锂离子电池原理介绍

合集下载

锂离子电池原理介绍课件.pptx

锂离子电池原理介绍课件.pptx
LiCoO2+6C = Li(1-x)CoO2+LixC6
➢充电要求:额定电流1C/3,最大持续90A,峰值200A(30S)。
2024/10/9
1.2放电原理
➢ 锂电池充电原理:当电池放电时,形成阳极的碳材料中的锂离子经 过隔膜移动到阴极材料(锂化合物)中,一个放电电流过。。
放电正极上发生的反应为 Li1-xFePO4+ xLi ++ xe- →LiFePO4 放电负极上发生的反应为
2.3负极
➢负极——活性物质为石墨,或近似石墨结构的碳,导 电集流体使用厚度7-15微米的电解铜箔。
三、锂电池分类
圆柱离子电池
方形锂离子电池
软包离子电池
锂离子电池
纽扣锂离子电池
2024方法:按电池外观尺寸宽、厚、长 1、圆柱型18650型号,就是指电芯直径18mm长65mm。 2、方形锂离子383450型号,就是指电芯实体部分宽34mm厚3.8mm长50mm。 3、聚合物(软包)383450型号,就是指电芯实体部分宽34mm厚3.8mm长50mm。
3.8mm 18m m
65m m
圆柱型18650电芯 2024/10/9
50mm
34mm
方形锂离子383450电芯
50mm
34mm
3.8mm
聚合物(软包)383450
四、锂电池特性
A B C
D
2024/10/9
过充电危险:过充超过电池电压上限,会 导致电池内部温度过高,会引起电池燃烧 爆炸。 过。放电危险:锂电池内部存储电能是靠电 化学一种可逆的化学变化实现的,过度的 放电会导致这种化学变化有不可逆的反应 发生,因此锂电池最怕过放电,一旦放电 电压低于2.7V,将可能导致电池报废。

锂离子电池工作原理

锂离子电池工作原理

锂离子电池工作原理锂离子电池是一种广泛应用于挪移电子设备、电动车辆和储能系统中的高性能电池。

它具有高能量密度、长寿命、轻量化等优点,因此备受关注。

本文将详细介绍锂离子电池的工作原理。

1. 电池结构锂离子电池由正极、负极、电解质和隔膜组成。

正极材料通常使用锂金属氧化物,如锂钴酸锂(LiCoO2)、锂镍酸锂(LiNiO2)和锂铁酸锂(LiFePO4)。

负极材料通常使用石墨。

电解质是一种离子导体,可以使锂离子在正负极之间传输。

隔膜用于隔离正负极,防止短路。

2. 充放电过程锂离子电池的充放电过程是通过锂离子在正负极之间的迁移来实现的。

在充电过程中,外部电源提供电流,正极材料中的锂离子被氧化,释放出电子,电子通过外部电路流回负极,与负极材料中的锂离子发生还原反应,形成锂金属。

在放电过程中,负极材料中的锂金属被氧化,释放出电子,电子通过外部电路流到正极,与正极材料中的锂离子发生还原反应,形成锂金属氧化物。

3. 离子迁移机制锂离子在正负极之间的迁移是通过电解质中的离子导体实现的。

在充电过程中,锂离子从正极材料中脱嵌,通过电解质中的离子导体迁移到负极材料中嵌入。

在放电过程中,锂离子从负极材料中脱嵌,通过电解质中的离子导体迁移到正极材料中嵌入。

这个过程是可逆的,可以反复进行。

4. 反应方程式锂离子电池的充放电反应可以用以下方程式表示:充电:正极材料(LiCoO2)+ C6 → Li1-xCoO2 + xLi+ + xe-负极材料(石墨)+ xLi+ + xe- → Li1-xC6放电:正极材料(Li1-xCoO2)+ xLi+ + xe- → LiCoO2 + C6负极材料(Li1-xC6)+ xLi+ + xe- → C6其中,LiCoO2代表锂钴酸锂,C6代表石墨,x代表锂离子插入或者脱出的比例。

