减速器装配图底图的设计毕业设计

减速器装配图底图的设计毕业设计
减速器装配图底图的设计毕业设计

减速器装配图底图的设计

6.1 概述

减速器装配图是表达各种机械零件结构、形状、尺寸及相互关系的图样,也是减速器进行组装、调试、维护和使用的技术依据。由于减速器装配图的设计及绘制过程比较复杂,为此必须先进行装配底图(又称装配草图)的设计,经过修改完善后再绘制装配工作图。装配底图的设计过程即为装配图的初步设计。

装配底图的设计内容包括确定减速器总体结构及所有零件间的相互位置;确定所有零件的结构尺寸;校核主要零件的强度、刚度。在装配底图设计过程中绘图和计算常常交叉进行,即采用“边画、边算、边改”的设计方法。装配底图的设计是全部设计过程中最重要的阶段,减速器结构基本在此阶段确定。为了保证设计过程的顺利进行,需注意装配底图绘制的顺序,一般是先绘制主要零件,再绘制次要零件;先确定零件中心线和轮廓线,再设计其结构细节;先绘制箱内零件,再逐步扩展到箱外零件;先绘制俯视图,再兼顾其他视图。

初步完成装配底图的设计后,要认真、细致地进行检查,对错误或不合理的设计要做进一步的改进。在校核计算完成并经过指导教师审核后才能绘制减速器装配工作图。装配底图是考核评定课程设计成绩的主要依据之一。只有做好底图设计,才能设计出满足要求、方便实用、结构合理、安全可靠的减速器。

6.2 绘制底图前的准备工作

在绘制减速器装配底图之前,应进行减速器拆装实验或观看有关减速器录像,认真读懂一张减速器装配图(单级或双级),以便加深对减速器各零、部件的功能、结构和相互关系的认识,为正确绘制减速器底图做好准备。此外,还应完成以下几项工作。

6.2.1 确定各级传动零件的主要尺寸和参数

传动零件(如齿轮或蜗杆、蜗轮等)是减速器的中心零件,轴系部件、箱体结构及其他附件都是围绕着如何固定传动零件、支撑传动零件或保障其正常工作进行的。在绘制减速器装配底图之前,首先要确定传动零件的主要尺寸,如齿轮传动的中心距、分度圆直径、齿顶圆直径、齿轮宽度等。

6.2.2 初步考虑减速器箱体结构、轴承组合结构

减速器箱体结构和尺寸对箱内、箱外零件的大小都有着重要的影响。在绘制减速器底

44 图之前,应对箱体结构形式、主要结构尺寸予以考虑。还应根据载荷的性质、转速及工作要求,对轴承类型、轴承的固定定位方式、轴承间隙调整、轴承的装拆、轴承配合、支承的刚度与同轴度及润滑和密封等问题予以考虑。

一般用途的减速器的箱体采用铸铁制造,对受较大冲击载荷的重型减速器可采用铸钢制造,单件生产的减速器可采用钢板焊接而成。通常齿轮减速器箱体都采用沿齿轮轴线水平剖分式的结构。对蜗杆减速器也可采用整体式箱体的结构。图6-1、图6-2、图6-3 及图5-l 所示为常见的铸造箱体结构图,其各部分结构尺寸按表6-l 确定。

图6-1 双级圆柱齿轮减速器

45

图6-2 圆锥-圆柱齿轮减速器

图6-3 蜗杆减速器

表6-l 减速器铸造箱体的结构尺寸

46

47

注:1.式中a 值:对圆柱齿轮传动、蜗杆传动为中心距;对锥齿轮传动为大、小齿轮节圆半径之和;对

多级齿轮传动则为低速级中心距。当算出的δ、1δ值小于8mm 时,应取8mm 。

2.?与减速器的级数有关:单级减速器,取?=1;双级减速器,取?=3;三级减速器,取?=5。 3.0.025~0.03:软齿面为0.025;硬齿面为0.03。

6.2.3考虑减速器装配图的布图

在课程设计中,为了加强绘图真实感,培养学生在工程图样上判断结构尺寸的能力,应优先选用1∶1的比例尺,其次选用1∶2的比例尺,用0号或1号图纸绘制。

减速器装配图一般多用3个视图(必要时另加剖视图或局部视图)来表达。在开始绘图之前,可根据减速器内传动零件的特征尺寸(如齿轮中心距a ),参考类似结构,估计减速器的外廓尺寸,并考虑标题栏、零件明细表、零件序号、标注尺寸及技术条件等所需的空间,做好图面的合理布局。图6-4所示的为减速器装配图的图面布置,可供设计时参考。

图6-4 装配图的图面布置

48 6.3 减速器装配底图的绘制(第一阶段)

6.3.1设计内容

本阶段的主要设计内容有:进行轴的结构设计,确定轴承的型号、轴的支点距离和作用在轴上零件的力的作用点,进行轴的强度、键联接的强度和轴承的寿命计算等。

6.3.2初绘减速器装配底图

初绘减速器装配底图的主要任务是初绘减速器的俯视图和部分主视图。下面以圆柱齿轮减速器为例说明底图的绘制步骤:

1.画出传动零件的中心线

先画主视图的各级轴的轴线,然后画俯视图的各轴线。

2.画出齿轮的轮廓

先在主视图上画出齿轮的节圆和齿顶圆,然后在俯视图上画出齿轮的齿顶圆和齿宽。为了保证啮合宽度和降低安装精度的要求,通常小齿轮比大齿轮宽5~10mm。其他详细结构可暂时不画出(见图6-5)。双级圆柱齿轮减速器可以从中间轴开始,中间轴上的两齿轮端面间距为8~15mm。然后,再画高速级或低速级齿轮。

图6-5 双级圆柱齿轮减速器传动件、轴承座及内壁位置绘制

49

3.画出箱体的内壁线

先在主视图上,距大齿轮齿顶圆1?≥1.2δ的距离画出箱盖的内壁线,取1δ为壁厚,画出部分外壁线,作为外廓尺寸。然后画俯视图,按小齿轮端面与箱体内壁间的距离2?≥δ的要求,画出沿箱体长度方向的两条内壁线。沿箱体宽度方向,只能先画出距低速级大齿轮齿顶圆1?≥1.2δ的一侧内壁线。高速级小齿轮一侧内壁涉及箱体结构,暂不画出,留到画主视图时再画(见图6-5、图6-6)。

4.确定轴承座孔宽度L ,画出轴承座的外端线

轴承座孔宽度L 一般取决于轴承旁联接螺栓M 1d 所需的扳手空间尺寸1c 和2c ,(1c +2c )即为凸台宽度。轴承座孔外端面需要加工,为了减少加工面,凸台还需向外凸出5~8mm 。因此,轴承座孔总宽度L =1δ+1c +2c +(5~8)mm (见图6-5和图6-6)。

图6-6 双级圆柱齿轮减速器初绘装配底图

5.轴的结构设计

轴的结构主要取决于轴上零件、轴承的布置、润滑和密封,同时还要满足轴上零件定位正确、固定牢靠、装拆方便、加工容易等条件。一般情况下,轴常设计成阶梯轴,如图

50 6-7所示。

图6-7 阶梯轴的结构

轴的结构设计,通常按下述步骤来完成: (1)轴的径向尺寸的确定

阶梯轴各段径向尺寸,应满足轴有足够的强度、便于轴上零件、定位、固定、安装等要求进行确定,首先以式(4-1)初步确定的轴径作为轴的最小轴径,再根据上述要求,确定轴的各段径向尺寸。

