学生回忆正方形面积的公式:S=a²。
2.接着,教师追问:“如果已知一个正方形的面积是a²,那么它的边长a应该是多少?”由此引出平方根的概念,激发学生的好奇心和求知欲。
1.学生对平方根概念的理解程度,注重引导学生从具体实例中抽象出数学概念,培养学生对抽象数学概念的理解能力。
2.学生在求解平方根时的计算准确性,关注学生的计算过程,及时纠正错误,提高学生的计算速度和准确性。
3.学生对平方根性质的理解和应用,通过实例分析、小组讨论等方式,帮助学生掌握平方根的性质,并能熟练应用于解决实际问题。

人教版七年级数学下册6.1.1《算术平方根》教学设计

人教版七年级数学下册6.1.1《算术平方根》教学设计

人教版七年级数学下册6.1.1《算术平方根》教学设计一. 教材分析《算术平方根》是人教版七年级数学下册第六章第一节的内容,主要是让学生理解算术平方根的概念,掌握求算术平方根的方法,并能够应用它解决一些实际问题。

本节内容是建立在实数基础之上的,对于学生来说是一个新的概念,需要通过具体例子和实际操作来加深理解。

二. 学情分析学生在学习本节内容之前,已经学习了实数的概念,对于平方、乘方等运算有一定的了解。

但是,对于算术平方根这个概念,他们可能是初次接触,因此需要通过具体的例子和实际操作来理解和掌握。

同时,学生可能对于抽象的概念理解起来有一定的困难,因此需要教师通过生动的讲解和形象的比喻来帮助他们理解。

三. 教学目标1.知识与技能:使学生理解算术平方根的概念,掌握求算术平方根的方法,并能够应用它解决一些实际问题。

2.过程与方法:通过具体例子和实际操作,让学生理解算术平方根的概念,培养学生的逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的探索精神,使学生体验到数学的实用性。

四. 教学重难点1.重点:算术平方根的概念和求法。

2.难点:理解算术平方根的概念,掌握求算术平方根的方法。

五. 教学方法1.情境教学法:通过具体例子和实际操作,让学生理解算术平方根的概念。

2.引导发现法:教师引导学生通过观察、思考、讨论,发现求算术平方根的方法。

3.实践操作法:让学生通过实际操作,加深对算术平方根的理解。

六. 教学准备1.教学课件:制作课件,展示具体例子和实际操作。

2.练习题:准备一些练习题,用于巩固所学知识。

3.板书设计:设计板书,突出算术平方根的概念和求法。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的实际问题,如面积、体积等,引导学生思考如何求解这些问题。

通过讨论,引出算术平方根的概念。

2.呈现(10分钟)呈现一些具体例子,如求一个正方形的面积,引导学生思考如何求解。

通过实际操作,让学生理解算术平方根的概念。

教学设计6:6.1 平方根(1)

教学设计6:6.1 平方根(1)