5. 安全性锂离子电池在使用过程中需要注意安全问题。

由于锂离子电池中的电解质通常是有机溶剂,当电池受到外部撞击、过热或者过充时,有可能引起热失控和燃烧。

锂离子电池的工作原理

锂离子电池的工作原理

锂离子电池的工作原理锂离子电池是一种常见的可充电电池,被广泛应用于挪移设备、电动汽车和储能系统等领域。

它的工作原理基于锂离子在正负极材料之间的迁移和嵌入/脱嵌过程。

下面将详细介绍锂离子电池的工作原理。

1. 正负极材料锂离子电池的正极材料通常是由锂化合物(如锂钴酸锂、锂铁磷酸锂等)构成的。

而负极材料则是由碳材料(如石墨)构成。

正负极材料的选择直接影响到电池的性能和循环寿命。

2. 电解质电解质是指位于正负极材料之间的介质,通常是由有机溶剂和锂盐组成的。

电解质的选择对电池的安全性和性能有重要影响。

3. 充放电过程锂离子电池的充放电过程可以分为两个步骤:锂离子的嵌入/脱嵌和电荷传输。

充电过程:- 正极:在充电过程中,锂离子从电解质中脱嵌,通过电解质迁移到负极材料表面,并在负极材料中嵌入。

同时,正极材料中的电子流经外部电路,从而提供电能。

- 负极:负极材料中的锂离子在充电过程中脱嵌,通过电解质迁移到正极材料的表面,并在正极材料中嵌入。

负极材料中的电子则被外部电路中的电流推动,从而进行充电。

放电过程:- 正极:在放电过程中,锂离子从正极材料中脱嵌,通过电解质迁移到负极材料的表面,并在负极材料中嵌入。

正极材料中的电子则通过外部电路流回正极,释放电能。

- 负极:负极材料中的锂离子在放电过程中脱嵌,通过电解质迁移到正极材料的表面,并在正极材料中嵌入。

负极材料中的电子则通过外部电路流回负极,完成电池的放电过程。

4. 电池的反应方程式锂离子电池的充放电过程可以用化学反应方程式来表示:充电过程:正极:LiCoO2 ⇌ Li1-xCoO2 + xLi+ + xe-负极:xLi+ + xe- + 6C ⇌ Li1-xC6放电过程:正极:Li1-xCoO2 + xLi+ + xe- ⇌ LiCoO2负极:Li1-xC6 ⇌ xLi+ + xe- + 6C其中,LiCoO2代表锂钴酸锂,Li1-xCoO2代表锂钴酸锂的锂离子嵌入/脱嵌过程,xLi+代表锂离子,xe-代表电子,6C代表石墨。