①安装标准件处的直径的确定,安装标准件(如滚动轴承、联轴器、密封圈等)部位的轴径,应取为相应的标准值及所选配合的公差。如图6-7中所示的直径3d 、8d 必须等于滚动轴承的内径。

②有配合要求的零件处的直径的确定,与一般回转零件(如齿轮、带轮和凸轮等)相配合的轴段,其直径(如图6-7中直径5d )应与相配合的零件毂孔直径相一致,且为标准轴径(见表6-2,且尽可能取整数值)。

表6-2 标准轴径系列(摘自GB 2822-1981)

10 11.2 12.5 13.2 14 15 16 17 18 19 20 21.2 22.4 23.6 25 26.5 28 30 31.5 33.5 35.5 37.5 40 42.5 45 47.5 50 53 56 60 63 67 71 75 80 85 90 95 100 106 112 118 125 132 140 150 160 170

③非配合轴段的直径(如图6-7中直径4d )可取非标准轴径,但为了轴上零件装拆方便或加工需要,相邻轴段直径之差应取1~3mm ,且尽可能取为整数。

④起着零件定位作用的轴肩或轴环,为了使零件紧靠定位面(见图6-8),轴肩和轴环的圆角半径r 应小于零件毂孔圆角半径R 或倒角C 1,轴肩和轴环高度h 应比R 或C 1稍大,

51

通常可取h =(0.07~0.1)d (d 为与零件相配处的轴径),r =(0.67~0.75)h ;滚动轴承所用轴肩的高度应根据第15章轴承安装直径尺寸来确定。轴环的宽度一般可取为b =1.4 h 或(0.1~0.15)d 。

图6-8 轴肩和轴环的定位

零件毂孔圆角半径和倒角的尺寸见表6-3。

表6-3 零件毂孔圆角半径R 和倒角C 1的尺寸(单位mm )

另外,需要磨削加工或车制螺纹的轴段,应设计相应的砂轮越程槽或螺纹退刀槽。 (2)轴的轴向尺寸的确定

考虑轴上零件的宽度,零件的拆装、定位,根据轴上安装的零件(如齿轮、轴承等)和相关零件(如箱体轴承座孔、轴承盖等)的布局确定出各轴长度。

①与滚动轴承相配合的轴段,其长度(如图6-7中直径8d 处)应等于滚动轴承的宽度。

②当用套筒或挡油盘等零件来固定轴上零件时,轴端面与套筒端面或轮毂端面之间应留有2~3mm 的间隙,即轴段长度小于轮毂宽度2~3mm (如图6-7中直径5d 右端处),以防止加工误差使零件在轴向固定不牢靠。当轴的外伸段上安装联轴器、带轮、链轮时,为了使其在轴向固定牢靠,也需作同样处理(如图6-7中直径1d 右端处)。

③轴段在轴承座孔内的结构和长度与轴承的润滑方式有关。轴承用脂润滑时,为了便于安装挡油盘,轴承的端面距箱体内壁的距离B 为10~15mm (见图5-12);轴承用油润滑时,轴承的端面距箱体内壁的距离B 为3~5mm (见图6-6)。

④轴上的平键的长度应短于该轴段长度5~10mm ,键长要圆整为标准值。键端距零件装入侧轴端距离一般为2~5mm ,以便安装轴上零件时使其键槽容易对准键。

52 ⑤轴的外伸长度与轴上零件和轴承盖的结构有关。如图6-9所示,轴上零件端面距轴承盖的距离为A 。如轴端安装弹性套柱销联轴器,A 必须满足弹性套和柱销的装拆条件,如图6-9(a )所示。如采用凸缘式轴承盖,则A 至少要大于或等于轴承盖联接螺钉的长度,如图图6-9(b )所示。当外接零件的轮毂不影响螺钉的拆卸,如图6-9(c )所示或采用嵌入式端盖时,箱体外旋转零件至轴承盖外端面或轴承盖螺钉头顶面距离4l 一般不小于10~15mm 。

图6-9 外伸轴段零件的安装结构

6.画出轴、滚动轴承和轴承盖的外廓

按照以上6个步骤就可以初步绘出减速器装配底图(见图6-6)。

6.3.3轴、滚动轴承及键联接的校核计算

1.确定轴上力作用点及支点跨距

在轴的结构设计完成后,由轴上传动零件和轴承的位置可以确定轴上受力的作用点和轴的支承点之间的距离。传动件的力作用点可取在传动零件宽度中点。支承点位置是由轴承类型确定的,向心轴承的支承点可取在轴承宽度的中点,角接触轴承的支承点可查轴承标准确定(见第15章)。确定出传动零件的力作用点及轴的支承点距离后,便可以进行轴、轴承和键联接的校核计算。

2.轴的校核计算

根据装配底图确定出的轴的结构,轴承支点及轴上零件力的作用点位置,可画出轴的受力图,进行轴的受力分析并绘制弯矩图、扭矩图和当量弯矩图,然后判定轴的危险截面,进行轴的强度校核计算。

减速器各轴是转轴,一般按弯扭组合变形强度条件进行计算;对于载荷较大、轴径小、应力集中严重的截面(如轴上有键槽、螺纹、过盈配合及尺寸变化处),再按疲劳强度对危险截面进行安全系数校核计算。

如果校核结果不满足强度要求,应对轴的一些参数和轴径、圆角半径等作适当修改,

如果轴的强度余量较大,也不必立即改变轴的结构参数,待轴承和键的校核计算完成后,

毕业设计论文二级减速器

安徽理工大学继续教育学院 毕业设计 题目二级直齿圆柱齿轮减速器 系别 专业机械电子工程 班级 09 姓名汪凡凯 学号 指导教师 日期 2011年5月

摘要 齿轮传动是现代机械中应用最广的一种传动形式。它由齿轮、轴、轴承及箱体组成的齿轮减速器,用于原动机和工作机或执行机构之间,起匹配转速和传递转矩的作用。齿轮减速器的特点是效率高、寿命长、维护简便,因而应用极为广泛。 本设计讲述了带式运输机的传动装置——二级圆柱齿轮减速器的设计过程。首先进行了传动方案的评述,选择齿轮减速器作为传动装置,然后进行减速器的设计计算(包括选择电动机、设计齿轮传动、轴的结构设计、选择并验算滚动轴承、选择并验算联轴器、校核平键联接、选择齿轮传动和轴承的润滑方式九部分内容)。运用AutoCAD软件进行齿轮减速器的二维平面设计,完成齿轮减速器的二维平面零件图和装配图的绘制。 关键词:齿轮啮合轴传动传动比传动效率

目录 1、引言 (1) 2、电动机的选择 (2) 2.1. 电动机类型的选择 (2) 2.2.电动机功率的选择 (2) 2.3.确定电动机的转速 (2) 3、计算总传动比及分配各级的传动比 (4) 3.1. 总传动比 (4) 3.2.分配各级传动比 (4) 4、计算传动装置的传动和动力参数 (5) 4.1.电动机轴的计算 (5) 4.2.Ⅰ轴的计算(减速器高速轴) (5) 4.3.Ⅱ轴的计算(减速器中间轴) (5) 4.4.Ⅲ轴的计算(减速器低速轴) (6) 4.5.Ⅳ轴的计算(卷筒轴) (6) 5、传动零件V带的设计计算 (7) 5.1.确定计算功率 (7) 5.2.选择V带的型号 (7) 5.3.确定带轮的基准直径d d1 d d2 (7) 5.4.验算V带的速度 (7) 5.5.确定V带的基准长度L d 和实际中心距a (7) 5.6.校验小带轮包角ɑ 1 (8)