6.1平方根(1)一、学生分析:学生具备了对无理数的认识,还具备了乘方运算的基础,并且有计算正方形等几何图形面积的技能.二、任务分析本节课主要是算术平方根的概念和性质的教学.课程标准要求,对于数学概念的教学,要关注概念的实际背景与形成过程,因此确定本节的教学目标如下:1.知识与技能目标1.了解算术平方根的概念,会用根号表示一个数的算术平方根.2.了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根.3.了解算术平方根的性质.2.过程与方法目标1.在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力.2.在合作交流等活动中,培养他们的合作精神和创新意识.教学重点:了解算术平方根的概念、性质,会用根号表示一个正数的算术平方根.教学难点:对算术平方根的概念和性质的理解及应用.三、教法学法教学方法:讲授法.四、教学过程设计:根据教学内容我把本节课设计了五个小环节第一环节:问题情境方法一:问题导入内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a的大的正方形,那么有a2=2,a= ,2是有理数,而a是无理数.在前面我们学过若x2=a,则a叫x的平方,反过来x叫a的什么呢?本节课我们一起来学习.方法二:问题导入内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空:x 2= 2 ,y 2= 3 ,z 2= 4 ,w 2= 5 .第二环节:初探内容1:情境引出新概念x 2=2,y 2=3,z 2=4,w 2=5,已知幂和指数,求底数x ,你能求出来吗?内容2:归纳概念:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方根是0,即00=. 内容3:简单运用 巩固概念例1 求下列各数的算术平方根:(1)900; (2)1; (3)6449; (4)14. 答案:解:(1)因为302=900,所以900的算术平方根是30,即30900=;(2)因为12=1,所以1的算术平方根是1,即11=;(3)因为6449872=⎪⎭⎫ ⎝⎛,所以 6449的算术平方根是87, 即876449=; (4)14的算术平方根是14.内容4:回解课堂引入问题x 2=2,y 2=3,w 2=5,那么x =2,y =3,w =5.第三环节:深入探究例2 自由下落物体的高度h (米)与下落时间t (秒)的关系为h =4.9t 2.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?答案:因为h =4.9t 2所以h =19.6时,t 2=4.又因为t >0,所以t =2内容2:观察我们刚才求出的算术平方根有什么特点. 都是非负数第四环节:反馈练习一、填空题:1.若一个数的算术平方根是6,那么这个数是 ;2.16的算术平方根是 ;3.2)32(的算术平方根是 ; 4.若22=+m ,则2)2(+m = .二、求下列各数的算术平方根:36,144121,15,0.64,210,225, 答案:一、1.6;2.2 ;3.32 ;4.16; 二、6;1211;15;0.8;10;15; 第五环节:作业布置 习题2.3。

七年级数学下册(人教版)6.1.1算术平方根(第一课时)优秀教学案例

七年级数学下册(人教版)6.1.1算术平方根(第一课时)优秀教学案例
1.理解算术平方根的概念,掌握求一个数的算术平方根的方法。
2.能够运用算术平方根的知识解决实际问题,如计算面积、体积等。
3.了解算术平方根在实际生活中的应用,如测量、建筑设计等。
(二)过程与方法
1.通过复习平方根的概念,引导学生自主探究算术平方根的定义,培养学生的自主学习能力。
2.利用多媒体展示、实物演示等方法,让学生在直观感知的基础上,理解并掌握算术平方根的概念。
3.通过学生之间的互相评价,让学生了解自己的学习情况,发现他人的优点,学会欣赏和尊重他人。
4.教师要根据学生的学习情况,及时调整教学策略,以保证教学目标的实现。同时,要对学生的进步给予肯定和鼓励,增强他们的自信心。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一个实际问题:一块土地的面积是36平方米,求它的边长。让学生思考如何解决这个问题。
3.通过小组讨论、数学游戏等形式,激发学生的学习兴趣,培养学生合作探究的能力。
4.设计一系列练习题,巩固所学知识,提高学生的解题能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣和好奇心,使他们感受到数学的趣味性和魅力。
2.培养学生的自信心,使他们相信自己能够掌握算术平方根的知识,并能够运用所学知识解决实际问题。
针对这一教学目标,我设计了以下教学案例。首先,通过复习平方根的概念,引导学生回顾已学知识,为新课的学习做好铺垫。然后,通过多媒体展示、实物演示等方法,生动形象地引入算术平方根的概念,让学生在直观感知的基础上,理解并掌握算术平方根的定义。接下来,运用数学游戏、小组讨论等形式,激发一系列练习题,巩固所学知识,提高学生的解题能力。最后,结合生活实际,引导学生运用所学知识解决实际问题,培养学生的应用意识。
整个教学过程中,注重启发式教学,引导学生主动参与,积极思考,提高学生的思维能力。同时,关注学生的个体差异,给予不同程度的学生适当的指导和关爱,使他们在数学学习过程中感受到成功的喜悦。通过本节课的教学,使学生对算术平方根有了更深入的理解,提高了学生的数学素养,为后续学习奠定了基础。