锂离子电池的工作原理与应用

锂离子电池的工作原理与应用

锂离子电池的工作原理与应用概述锂离子电池是一种重要的可充电电池,具有高能量密度、长循环寿命、较低的自放电率等优势,广泛应用于移动电子设备、电动汽车等领域。

本文将介绍锂离子电池的工作原理以及在各个领域中的应用。

一、锂离子电池的工作原理锂离子电池是一种通过锂离子在正负极材料之间迁移来实现储存和释放能量的电池。

它主要由正极材料、负极材料、电解质和隔膜组成。

1. 正负极材料正极材料通常采用锂盐和过渡金属氧化物或磷酸盐,如锂钴酸锂(LiCoO2)、锂铁磷酸盐(LiFePO4)等。

它们具有良好的可逆性,能够提供稳定的电化学反应。

负极材料通常采用石墨,其能够插入和脱出锂离子,并且具有较高的导电性和循环稳定性。

2. 电解质电解质是连接正负极的离子传导介质,常见的有有机溶剂型和聚合物型电解质。

有机溶剂型电解质通常由有机溶剂和锂盐组成,具有高的离子传导性能,但易燃、挥发性高。

聚合物型电解质使用聚合物作为载体,并添加锂盐混合物,具有低挥发性、高机械强度,但离子导电性较差。

3. 隔膜隔膜用于隔离正负极材料,防止短路,并允许锂离子传输。

常见的材料有聚乙烯膜和聚丙烯膜。

二、锂离子电池的应用领域锂离子电池由于其特点在各个领域有广泛的应用。

1. 移动电子设备锂离子电池广泛应用于移动电子设备,如智能手机、平板电脑、便携式音频设备等。

其高能量密度和轻量化特性使得设备更加便携,并能够提供较长的使用时间。

2. 电动工具锂离子电池也被广泛应用于电动工具领域,如电动螺丝刀、电动钻等。

相比传统的镍镉电池,锂离子电池具有更高的能量密度和较低的自放电率,从而为电动工具提供更长的持续工作时间。

3. 电动汽车随着环保意识的提高,锂离子电池在电动汽车领域得到了广泛应用。

其高能量密度和较长的循环寿命使得电动汽车具备更长的续航里程和更长乘坐时间,满足了人们对于绿色出行的需求。

4. 太阳能储能系统锂离子电池可以作为太阳能储能系统的重要组成部分,将太阳能转化为电能进行储存。

锂离子电池的工作原理与应用

锂离子电池的工作原理与应用

锂离子电池的工作原理与应用锂离子电池是一种常见的二次电池,广泛应用于手机、电动车、笔记本电脑等便携式电子设备中。

本文将介绍锂离子电池的工作原理以及在各个领域中的应用情况。

一、工作原理锂离子电池由正极、负极和电解质组成。

正极由锂化合物(如LiCoO2)构成,负极一般由碳(graphite)构成。

电解质通常是有机液体,如碳酸丙二醇二甲醚(PC)。

在充放电过程中,锂离子从正极的锂化合物中嵌入/脱嵌,通过电解质在正负极之间传输。

当锂离子从正极嵌入负极时,电池处于充电状态;当锂离子从负极脱嵌回正极时,电池处于放电状态。

二、应用领域1. 便携式电子设备锂离子电池因其高能量密度和轻便性,在便携式电子设备中得到广泛应用。

手机、平板电脑、耳机、手持游戏机等设备都使用锂离子电池作为它们的电源。

锂离子电池的高电容量和可充电性可以满足人们对便携式设备长时间使用的需求。

2. 电动交通工具锂离子电池是电动车广泛采用的能源储存装置。

相比传统的铅酸电池,锂离子电池具有更高的能量密度和更轻的重量。

这使得电动交通工具的续航里程得到了大幅提升。

此外,锂离子电池的快速充电特性也适合电动车等交通工具的使用。

3. 储能系统随着可再生能源的发展,储能系统在电力领域中扮演了越来越重要的角色。

锂离子电池作为储能系统的核心部件,可以将电力储存起来,并在需要时释放出来。

锂离子电池的高效率和长寿命使其在微电网、太阳能和风能储能系统等领域中得到了广泛应用。

4. 医疗设备锂离子电池的轻巧性质使其非常适合用于医疗设备。

手持式监测设备、假肢、电动轮椅等都可以使用锂离子电池进行供电。

此外,由于锂离子电池的高能量密度,它还可以为依赖电池运行的医疗设备提供长时间的使用时间。

5. 能源存储除了储能系统,锂离子电池还可以用于住宅和商业能源存储。

通过将电能储存在锂离子电池中,可以解决能源峰谷差异的问题,降低能源的浪费。

这种存储系统可以帮助实现可持续能源的更高利用率。

总结:锂离子电池是一种重要的二次电池,具有广泛的应用领域。

锂离子电池工作过程及原理

锂离子电池工作过程及原理

锂离子电池工作过程及原理1. 引言1.1 锂离子电池是什么锂离子电池是一种利用锂离子在正负极之间移动来存储和释放电能的电池。