一级圆柱齿轮减速器装配图(最好有尺寸标注)和设计说明书

仅供参考一、传动方案拟定第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器(1)工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。(2)原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;滚筒直径D=220mm。运动简图二、电动机的选择1、电动机类型和结构型式的选择:按已知的工作要求和条件,选用Y系列三相异步电动机。2、确定电动机的功率:(1)传动装置的总效率:η总=η带×η2轴承×η齿轮×η联轴器×η滚筒=0.96×0.992×0.97×0.99×0.95 =0.86 (2)电机所需的工作功率:Pd=FV/1000η总=1700×1.4/1000×0.86 =2.76KW 3、确定电动机转速:滚筒轴的工作转速:Nw=60×1000V/πD =60×1000×1.4/π×220 =121.5r/min 根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2430r/min 符合这一范围的同步转速有960 r/min 和1420r/min。由【2】表8.1查出有三种适用的电动机型号、如下表方案电动机型号额定功率电动机转速(r/min)传动装置的传动比KW 同转满转总传动比带齿轮 1 Y132s-6 3 1000 960 7.9 3 2.63 2 Y100l2-4 3 1500 1420 11.68 3 3.89 综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。 4、确定电动机型号根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y100l2-4。其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2。 三、计算总传动比及分配各级的传动比1、总传动比:i总=n电动/n筒=1420/121.5=11.68 2、分配各级传动比(1)取i带=3 (2)∵i总=i齿×i 带π∴i 齿=i总/i带=11.68/3=3.89 四、运动参数及动力参数计算1、计算各轴转速(r/min)nI=nm/i带=1420/3=473.33(r/min) nII=nI/i齿=473.33/3.89=121.67(r/min) 滚筒nw=nII=473.33/3.89=121.67(r/min) 2、计算各轴的功率(KW)PI=Pd×η带=2.76×0.96=2.64KW PII=PI×η轴承×η齿轮=2.64×0.99×0.97=2.53KW 3、计算各轴转矩Td=9.55Pd/nm=9550×2.76/1420=18.56N?m TI=9.55p2入/n1

蜗杆减速器及其零件图和装配图(完整)

前言 在本学期临近期末的近半个月时间里,学校组织工科学院的学生开展了锻炼学生动手和动脑能力的课程设计。在这段时间里,把学到的理论知识用于实践。 课程设计每学期都有,但是这次和我以往做的不一样的地方:单独一个人完成一组设计数据。这就更能让学生的能力得到锻炼。但是在有限的时间里完成对于现阶段的我们来说比较庞大的“工作”来说,虽然能够按时间完成,但是相信设计过程中的不足之处还有多。希望老师能够指正。总的感想与总结有一下几点: 1.通过了3周的课程设计使我从各个方面都受到了机械设计的 训练,对机械的有关各个零部件有机的结合在一起得到了深刻的认识。 2.由于在设计方面我们没有经验,理论知识学的不牢固,在设计 中难免会出现这样那样的问题,如:在选择计算标准件是可能会出现误差,如果是联系紧密或者循序渐进的计算误差会更大,在查表和计算上精度不够准 3.在设计的过程中,培养了我综合应用机械设计课程及其他课程 的理论知识和应用生产实际知识解决工程实际问题的能力,在设计的过程中还培养出了我们的团队精神,大家共同解决了许多个人无法解决的问题,在这些过程中我们深刻地认识到了自己在知识的理解和接受应用方面的不足,在今后的学习过程中我们会更加努力和团结。 最后,衷心感谢老师的指导和同学给予的帮助,才能让我的这次设计顺利按时完成。

目录 一.传动装置总体设计 (4) 二.电动机的选择 (4) 三.运动参数计算 (6) 四.蜗轮蜗杆的传动设计 (7) 五.蜗杆、蜗轮的基本尺寸设计 (13) 六.蜗轮轴的尺寸设计与校核 (15) 七.减速器箱体的结构设计 (18) 八.减速器其他零件的选择 (21) 九.减速器附件的选择 (23) 十.减速器的润滑 (25)

二级减速器毕业设计论文

兰州工业学院学院 毕业设计 题目二级直齿圆柱齿轮减速器系别机电工程学院 专业机械设计与制造 班级机设 姓名***** 学号****** 指导教师**** 日期2013年12月

设计任务书 题目: 带式运输机传动系统中的二级直齿圆柱齿轮减速器设计要求: 1:运输带的有效拉力为F=2500N。 2:运输带的工作速度为V=1.7m/s。 3:卷筒直径为D=300mm。 5:两班制连续单向运转(每班8小时计算),载荷变化不大,室内有粉尘。6:工作年限十年(每年300天计算),小批量生产。 设计进度要求: 第一周拟定分析传动装置的设计方案: 第二周选择电动机,计算传动装置的运动和动力参数: 第三周进行传动件的设计计算,校核轴,轴承,联轴器,键等: 第四周绘制减速器的装配图: 第五周准备答辩 指导教师(签名):

摘要 齿轮传动是现代机械中应用最广的一种传动形式。它由齿轮、轴、轴承及箱体组成的齿轮减速器,用于原动机和工作机或执行机构之间,起匹配转速和传递转矩的作用。齿轮减速器的特点是效率高、寿命长、维护简便,因而应用极为广泛。 本设计讲述了带式运输机的传动装置——二级圆柱齿轮减速器的设计过程。首先进行了传动方案的评述,选择齿轮减速器作为传动装置,然后进行减速器的设计计算(包括选择电动机、设计齿轮传动、轴的结构设计、选择并验算滚动轴承、选择并验算联轴器、校核平键联接、选择齿轮传动和轴承的润滑方式九部分内容)。运用AutoCAD软件进行齿轮减速器的二维平面设计,完成齿轮减速器的二维平面零件图和装配图的绘制。 关键词:齿轮啮合轴传动传动比传动效率

目录 1、引言 (1) 2、电动机的选择 (2) 2.1. 电动机类型的选择 (2) 2.2.电动机功率的选择 (2) 2.3.确定电动机的转速 (2) 3、计算总传动比及分配各级的传动比 (4) 3.1. 总传动比 (4) 3.2.分配各级传动比 (4) 4、计算传动装置的传动和动力参数 (5) 4.1.电动机轴的计算 (5) 4.2.Ⅰ轴的计算(减速器高速轴) (5) 4.3.Ⅱ轴的计算(减速器中间轴) (5) 4.4.Ⅲ轴的计算(减速器低速轴) (6) 4.5.Ⅳ轴的计算(卷筒轴) (6) 5、传动零件V带的设计计算 (7) 5.1.确定计算功率 (7) 5.2.选择V带的型号 (7) 5.3.确定带轮的基准直径d d1 d d2 (7) 5.4.验算V带的速度 (7) 5.5.确定V带的基准长度L d 和实际中心距a (7) 5.6.校验小带轮包角ɑ 1 (8)

蜗轮蜗杆减速器

专业综合实践(报告) 题目:一级蜗轮蜗杆减速器设计 作者:张伟强 二级学院:机械工程学院 专业班级:机械设计制造及其自动化11级2班指导教师:张玉良 职称:讲师 2015年1月22日