人教版数学七年级下册6.1.1算术平方根优秀教学案例

人教版数学七年级下册6.1.1算术平方根优秀教学案例
(二)讲授新知
在导入新课后,教师开始讲授新知识。首先,教师可以利用多媒体课件或实物模型,为学生提供丰富的感性材料,引导学生观察和操作。例如,教师可以展示一个正方形的模型,让学生观察并描述其特征,从而引导学生思考正方形的面积与边长之间的关系。接着,教师提出算术平方根的概念,并通过举例解释其含义。
(三)学生小组讨论
在讲授新知识后,教师将学生分成若干小组,让学生在小组内进行讨论、交流和合作。教师可以设计以下任务:
1.每个小组探究一个正整数的算术平方根,并总结求解方法。
2.小组成员共同讨论,归纳算术平方根的性质。
3.小组合作解决一个实际问题,如计算教室地板的面积。
(四)总结归纳
在学生小组讨论结束后,教师组织学生进行总结归纳。教师可以引导学生回顾本节课所学的内容,让学生总结算术平方根的定义、性质以及求解方法。同时,教师要注意关注学生的个体差异,引导每个学生都能参与到总结归纳的过程中。
人教版数学七年级下册6.1.1算术平方根优秀教学案例
一、案例背景
在我国基础教育课程体系中,算术平方根的概念是学生从小学过渡到初中阶段必须掌握的重要数学知识。对于七年级下册的学生而言,他们在学习了有理数、整数等基础知识后,算术平方根的概念及其性质,不仅是对原有知识的深化,更是为后续的代数学习奠定基础。
2.小组成员共同讨论,归纳算术平方根的性质。
3.小组合作解决一个实际问题,如计算教室地板的面积。
(四)反思与评价
本节课的教学结束时,教师引导学生进行反思与评价,使学生对所学知识有一个清晰的认识。教师可以设计以下问题:
1.你在这节课中学到了什么?你对自己的学习有何评价?
2.你觉得算术平方根在实际生活中有哪些应用?
二、教学目标
(一)知识与技能

人教版七年级数学下册教学设计:6.1平方根教案

人教版七年级数学下册教学设计:6.1平方根教案
3.平方根的计算方法:我会介绍两种计算平方根的方法:估算和精确计算。估算方法可以通过找到两个完全平方数之间的数,来近似计算平方根;精确计算则可以利用平方根的运算规则,进行精确求解。
(三)学生小组讨论
在学生小组讨论环节,我会将学生分成若干小组,让他们共同探讨以下问题:
1.平方根的意义和应用:让学生讨论平方根在生活中的应用,如几何图形、物理提高解决问题的能力。
(二)教学设想
1.创设情境,激发兴趣。
-通过引入与平方根相关的实际问题,如土地面积测量、建筑设计等,激发学生对平方根学习的兴趣。
-使用多媒体教具和实物模型,为学生提供直观的学习材料,增强学习体验。
2.自主探究,合作交流。
人教版七年级数学下册教学设计:6.1平方根教案
一、教学目标
(一)知识与技能
1.理解平方根的定义,掌握求一个数的平方根的方法,能够准确计算平方根的值。
-学生将通过具体实例,理解平方根的概念,并学会使用数学符号表示平方根。
-学生将掌握使用计算器或手动计算平方根的技巧,提高解题速度和准确性。
2.能够解决实际问题中与平方根相关的计算,如面积、体积等。
2.平方根的性质:让学生通过实际例子,发现平方根的性质,并尝试证明。
3.计算平方根的方法:让学生交流各自计算平方根的技巧和方法,互相学习,提高计算能力。
(四)课堂练习
在课堂练习环节,我会设计以下几类题目,让学生巩固平方根知识:
1.基础题目:计算给定数的平方根,包括整数、分数和负数。
2.应用题目:解决实际问题,如计算土地面积、正方形边长等。
-比较两个数的平方根,如√9和√16,说明它们之间的关系。
2.实践应用题:
-一块正方形的土地,面积为64平方米,求该正方形的边长。

人教版七年级下册6.1.1《算术平方根》(教学设计)

人教版七年级下册6.1.1《算术平方根》(教学设计)

人教版七年级下册6.1.1《算术平方根》(教学设计)一. 教材分析《算术平方根》是人教版七年级下册数学教材第六章第一节的内容。

本节课主要介绍了算术平方根的概念、性质及其求法。

通过学习本节课,学生能够理解算术平方根的定义,掌握求算术平方根的方法,并能够应用算术平方根解决实际问题。

教材通过例题和练习题的形式,帮助学生巩固所学知识,提高解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了有理数、整数、分数等基础知识,具备了一定的逻辑思维能力和运算能力。