它是目前应用最广泛的二次电池之一,被广泛应用于手机、电动汽车、笔记本电脑等设备中。

锂离子电池的工作原理是利用正极材料(如钴酸锂、磷酸铁锂等)和负极材料(如石墨、硅等)之间锂离子的嵌入和脱嵌来存储和释放电能。

在充电过程中,锂离子从正极脱嵌并嵌入负极;在放电过程中,锂离子则从负极脱嵌并嵌入正极,通过这种方式实现电能的转化。

与传统的镍镉电池和铅酸电池相比,锂离子电池具有能量密度高、循环寿命长、无记忆效应和轻量化等优点。

由于其优良的性能特点,锂离子电池在电动车、储能系统、无人机等领域有着广阔的应用前景。

随着新材料、新工艺的不断发展,锂离子电池的性能将不断提升,未来将更好地满足人们对能源存储和利用的需求。

1.2 发展历程锂离子电池的发展历程可以追溯到20世纪70年代初期。

当时,由美国斯坦福大学的研究团队首次提出了使用锂金属作为负极材料的概念。

随后的几十年里,科研人员们陆续进行了大量实验,并不断改进和完善锂离子电池的结构和性能。

在1991年,索尼公司首先成功商业化了锂离子电池,推出了第一款可供消费者购买的锂离子电池产品,从此开启了锂离子电池在消费电子领域的广泛应用。

随着移动通讯设备的普及和电动汽车市场的兴起,锂离子电池的需求量急剧增加,促使了锂离子电池技术的进一步发展和创新。

近年来,随着能源存储需求的不断增长,锂离子电池正在逐渐成为各种领域的首选能源储存解决方案。

与此为了提高循环寿命、安全性能和能量密度等关键指标,科研人员们还在不断开展关于锂离子电池的研究工作,以期不断推动其发展到新的高度。

锂离子电池已经成为现代社会中不可或缺的能源储存技术之一,并且将在未来得到进一步的发展和应用。

1.3 应用领域在电动汽车领域,锂离子电池作为动力源已经逐渐取代了传统燃油发动机,成为未来新能源汽车的主要驱动力。

锂离子电池的工作原理

锂离子电池的工作原理

锂离子电池的工作原理引言概述:锂离子电池是一种常见的充电电池,被广泛应用于挪移设备、电动汽车等领域。

了解锂离子电池的工作原理对于我们更好地使用和维护电池具有重要意义。

本文将详细介绍锂离子电池的工作原理,包括正极、负极、电解质和电荷传输等四个方面。

一、正极的工作原理:1.1 锂离子电池的正极通常采用锂钴酸锂材料。

锂钴酸锂中的锂离子在充电时从正极材料中脱嵌,进入电解质中,形成锂离子的电荷。

1.2 充电过程中,锂离子在正极材料中的脱嵌导致正极材料的结构变化,形成锂离子的空位,这些空位在放电过程中会被重新填充。

1.3 正极材料的结构变化使得锂离子能够在充放电过程中快速地嵌入和脱嵌,实现电荷的传输。

二、负极的工作原理:2.1 锂离子电池的负极通常采用石墨材料。

在充电过程中,锂离子从电解质中嵌入负极材料的石墨层间结构中,形成锂离子的电荷。

2.2 充电过程中,锂离子在负极材料中的嵌入导致石墨层间结构的膨胀,而在放电过程中,石墨层间结构会收缩。

2.3 负极材料的膨胀和收缩使得锂离子能够在充放电过程中快速地嵌入和脱嵌,实现电荷的传输。

三、电解质的工作原理:3.1 锂离子电池的电解质通常采用有机溶液或者固体聚合物。

电解质中的离子能够在正负极之间传输锂离子的电荷。

3.2 电解质的离子传输速率决定了锂离子电池的充放电速度。

较高的离子传输速率可以提高电池的功率性能。

3.3 电解质还具有隔离正负极的作用,防止短路和电池内部反应的发生。

四、电荷传输的工作原理:4.1 锂离子电池的电荷传输主要通过电解质中的离子进行。

充电时,锂离子从正极脱嵌,通过电解质传输到负极嵌入。

放电时,锂离子从负极脱嵌,通过电解质传输到正极嵌入。

4.2 电池内部的电荷传输是通过离子的扩散和迁移来实现的。

离子的扩散是指离子在电解质中的无序运动,而离子的迁移是指离子在电场作用下的有序运动。

4.3 电荷传输的速率受到电解质的离子传输速率、电池内部电阻等因素的影响。

锂离子电池原理

锂离子电池原理

锂离子电池原理
锂离子电池是一种通过将锂离子在正负极之间的迁移来储存和释放
电能的装置。

其基本原理如下:
1. 正极反应:正极材料(通常为氧化物)在充电过程中接受电子,
并将锂离子嵌入晶格中。

例如,对于锂钴酸锂离子电池,正极反应
可以简化为:
CoO2 + Li+ + e- ⇌ LiCoO2
2. 负极反应:负极材料(通常为碳)在充电过程中释放电子,并将
锂离子从晶格中移出。