目录 目录...................................................................................................................... I 摘要................................................................................................. II 第1章绪论. (1) 1.1 选题的背景与意义 (1) 1.2 国内外的发展现状 (1) 1.3 本设计研究的主要内容 (2) 第2章减速器的总体设计 (3) 2.1 传动装置的总体设计 (3) 2.1.1拟订传动方案 (3) 2.1.2 电动机的选择 (3) 2.1.3 确定传动装置的传动比及其分配 (4) 2.1.4 计算传动装置的运动和动力参数 (4) 2.2 传动零件的设计计算 (5) 2.3 轴的设计 (10) 2.3.1 蜗轮轴的设计 (10) 2.3.2 蜗杆轴的设计 (12) 2.4 轴承的选择和计算 (13) 第3章三维数字化造型 (15) 3.1 创建减速器的零部件 (15) 3.2 减速器的装配过程图 (20) 3.3 减速器爆炸图 (20) 3.4 减速器总装配图 (21) 第4章结论 (22) 参考文献 (23) 致谢 (24)

(有全套图纸)蜗轮蜗杆传动减速器设计

目录 一、课程设计任务书 (2) 二、传动方案 (3) 三、选择电动机 (3) 四、计算传动装置的总传动比及其分配各级传动比 (5) 五、传动装置的运动和动力参数 (5) 六、确定蜗杆的尺寸 (6) 七、减速器轴的设计计算 (9) 八、键联接的选择与验算 (17) 九、密封和润滑 (18) 十、铸铁减速器箱主要结构尺寸 (18) 十一、减速器附件的设计 (20) 十二、小结 (23) 十三、参考文献 (23)

一、课程设计任务书 2007—2008学年第 1 学期 机械工程学院(系、部)材料成型及控制工程专业 05-1 班级课程名称:机械设计 设计题目:蜗轮蜗杆传动减速器的设计 完成期限:自 2007年 12 月 31 日至 2008年 1 月 13 日共 2 周 指导教师(签字):年月日 系(教研室)主任(签字):年月日

二、传动方案 我选择蜗轮蜗杆传动作为转动装置,传动方案装置如下: 三、选择电动机 1、电动机的类型和结构形式 按工作要求和工作条件,选用选用笼型异步电动机,封闭式结构,电压380v, Y型。 2、电动机容量 工作机所需功率 w p KW Fv p w w 30 .1 96 .0 1000 5.2 500 1000 = ? ? = = η 根据带式运输机工作机的类型,可取工作机效率96 .0 = w η。 电动机输出功率 d p η w d p p= 传动装置的总效率 4 3 3 2 2 1 η η η η η? ? ? = 式中, 2 1 η η、…为从电动机至卷筒之间的各传动机构和轴承的效率。由表10-2 KW P w 3.1 =

减速器毕业设计

设计说明书 一、前言1 (—)课程设计的目的(参照第1页) 机械零件课程设计是学生学习《机械技术》(上、下)课程后进行的一项综合训练,其主要目的是通过课程设计使学生巩固、加深在机械技术课程中所学到的知识,提高学生综合运用这些知识去分析和解决问题的能力。同时学习机械设计的一般方法,了解和掌握常用机械零部件、机械传动装置或简单机械的设计方法与步骤,为今后学习专业技术知识打下必要的基础。(二)传动方案的分析(参照第10页) 机器一般是由原动机、传动装置和工作装置组成。传动装置是用来传递原动机的运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。 本设计中原动机为电动机,工作机为皮带输送机。传动方案采用了两级传动,第一级传动为带传动,第二级传动为单级直齿圆柱齿轮减速器。 带传动承载能力较低.在传递相同转矩时,结构尺寸较其他形式大,但有过载保护的优点,还可缓和冲击和振动,故布置在传动的高速级,以降低传递的转矩,减小带传动的结构尺寸。 齿轮传动的传动效率高,适用的功率和速度范围广,使用寿命较长,是现代机器中应用最为广泛的机构之—。本设计采用的是单级直齿轮传动(说明直齿轮传动的优缺点)。 说明减速器的结构特点、材料选择和应用场合(如本设计中减速器的箱体采用水平剖分式结构,用HT200灰铸铁铸造而成)。 设计说明书 1

二、传动系统的参数设计 已知输送带的有效拉力F w =2350,输送带的速度V w =1.5,滚筒直径D=300。连续工作,载荷平稳、单向运转。 1)选择合适的电动机;2)计算传动装置的总传动比,分配各级传动比;3)计算传动装置的运动参数和动力参数。 解:1、选择电动机 (1)选择电动机类型:按工作要求和条件选取Y 系列一般用途的全封闭自扇冷鼠笼型三相异步电动机。 (2)选择电动机容量 工作机所需功率: 75.3ηw 1000=?= Vw Fw Pw ,其中带式输送机效率ηw =0.94。 电动机输出功率: 12.4== η Pw Po 其中η为电动机至滚筒、主动轴传动装置的总效率,包括V 带传动效率ηb 、一对齿轮传动效率ηg 、两对滚动轴承效率ηr 2、及联轴器效率ηc ,值 计算如下:η=ηb ·ηg ·ηr 2·ηc =0.90 由表10—1(134页)查得各效率值,代入公式计算出效率及电机输出功率。使电动机的额定功率Pm =(1~1.3)Po ,由表10—110(223页)查得电动机的额定功率Pm=5.5。 (3)选择电动机的转速 计算滚筒的转速:== D Vw nw π6095.49 根据表3—1确定传动比的范围:取V 带传动比i b =2~4,单级齿轮传动比i g =3~5,则总传动比的范围:i =(2X3)~(4X5)=6~20。 电动机的转速范围为n′=i·n w (6~20)·n w =592.94~1909.8 在这个范围内电动机的同步转速有1000r /min 和1500r /min ,综合考虑电动机和传动装置的情况,同时也要降低电动机的重量和成本,最终可确定同步转速为1000,根据同步转速确定电动机的型号为Y132M2-6,满载转速960。(223页) 型号 额定功率 满载转速 同步转速 Y132M2-6 5.5 960 1000 2、计算总传动比并分配各级传动比 (1)计算总传动比:i=n m /n W =8~14 (2)分配各级传动比:为使带传动尺寸不至过大,满足i b

各种减速器说明书及装配图完整版

一、设计题目:二级直齿圆柱齿轮减速器 1.要求:拟定传动关系:由电动机、V带、减速器、联轴器、工作机构成。 2.工作条件:双班工作,有轻微振动,小批量生产,单向传动,使用5年,运输带允许误差5%。 3.知条件:运输带卷筒转速19/min r, 减速箱输出轴功率 4.25 P=马力, 二、传动装置总体设计: 1. 组成:传动装置由电机、减速器、工作机组成。 2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均 匀,要求轴有较大的刚度。 3. 确定传动方案:考虑到电机转速高,传动功率大,将V带设 置在高速级。其传动方案如下: 三、选择电机 1.计算电机所需功率d P:查手册第3页表1-7: η-带传动效率:0.96 1 η-每对轴承传动效率:0.99 2 η-圆柱齿轮的传动效率:0.96 3 η-联轴器的传动效率:0.993 4 η—卷筒的传动效率:0.96 5 说明: η-电机至工作机之间的传动装置的总效率:

2确定电机转速:查指导书第7页表1:取V带传动比i=2 4 二级圆柱齿轮减速器传动比i=840所以电动机转速的可选范围是: 符合这一范围的转速有:750、1000、1500、3000 根据电动机所需功率和转速查手册第155页表12-1有4种适用 的电动机型号,因此有4种传动比方案如下: 综合考虑电动机和传动装置的尺寸、重量、和带传动、减速器的传动比,可见第3种方案比较合适,因此选用电动机型号为Y132M1-6,其主要参数如下: 四确定传动装置的总传动比和分配传动比:

总传动比:96050.5319 n i n = ==总卷筒 分配传动比:取 3.05i =带 则1250.53/3.0516.49i i ?== ()121.31.5i i =取121.3i i =经计算2 3.56i =1 4.56i = 注:i 带为带轮传动比,1i 为高速级传动比,2i 为低速级传动比。 五 计算传动装置的运动和动力参数: 将传动装置各轴由高速到低速依次定为1轴、2轴、3轴、4轴 01122334,,,ηηηη——依次为电机与轴 1,轴1与轴2,轴2与轴3,轴3与 轴4之间的传动效率。 1. 各轴转速:1960 314.86/min 3.05 m n n r i == =带 2各轴输入功率:101 3.670.96 3.52d p p kW η=?=?= 3各轴输入转矩: 3.67 9550955036.5.960 d d w p T N m n ==? = 运动和动力参数结果如下表: 六 设计V 带和带轮: 1.设计V 带

二级减速器毕业设计

济源职业技术学院 毕业设计 题目二级圆柱齿轮减速器的设计系别机电系 专业机电一体化技术 班级机电0602班 姓名Xxx 学号06010204 指导教师高清冉 日期2008年11月

设计任务书 设计题目: 二级圆柱齿轮减速器 设计要求: 运输带拉力 F = 3400 N 运输带速度 V = 1.3 m/s 卷筒直径 D = 320 mm 滚筒及运输带效率η=0.94 。要求电动机长期连续运转,载荷不变或很少变化。电动机的额定功率Ped稍大于电动机工作功率Pd。工作时,载荷有轻微冲击。室内工作,水份和灰份为正常状态,产品生产批量为成批生产,允许总速比误差为±4%,要求齿轮使用寿命为10年,传动比准确,有足够大的强度,两班工作制,轴承使用寿命不小于15000小时,要求轴有较大刚度,试设计二级圆柱齿轮减速器。 设计进度要求: 第一周:熟悉题目,收集资料,理解题目,借取一些工具书。 第二周:完成减速器的设计及整理计算的数据,为下步图形的绘制做准备。 第三周:完成了减速器的设计及整理计算的数据。 第四周:按照上一阶段所计算的数据,完成零部件的CAD的绘制。 第五周:根据设计和图形绘制过程中的心得体会撰写论文,完成了论文的撰写。 第六周:修改、打印论文,完成。 指导教师(签名):

摘要 齿轮传动是现代机械中应用最广的一种传动形式。它的主要优点是: ①瞬时传动比恒定、工作平稳、传动准确可靠,可传递空间任意两轴之间的运动和动力; ②适用的功率和速度范围广; ③传动效率高,η=0.92-0.98; ④工作可靠、使用寿命长; ⑤外轮廓尺寸小、结构紧凑。由齿轮、轴、轴承及箱体组成的齿轮减速器,用于原动机和工作机或执行机构之间,起匹配转速和传递转矩的作用。齿轮减速器的特点是效率高、寿命长、维护简便,因而应用极为广泛。齿轮减速器按减速齿轮的级数可分为单级、二级、三级和多级减速器几种;按轴在空间的相互配置方式可分为立式和卧式减速器两种;按运动简图的特点可分为展开式、同轴式和分流式减速器等。单级圆柱齿轮减速器的最大传动比一般为8~10,作此限制主要为避免外廓尺寸过大。若要求i>10时,就应采用二级圆柱齿轮减速器。二级圆柱齿轮减速器应用于i:8~50及高、低速级的中心距总和为250~400mmm的情况下。 本设计讲述了带式运输机的传动装置——二级圆柱齿轮减速器的设计过程。首先进行了传动方案的评述,选择齿轮减速器作为传动装置,然后进行减速器的设计计算(包括选择电动机、设计齿轮传动、轴的结构设计、选择并验算滚动轴承、选择并验算联轴器、校核平键联接、选择齿轮传动和轴承的润滑方式九部分内容)。运用AutoCAD软件进行齿轮减速器的二维平面设计,完成齿轮减速器的二维平面零件图和装配图的绘制。 关键词:齿轮啮合轴传动传动比传动效率

减速器零件装配全图

一、减速器的工作原理 减速机一般用于低转速大扭矩的传动设备,把电动机.内燃机或其它高速运转的动力通过减速机的输入轴上的齿数少的齿轮啮合输出轴上的大齿轮来达到减速的目的,普通的减速机也会有几对相同原理齿轮达到理想的减速效果,大小齿轮的齿数之比,就是传动比。 减速机是通过机械传动装置来降低电机(马达)转速,而变频器是通过改变交流电频率以达到电机(马达)速度调节的目的。通过变频器降低电机转速时,可以达到节能的目的。 减速机是一种相对精密的机械,使用它的目的是降低转速,增加转矩。它的种类繁多,型号各异,不同种类 有不同的用途。减速器的种类繁多,按照传动类型可分为齿轮减速器、蜗杆减速器和行星齿轮减速器;按照传动级数不同可分为单级和多级减速器;按照齿轮形状可分为圆柱齿轮减速器、圆锥齿轮减速器和圆锥-圆柱齿轮减速器;按照传动的布置形式又可分为展开式、分流式和同轴式减速器。 一级圆柱齿轮减速器是通过装在箱体内的一对啮合齿轮的转动实现减速运动的。动力由电动机通过皮带轮传送 到齿轮轴,然后通过两啮合齿轮(小齿轮带动大齿轮)传送到轴,从而实现减速之目的。 1 / 79

二、减速器的构造 减速器主要由传动零件(齿轮或蜗杆等)、轴、轴承、箱体及其附件所组成。现简要介绍一下减速器的构造。 1.齿轮、轴及轴承组合 小齿轮与高速轴制成一体,即采用齿轮轴结构。这种结构用于齿轮直径和轴的直径相差不大的场合。大齿轮装配在低速轴上,利用平键作周向固定。轴上零件利用轴肩、轴套和轴承盖作轴向固定。由于齿轮啮合时有轴向分力,故两轴均采用一对圆锥滚子轴承支承,承受径向载荷和轴向载荷的复合作用。轴承采用润滑油润滑,为防止齿轮啮合的热油直接进入轴承,在轴承与小齿轮之间,位于轴承座孔的箱体内壁处设有档油环。为防止在轴外伸段与轴承透盖接合处箱内润滑剂漏失以及外界灰尘、异物进入箱内,在轴承透盖中装有密封元件。图中采用接触式唇形密封圈,适用于环境多尘的场合。 2.箱体 箱体是减速器的重要组成部件。它是传动零件的基座,应具有足够的强度和刚度。箱体通常用灰铸铁铸造,对于受冲击载荷的重型减速器也可采用铸钢箱体。单件生产的减速器,为了简化工艺,降低成本,可采用钢板焊接箱体。 箱体是由灰铸铁铸造的。为了便于轴系部件的安装和拆卸,箱体制成沿轴心线水平剖分式。上箱盖和下箱座用普通螺栓联接成一整体。轴承座的联接螺栓应尽量靠近轴承座孔,而轴承座旁的凸台应具有足够的承托面,以便放置联接螺栓,并保证旋紧螺栓时需要的扳手空间。为了保证箱体具有足够的刚度,在轴承座附近加有加强肋。为了保证减速器安置在基座上的稳定性,并尽可能减少箱体底座平面的机械加工面积,箱体底座一般不采用完整的平面, 2 / 79