但部分学生对平方根的概念可能还比较模糊,需要通过实例和练习来进一步理解。

此外,学生可能对算术平方根的求法存在一定的困惑,需要通过教师的引导和同学的讨论来掌握。

三. 教学目标1.知识与技能目标:理解算术平方根的概念,掌握求算术平方根的方法,能够熟练运用算术平方根解决实际问题。

2.过程与方法目标:通过自主学习、合作交流,培养学生探究问题和解决问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,激发学生学习数学的积极性。

四. 教学重难点1.重点:算术平方根的概念及其求法。

2.难点:算术平方根在实际问题中的应用。

五. 教学方法1.启发式教学:通过问题引导,激发学生的思考,培养学生的探究能力。

2.合作学习:学生进行小组讨论,促进学生之间的交流与合作,共同解决问题。

3.实例教学:通过具体的例子,让学生更好地理解算术平方根的概念和求法。

4.练习巩固:通过适量练习,巩固所学知识,提高学生的应用能力。

六. 教学准备1.教材:人教版七年级下册数学教材。

2.课件:制作课件,包括算术平方根的定义、性质、求法及应用等内容。

3.练习题:准备一些有关算术平方根的练习题,用于课堂练习和巩固。

4.板书:准备黑板,用于书写重要概念和步骤。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已学过的平方根知识,为新课的学习做好铺垫。

例如:“请大家回忆一下,平方根的概念是什么?我们已经学习了哪些求平方根的方法?”2.呈现(10分钟)教师展示课件,介绍算术平方根的定义、性质和求法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学设计
课题:6.1算术平方根
一、教学内容及其分析
1、内容:
本节课的内容是掌握算术平方根的概念,并会求某一个数的算术平方根。

2、分析:
算术平方根的概念及其计算是学习平方根的基础,充分理解和掌握了算术平方根,对将来学习平方根具有重要意义。

二、教学目标分析
1、目标:
理解算术平方根的概念,并会计算出某数的算术平方根。

2、分析:
注重学生掌握、理解算术平方根的概念后,会求某数的算术平方根。

三、教学问题分析
学生不能正确理解算术平方根一般式x2=a中x与a的关系时,教师要给予指导。

四、教学过程
(一)基本流程:
(二)教学情境: 1、导入:
由引言中提出的问题:计算第一宇宙速度v1和第二宇宙速度v2导入新课。

2、问题与例题:问题1:要制作一块面积为25dm2的正方形画布,它的边长应为多少?假设正方形的面积变为1 dm2、9 dm2、16 dm2、36 dm2、25
4
dm2,此时正方形的边长应分别为多少dm?
设边长为xdm . X2=25
因为52=25 ,所以x=5. 答:正方形边长应为5dm。

一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方
2
根。

a的算术平方根记为a,读作“根号a”,a叫做被开方数。

设计意图:从实际出发,帮助学生理解相关定义。

师生活动:教师指导,师生一起分析得出定义。

问题2:求下列各数的算术平方根:(1)100;(2)0.0001;(3)64
49
.
解:(1)因为102=100,所以100的算术平方根是10,即100=10;
(2)因为0.012=0.0001,所以0.0001的算术平方根是0.01,即0001.0=0.01;
(3)因为(87)2=6449.,所以6449.的算术平方根是87,即6449=8
7.
设计意图:让学生从做题中去理解怎样求一个数的算术平方根。

师生活动:学生独立完成,教师核实答案。

问题3:引言中第一宇宙速度v1和第二宇宙速度v2该如何来求?(不用求解出结果)设计意图:让学生将知识运用于解决实际问题,使学生感受到所学知识的现实价值意义。

师生
活动:学生独立完成。

五、目标检测
1、121的算术平方根是()。

2、6是()的算术平方根。

3、0的算术平方根是()。

4、计算下列各数的值:
23=()
81
1
=()0049.0=()20090=()
设计意图:帮助学生掌握求一个有理数的算术平方根的方法。

师生活动:教师巡回指导,学生自主完。

相关文档
最新文档