例如,对于石墨负极,负极反应可以简化为:LiC6 ⇌ Li+ + e- + 6C
3. 电解质:电解质是一种能够传导离子的介质,通常采用液体或聚
合物膜。

在锂离子电池中,离子可以通过电解质在正极和负极之间
进行迁移。

4. 充放电过程:在充电过程中,外部电源向锂离子电池提供电流,
正极材料接受电子并嵌入锂离子,同时负极材料释放电子并释放锂
离子。

在放电过程中,锂离子从正极材料迁移到负极材料,此过程
释放电能。

1
整个过程可以简化为以下方程式:
充电:LiCoO2 ⇌ Li+ + CoO2 LiC6 ⇌ Li+ + 6C
放电:Li+ + CoO2 ⇌ LiCoO2
Li+ + 6C ⇌ LiC6
2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3负极
➢负极——活性物质为石墨,或近似石墨结构的碳,导 电集流体使用厚度7-15微米的电解铜箔。
三、锂电池分类
圆池
锂离子电池
纽扣锂离子电池
2020/7/19
3.1电芯型号、规格
命名方法:按电池外观尺寸宽、厚、长 1、圆柱型18650型号,就是指电芯直径18mm长65mm。 2、方形锂离子383450型号,就是指电芯实体部分宽34mm厚3.8mm长50mm。 3、聚合物(软包)383450型号,就是指电芯实体部分宽34mm厚3.8mm长50mm。
2.1正极
➢正极——活性物质一般为磷酸铁锂(LFP)、 钴酸锂(LCO)、锰酸锂(LMO)以及三元材料: 镍钴锰酸锂(NCM)、镍锰铝酸锂(NCA)等。
正极材料选用决定锂电池名称。
2020/7/19
锂离子电池正极材料特性
2020/7/19
2020/7/19
2.2电解液
➢电解液——溶解有六氟磷酸锂的碳酸酯类溶剂,聚合 物的则使用凝胶状电解液。
LiCoO2+6C = Li(1-x)CoO2+LixC6
➢充电要求:额定电流1C/3,最大持续90A,峰值200A(30S)。
2020/7/19
1.2放电原理
➢ 锂电池充电原理:当电池放电时,形成阳极的碳材料中的锂离子经 过隔膜移动到阴极材料(锂化合物)中,一个放电电流过。。
放电正极上发生的反应为 Li1-xFePO4+ xLi ++ xe- →LiFePO4 放电负极上发生的反应为
3.8mm 18m m
65m m
圆柱型18650电芯 2020/7/19
50mm
34mm
方形锂离子383450电芯
50mm
34mm
3.8mm
聚合物(软包)383450
四、锂电池特性
A B C
D
2020/7/19
过充电危险:过充超过电池电压上限,会 导致电池内部温度过高,会引起电池燃烧 爆炸。 过。放电危险:锂电池内部存储电能是靠电 化学一种可逆的化学变化实现的,过度的 放电会导致这种化学变化有不可逆的反应 发生,因此锂电池最怕过放电,一旦放电 电压低于2.7V,将可能导致电池报废。
2020/7/19
吉利帝豪EV
奇瑞小蚂蚁 2020/7/19
比较常见纯电动车续航里程列举:
电动车名称
吉利帝豪EV 奇瑞eQ1小蚂蚁
蔚来ES8 特斯拉Model 3 特斯拉Model S
电池能量 (KWh)
52 32 70 75 100
续航里程 (Km)
400 251 355 453 613
蔚来ES8 特斯拉Model 3
目录

锂离子电池工作原理

锂离子电池组成部分

锂离子电池分类

锂离子电池特性

锂电池性能参数识别
一、锂离子电池原理
2020/7/19
1.1充电原理
➢锂电池充电原理:锂离子电池为锂合金金属氧化物为正极材料的电池。 充电正极上发生的反应为
LiCoO2==Li(1-x)CoO2+XLi++Xe充电负极上发生的反应为 6C+XLi++Xe- = LixC6 充电电池总反应:
特斯拉Model S
五、锂电池参数识别
常用单位: 标称容量:mAh(毫安时) 开路电压:V(伏) 交流阻值:mΩ(毫欧) 电流:A(安培) 放电倍率:C
2020/7/19
十大电池生产厂家: ➢ 1、力神LISHEN(天津力神电池股份有限公司) ➢ 3、比克BAK(深圳市比克电池有限公司) ➢ 2、比亚迪IT(比亚迪股份有限公司) ➢ 4、新能源ATL(东莞新能源科技有限公司) ➢ 5、亿纬EVE(惠州亿纬锂能股份有限公司) ➢ 6、中航锂电(中国航空工业集团公司) ➢ 7、德赛电池Desay(惠州市德赛集团有限公司) ➢ 8、飞毛腿SCUD(飞毛腿(福建)电子有限公司 ➢ 9、Panasonic松下(松下电器(中国)有限公司) ➢ 10、光宇COSLIGHT(哈尔滨光宇集团股份有限公司)
2020/7/19
2020/7/19
电流过大:锂离子通过隔膜超过可通行限制,过大的电流导致电池内部发热, 有可能会造成永久性的损害。
2020/7/19
影响锂离子电池循环寿命的因素有很多,但其内在的根 本原因,还是参与能量转移的锂离子数量在不断减少。 需要注意的是,电池当中的锂元素总量并未减少,而是 “活化”的锂离子少了,它们被禁锢在了其他地方或活 动的通道被堵塞了,不能自由的参与循环充放电的过程。 循环次数有限: 锰酸锂的300次左右 钴酸锂的500次左右 磷酸亚铁锂的2000次左右。
LixC6 → xLi + xe + 6C 充电电池总反应: Li(1-x)CoO2+LixC6=LiCoO2+6C
➢ 充电要求:额定电流1C/3,最大持续1C,峰值250A(30S)。
2020/7/19
二、锂电池组成部分
正极
组 成
隔膜


电解液
负极 外壳
锂盐 溶剂
钢壳 铝壳 铝塑膜
2020/7/19
相关文档
最新文档