一级直齿减速器装配图画图顺序详解

一级直齿减速器装配图画图步骤详解 (参考图:P198、p25、p15) 第一步首先估算箱体结构的大概尺寸,(箱体长>大齿轮分度圆直径+小齿轮分度圆直径;箱体宽>输出轴全长),然后考虑采用图纸的幅面和绘制的比例,规划画图的布局空间。 第二步根据前期绘制的零件图尺寸,先在图纸区域合适位置放置输入轴,输出轴和大、小齿轮的位置,两齿轮须在分度圆处啮合。 第三步,根据轴的结构设计,画与各自轴相配合的轴承。 第四步,绘制机体内壁线,外壁线,轴承座外端面线 机体内壁线距离小齿轮的端面距离为△2≥δ,根据计算取△2=8mm,(计算见设计说明书);大齿轮齿顶圆与箱体内壁距离为△1≥δ,取△1=9.6mm, 外壁线距离内壁线距离等于壁厚δ=8mm, 轴承座外端面线距离箱体内壁的距离l2=δ+C1+C2+(8~12)mm C1、C2根据轴承端盖连接螺栓直径查表,(8~12)为区分加工面和非加工面的尺寸余量,取8mm, 轴承盖外端面距离轴承座外端面的距离为盖厚e,可查指导书P37页根据结构设计确定。 凸台的外壁线距离内壁线l1=δ+C1+C2, 第五步,画轴承端盖和密封装置,轴承端盖画法参见P37表,密封装置由于轴承采用油脂润滑,需要设计档油板,结构设计可参见P56图和,也可自由设计结构。

轴承透盖与轴颈之间的配合采用毡圈式密封,结构可参考P58图以及P146页附表设计。 第六步,按照各构件的计算尺寸和俯视图的映射关系,向上做出正视图部分。机盖、机座肋厚m1=δ1,m=δ,见表,轴承端盖螺钉直径d3,轴承端盖外径D2,机座、机盖壁厚均可按表计算求得,大齿轮外轮廓半径按P73箱体结构设计要求确定。 第七步,按照指导书P73凸台结构设计投影方法画出凸台结构,并画出轴承旁连接螺栓(间距100-150mm)和机盖与机座连接螺栓(留出扳手空间),按P74机座底凸缘结构设计机座。按P73绘制小齿轮一端的外轮廓半径,使得外轮廓圆弧超过轴承旁凸台,便于形状的设计。至此,箱体整体外观轮廓设计基本完成。 第八步,补画细部结构,如窥视孔盖板,通气器,油标、油塞、定位销、启盖螺钉、吊环、吊钩,结构尺寸见P133介绍。绘制减速器油沟(p19)结构。 第九步,按投影关系画左视图,标注尺寸,完成整图设计.

单级蜗轮蜗杆减速器

机械设计基础课程设计 说明书 设计题目:单级蜗轮蜗杆减速器 所在学院:能源与动力工程学院 专业班级:核工1001 学生姓名:陈剑波

目录 1、机械设计课程任务书 (2) 2、运动学和动力学的计算 (5) 3、传动件的设计计算 (7) 4、蜗杆副上作用力的计算 (10) 5、减速器箱体的主要结构尺寸 (11) 6、蜗杆轴的设计计算 (12) 7 、键连接的设计 (17) 8、轴、滚动轴承及键连接校核计算 (17) 9、低速轴的设计与计算 (19) 10 、键连接的设计 (25) 11、润滑油的选择 (25) 12、减速器附件的选择 (26)

设计任务书一、传动方案 二、工况及有关参数 带的圆周力F(N) 传送带速度 V(m/s) 滚筒直径D (mm) 5500 0.125 400 工作条件:带式输送机在常温下连续工作,单向运转;空载启动,工作载荷有轻微冲击;输送带工作速度V的允许误差为±5%;二班制(每班工作8h),要求减速器设计寿命为10年,大修为2~3年,少批量生产;三相交流电源的电压为380/220V。 已知:运输机带的圆周力:5500N 带速:0.125m/s 滚筒直径:400mm 选定传动方案为:蜗杆减速器

三、设计要求 装配图设计:1张A1(包括主视图、俯视图和左视图, 零件明细表,技术特性表,技术要求)零件图设计:2张 ①轴 ②齿轮 编写设计计算说明书 指导老师:毛宽民 2012年12月3日

2、运动学和动力学的计算 电动机的选择 初选电动机类型和结构型式 根据动力源和工作条件,并参照选用一般用途的Y 系列三相交流同步电动机,电源的电压为380V 。 电动机的容量 确定减速器所需的功率 根据已知条件,工作机所需要的有效功率为 1000Fv P W ==6875.01000 125 .05500=?kW 确定传动装置效率 查表得: 联轴器效率1η=0.99 双头蜗杆传动效率2η=0.70 一对滚动轴承效率3η=0.99 输送机滚筒效率4η=0.96 开式滚子链传动5η=0.92 估算传动系统总效率为 543 3221ηηηηηη????==.6551 工作时,电动机所需的功率为 η W d P P = = 0495.16551 .06875.0=kW 由表查表可知,满足P e ≥P d 条件的Y 系列三相交流同步6级电动机Y100L-6额定功率 P e 应取为1.5kW,960r/min 。 电动机的转速 根据已知条件,可得输送机滚筒的工作转速w n 为 097134.5400 14.30.125 6000060000≈??== D v n w πr/min w m n i n 总'=

多减速器毕业设计

一:多级减速器的工作原理及结构组成 工作原理:单级减速器就是一个主动椎齿轮(俗称角齿),和一个从动伞齿轮(俗称盆角齿),主动椎齿轮连接传动轴,顺时针旋转,从动伞齿轮贴在其右侧,啮合点向下转动,与车轮前进方向一致。由于主动锥齿轮直径小,从动伞齿轮直径大,达到减速的功能。 双级减速器多了一个中间过渡齿轮,主动椎齿轮左侧与中间齿轮的伞齿部分啮合,伞齿轮同轴有一个小直径的直齿轮,直齿轮与从动齿轮啮合。这样中间齿轮向后转,从动齿轮向前转动。中间有两级减速过程。双级减速由于使车桥体积增大,过去主要用在发动机功率偏低的车辆匹配上,现在主要用于低速高扭矩的工程机械方面。 在双级式主减速器中,若第二级减速在车轮附近进行,实际上构成两个车轮处的独立部件,则称为轮边减速器。这样作的好处是可以减小半轴所传递的转矩,有利于减小半轴的尺寸和质量。轮边减速器可以是行星齿轮式的,也可以由一对圆柱齿轮副构成。当采用圆柱齿轮副进行轮边减速时可以通过调节两齿轮的相互位置,改变车轮轴线与半轴之间的上下位置关系。这种车桥称为门式车桥,常用于对车桥高低位置有特殊要求的汽车。 按主减速器传动比档数分,可分为单速式和双速式两种。目前,国产汽车基本都采用了传动比固定的单速式主减速器。在双速式主减速器上,设有供选择的两个传动比,这种主减速器实际上又起到了副变速器的作用。 二结构组成 1、齿轮、轴及轴承组合 小齿轮与轴制成一体,称齿轮轴,这种结构用于齿轮直径与轴的直径相关不大的情况下,如果轴的直径为d,齿轮齿根圆的直径为df,则当df-d≤6~7mn时,应采用这种结构。而当df-d>6~7mn时,采用齿轮与轴分开为两个零件的结构,如低速轴与大齿轮。此时齿轮与轴的周向固定平键联接,轴上零件利用轴肩、轴套和轴承盖作轴向固定。两轴均采用了深沟球轴承。这种组合,用于承受径向载荷和不 大的轴向载荷的情况。当轴向载荷较大时,应采用角接触球轴承、圆锥滚子轴承或深沟球轴承与推力轴承的组合结构。轴承是利用齿轮旋转时溅起的稀油,进行润滑。箱座中油池的润滑油,被旋转的齿轮溅起飞溅到箱盖的内壁上,沿内壁流到分箱面坡口后,通过导油槽流入轴承。当浸油齿轮圆周速度υ≤2m/s时,应采用润滑脂润滑轴承,为避免可能溅起的稀油冲掉润滑脂,可采用挡油环将其分开。为防止润滑油流失和外界灰尘进入箱内,在轴承端盖和外伸轴之间装有密封元件。 2、箱体 箱体是减速器的重要组成部件。它是传动零件的基座,应具有足够的强度和刚度。 箱体通常用灰铸铁制造,对于重载或有冲击载荷的减速器也可以采用铸钢箱体。单体生产的减速器,为了简化工艺、降低成本,可采用钢板焊接的箱体。 灰铸铁具有很好的铸造性能和减振性能。为了便于轴系部件的安装和拆卸,箱体制成沿轴心线水平剖分式。上箱盖和下箱体用螺栓联接成一体。轴承座的联接螺栓应尽量靠近轴承

减速器装配图大齿轮零件图和输出轴零件图

第1章初始参数及其设计要求保证机构件强度前提下,注意外形美观,各部分比例协调。初始参数:功率P=,总传动比i=5

第2章 电动机 电动机的选择 根据粉碎机的工作条件及生产要求,在电动机能够满足使用要求的前提下,尽可能选用价格较低的电动机,以降低制造成本。由于额定功率相同的电动机,如果转速越低,则尺寸越大,价格越贵。粉碎机所需要的功率为kw P 8.2=,故选用Y 系列(Y100L2-4)型三相笼型异步电动机。 Y 系列三相笼型异步电动机是按照国际电工委员会(IEO )标准设计的,具有国际互换性的特点。其中Y 系列(Y100L2-4)电动机为全封闭的自扇冷式笼型三相异步电动机,具有防灰尘、铁屑或其它杂务物侵入电动机内部之特点,B 级绝缘,工作环境不超过+40℃,相对温度不超过95%,海拔高度不超过1000m,额定电压为380V,频率50HZ,适用于无特殊要求的机械上,如农业机械。 Y 系列三相笼型异步电动具有效率高、启动转矩大、且提高了防护等级为IP54、提高了绝缘等级、噪音低、结构合理产品先进、应用很广泛。其主要技术参数如下: 型号:42100-L Y 同步转速:min /1500r 额定功率:kw P 3= 满载转速:min /1420r 堵转转矩/额定转矩:)/(2.2m N T n ? 最大转矩/额定转矩:)/(2.2m N T n ? 质量:kg 3.4 极数:4极 机座中心高:mm 100 该电动机采用立式安装,机座不带底脚,端盖与凸缘,轴伸向下。

电机机座的选择 表2-1机座带底脚、端盖无凸缘Y系列电动机的安装及外型尺寸(mm)

第3章 传动比及其相关参数计算 传动比及其相关参数的分配 根据设计要求,电动机型号为Y100L2-4,功率P=3kw ,转速n=1420r/min 。输出端转速为n=300r/min 。 总传动比: 73.4300 14401 === n n i ; (3-1) 分配传动比:取3=D i ; 齿轮减速器: 58.13 73 .4=== D L i i i ; (3-2) 高速传动比: 5.158.14.14.112=?==L i i ; (3-3) 低速传动比: 05.15 .158 .11223=== i i i L 。 (3-2) 运动参数计算 3.2.1 各轴转速 电机输出轴: min /1420r n n D == 轴I : min /33.4733 1420 1r i n n D === (3-4) 轴II : min /6.3155 .133.4731212r i n n === (3-4) 轴III :

二级减速器的设计 毕业设计

二级减速器的设计毕业设计

毕业设计说明书二级减速器的设计 班级:学号: 姓名: 软件学院 学院: 软件工程

专业: 袁文武李秀玲 指导教师: 2014年 6 月 二级减速器的设计 摘要 减速器是一种利用封闭在刚性壳内的齿轮的速度转换装置。它已经有很长的应用历史了,作为传动机械行业中的一个重要的分支,减速器在很多行业中扮演了越来越重要的角色。随着现代工业的快速发展,人们对减速器提出了很多更高的要求,其主要是针对更高的功率容量、更短的研发周期、转矩范围大、设计形式多样、高寿命高可靠性等。但是当前减速器普遍存在着体积大、重量大,或者传动比大而机械效率过低的问题。国外的减速器,以丹麦、日本和德国等国家处于领先地位,尤其是在材料和制造工艺等方面占有很大的优势,是器减速器的可靠性和使用寿命的性能受广泛好评。国内减速器多以齿轮传动、蜗杆传动为主,但普遍存在着功率与重量比小,或者传动比大而机械效率过低的问题。同时,由于材料品质和工艺水平相对较弱,使减速器(尤其是大型减速器)存在较多问题,使用寿命较短。所以,发展减速器技术对于发展我国机械工业有着至关重要的意义。随着中国从“制造大国”向“制造强国”的转变,国民经济重点行业核心制造领域对装备制造设备的要求更高,则对机械制造设备中的减速器的要求也就更高。 本文介绍了减速器的概念及意义和参数化设计的概念及意义,完成了对二级减速器的设计,主要设计内容如下:首先,从二级减速器传动方案整体设计出发对电动机进行选择、并计算传动装置的运动和动力参数;其次,分别对二级减速器的相关部件进行设计,包括传动件的设计计算,轴的设计计算、滚动轴承的选择及计算、键联接的选择及校核计算、联轴器的选择、减速器附件的选择和润滑与密封等。根据设计计算的结果和设计期间所得的资料进行归纳、分析,得出了自己的结论和见解。

二级圆柱齿轮减速器毕业设计说明书

目录 一课程设计书2二设计要求2三设计步骤2 1. 传动装置总体设计方案 2 2. 电动机的选择 4 3. 确定传动装置的总传动比和分配传动比 5 4. 计算传动装置的运动和动力参数 5 5. 设计V带和带轮 6 6. 齿轮的设计 8 7. 滚动轴承和传动轴的设计 18 8. 键联接设计 25 9. 箱体结构的设计 25 10.润滑密封设计 28 11.联轴器设计 28四设计总结29五参考资料29

一. 课程设计书 设计课题: 设计一用于带式输送机。输送机每天单班制工作,每班工作8小时,每年按260天计算。轴承寿命为齿轮寿命的1/3∽1/4。 表一: 二. 设计要求 1.减速器装配图一张(A0)。 绘制中间轴零件图各一张(A1)。 3.设计说明书一份。 三. 设计步骤 1. 传动装置总体设计方案 2. 电动机的选择 3. 确定传动装置的总传动比和分配传动比 4. 计算传动装置的运动和动力参数 5. 设计V带和带轮 6. 齿轮的设计 7. 滚动轴承和传动轴的设计 8. 键联接设计 9. 箱体结构设计 10. 润滑密封设计 11. 联轴器设计 1.传动装置总体设计方案: 1. 组成:传动装置由电机、减速器、工作机组成。 2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀,

选择V 带传动和二级圆柱斜齿轮减速器(展开式)。 传动装置的总效率a η 查手册第3页表1-7: 1η-带传动效率: 2η-每对轴承传动效率: 3η-圆柱齿轮的传动效率: 4η-联轴器的传动效率: 5η—卷筒的传动效率: 5423321ηηηηηη=a =×398.0×2 95.0××=; 1η为V 带的效率,1η为第一对轴承的效率, 3η为第二对轴承的效率,4η为第三对轴承的效率, 5η为每对齿轮啮合传动的效率(齿轮为7级精度,油脂润滑. 因是薄壁防护罩,采用开式效率计算)。

减速器装配图底图的设计毕业设计

减速器装配图底图的设计 6.1 概述 减速器装配图是表达各种机械零件结构、形状、尺寸及相互关系的图样,也是减速器进行组装、调试、维护和使用的技术依据。由于减速器装配图的设计及绘制过程比较复杂,为此必须先进行装配底图(又称装配草图)的设计,经过修改完善后再绘制装配工作图。装配底图的设计过程即为装配图的初步设计。 装配底图的设计内容包括确定减速器总体结构及所有零件间的相互位置;确定所有零件的结构尺寸;校核主要零件的强度、刚度。在装配底图设计过程中绘图和计算常常交叉进行,即采用“边画、边算、边改”的设计方法。装配底图的设计是全部设计过程中最重要的阶段,减速器结构基本在此阶段确定。为了保证设计过程的顺利进行,需注意装配底图绘制的顺序,一般是先绘制主要零件,再绘制次要零件;先确定零件中心线和轮廓线,再设计其结构细节;先绘制箱内零件,再逐步扩展到箱外零件;先绘制俯视图,再兼顾其他视图。 初步完成装配底图的设计后,要认真、细致地进行检查,对错误或不合理的设计要做进一步的改进。在校核计算完成并经过指导教师审核后才能绘制减速器装配工作图。装配底图是考核评定课程设计成绩的主要依据之一。只有做好底图设计,才能设计出满足要求、方便实用、结构合理、安全可靠的减速器。 6.2 绘制底图前的准备工作 在绘制减速器装配底图之前,应进行减速器拆装实验或观看有关减速器录像,认真读懂一张减速器装配图(单级或双级),以便加深对减速器各零、部件的功能、结构和相互关系的认识,为正确绘制减速器底图做好准备。此外,还应完成以下几项工作。 6.2.1 确定各级传动零件的主要尺寸和参数 传动零件(如齿轮或蜗杆、蜗轮等)是减速器的中心零件,轴系部件、箱体结构及其他附件都是围绕着如何固定传动零件、支撑传动零件或保障其正常工作进行的。在绘制减速器装配底图之前,首先要确定传动零件的主要尺寸,如齿轮传动的中心距、分度圆直径、齿顶圆直径、齿轮宽度等。 6.2.2 初步考虑减速器箱体结构、轴承组合结构 减速器箱体结构和尺寸对箱内、箱外零件的大小都有着重要的影响。在绘制减速器底

蜗轮蜗杆减速器

塔里木大学毕业设计 目录 一前言--------------------------------- 2 二设计题目-------------------------------4 三电动机的选择---------------------------4 四传动装置动力和运动参数 ----------------6 五蜗轮蜗杆的设计-------------------------7 六减速器轴的设计------------------------10 七滚动轴承的确定和验算------------------14 八键的选择------------------------------15 九联轴器的选择--------------------------16 十润滑与密封的设计----------------------16 十一铸铁减速器结构主要尺寸----------------16 十二小结----------------------------------17 十三感谢----------------------------------17 十四参考文献------------------------------18

一前言 机械设计课程的目的 机械设计课程设计是机械类专业和部分非机械类专业学生第一次较全面的机械设计训练,是机械设计和机械设计基础课程重要的综合性与实践性教学环节。其基本目的是: (1) 通过机械设计课程的设计,综合运用机械设计课程和其他有关先修课程的理论,结合生产实际知识,培养分析和解决一般工程实际问题的能力,并使所学知识得到进一步巩固、深化和扩展。 (2) 学习机械设计的一般方法,掌握通用机械零件、机械传动装置或简单机械的设计原理和过程。 (3) 进行机械设计基本技能的训练,如计算、绘图、熟悉和运用设计资料(手册、图册、标准和规范等)以及使用经验数据,进行经验估算和数据处理等。 机械设计课程的内容 选择作为机械设计课程的题目,通常是一般机械的传动装置或简单机械。 课程设计的内容通常包括:确定传动装置的总体设计方案;选择电动机;计算传动装置的运动和动力参数;传动零件、轴的设计计算;轴承、联轴器、润滑、密封和联接件的选择及校核计算;箱体结构及其附件的设计;绘制装配工作图及零件工作图;编写设计计算说明书。 在设计中完成了以下工作: ①减速器装配图1张(A0或A1图纸); ②零件工作图2~3张(传动零件、轴、箱体等); ③设计计算说明书1份,6000~8000字。 机械设计课程设计的步骤 机械设计课程设计的步骤通常是根据设计任务书,拟定若干方案并进行分析比较,然后确定一个正确、合理的设计方案,进行必要的计算和结构设计,最后用图纸表达设计结果,用设计计算说明书表示设计依据。 机械设计课程设计一般可按照以下所述的几个阶段进行: 1.设计准备 ①分析设计计划任务书,明确工作条件、设计要求、内容和步骤。 ②了解设计对象,阅读有关资料、图纸、观察事物或模型以进行减速器装拆试验等。 ③复习课程有关内容,熟悉机械零件的设计方法和步骤。 ④准备好设计需要的图书、资料和用具,并拟定设计计划等。 2.传动装置总体设计 ①确定传动方案——圆锥齿轮传动,画出传动装置简图。 ②计算电动机的功率、转速、选择电动机的型号。 ③确定总传动比和分配各级传动比。 ④计算各轴的功率、转速和转矩。 3.各级传动零件设计 ①减速器外的传动零件设计(带传动、链传动、开式齿轮传动等)。 ②减速器内的传动零件设计(齿轮传动、蜗杆传动等)。 4.减速器装配草图设计 ①选择比例尺,合理布置试图,确定减速器各零件的相对位置。 ②选择联轴器,初步计算轴径,初选轴承型号,进行轴的结构设计。 ③确定轴上力作用点及支点距离,进行轴、轴承及键的校核计算。 ④分别进行轴系部件、传动零件、减速器箱体及其附件的结构设计。 5.减速器装配图设计 ①标注尺寸、配合及零件序号。 ②编写明细表、标题栏、减速器技术特性及技术要求。

相关文档
最新文档