向量公式大全83635
向量公式大全

设a=(x,y),b=(x',y')。
1、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').4、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。
当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)•b=λ(a•b)=(a•λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。
②如果a≠0且λa=μa,那么λ=μ。
3、向量的的数量积定义:已知两个非零向量a,b。
作OA=a,OB=b,则角AOB称作向量a和向量b 的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。
若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。
向量公式汇总

向量公式汇总平面向量1、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣。
当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)b=λ(ab)=(aλb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。
②如果a≠0且λa=μa,那么λ=μ。
4、向量的的数量积定义:已知两个非零向量a,b。
作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作ab。
若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣。
向量的数量积的坐标表示:ab=xx'+yy'。
完整版向量公式汇总

完整版向量公式汇总向量是代数中的一种运算对象,它具有大小和方向,可以进行加减乘除等运算。
在向量的运算中,常用的有向量的加法、减法、数乘、点乘、叉乘等运算。
下面将对这些运算进行详细介绍。
1.向量的加法:向量的加法是指将两个向量相加得到一个新的向量。
设有向量a和向量b,它们的和记作a+b。
实际计算中,可以将两个向量的对应分量相加,得到的结果就是它们的和。
2.向量的减法:向量的减法是指将一个向量减去另一个向量得到一个新的向量。
设有向量a和向量b,它们的差记作a-b。
实际计算中,可以将两个向量的对应分量相减,得到的结果就是它们的差。
3.数乘:数乘是指用一个实数(标量)乘以一个向量得到一个新的向量。
设有向量a和一个实数k,则k*a是一个新的向量,它的各个分量都是原向量的对应分量乘以k。
4.向量的点乘:向量的点乘(或内积)是指将两个向量的对应分量相乘,并将乘积相加得到一个数。
设有向量a和向量b,则它们的点乘记作a·b或a∙b,计算公式为a·b=a₁*b₁+a₂*b₂+...+aₙ*bₙ。
5.向量的叉乘:向量的叉乘(或叉积)是指将两个向量的乘积得到一个新的向量。
设有向量a和向量b,则它们的叉乘记作a×b,计算公式为:a×b=,ijka₁a₂ab₁b₂b其中i、j、k是三个单位向量,分别对应x、y、z轴的方向。
计算结果是一个垂直于a和b的向量。
6.向量的模长:向量的模长是指向量从原点到其终点的距离。
设有向量a=(a₁,a₂,a₃),则它的模长记作,a,或,a,计算公式为:a,=√(a₁²+a₂²+a₃²)7.单位向量:单位向量是指模长为1的向量。
设有向量a,则它的单位向量记作â,计算公式为:â=a/,a8.平行向量:平行向量是指其方向相同或相反的向量。
设有向量a和向量b,则a和b平行的充分必要条件是它们的方向相同或相反。
9.垂直向量:垂直向量是指其乘积为0的向量。
向量公式汇总

向量公式汇总文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]向量公式汇总平面向量1、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣。
当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)b=λ(ab)=(aλb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。
②如果a≠0且λa=μa,那么λ=μ。
4、向量的的数量积定义:已知两个非零向量a,b。
作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作ab。
若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣。
向量公式汇总

向量公式汇总向量公式汇总平面向量1、向量得加法向量得加法满足平行四边形法则与三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法得运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量得减法如果a、b就是互为相反得向量,那么a=-b,b=-a,a+b=0、0得反向量为0 AB-AC=CB、即“共同起点,指向被减”a=(x,y) b=(x',y') 则a-b=(x-x',y-y')、3、数乘向量实数λ与向量a得乘积就是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。
当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a得系数,乘数向量λa得几何意义就就是将表示向量a得有向线段伸长或压缩。
当∣λ∣>1时,表示向量a得有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来得∣λ∣倍;当∣λ∣<1时,表示向量a得有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来得∣λ∣倍。
数与向量得乘法满足下面得运算律结合律:(λa)?b=λ(a?b)=(a?λb)。
向量对于数得分配律(第一分配律):(λ+μ)a=λa+μa、数对于向量得分配律(第二分配律):λ(a+b)=λa+λb、数乘向量得消去律:①如果实数λ≠0且λa=λb,那么a=b。
②如果a≠0且λa=μa,那么λ=μ。
4、向量得得数量积定义:已知两个非零向量a,b。
作OA=a,OB=b,则角AOB称作向量a与向量b 得夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量得数量积(内积、点积)就是一个数量,记作a?b。
若a、b 不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。
向量公式汇总

1、向量的加法向量公式汇总平面向量向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b 是互为相反的向量,那么a=-b,b=-a,a+b=0. 0 的反向量为0 AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则a-b=(x-x',y-y').3、数乘向量实数λ 和向量a 的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。
当λ>0 时,λa 与a 同方向;当λ<0 时,λa 与a 反方向;当λ=0 时,λa=0,方向任意。
当a=0 时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0 或a=0。
实数λ 叫做向量a 的系数,乘数向量λa 的几何意义就是将表示向量a 的有向线段伸长或压缩。
当∣λ∣>1 时,表示向量a 的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1 时,表示向量a 的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)•b=λ(a•b)=(a•λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。
② 如果a≠0且λa=μa,那么λ=μ。
4、向量的的数量积定义:已知两个非零向量a,b。
作OA=a,OB=b,则角AOB 称作向量 a 和向量 b 的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。
若a、b 不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b 共线,则a•b=+-∣a∣∣b∣。
向量的基本运算公式大全

向量的基本运算公式大全(实用版)目录1.向量的加法和减法2.向量的数乘3.向量的点积4.向量的叉积5.向量的模和夹角6.齐次坐标和变换正文一、向量的加法和减法向量的加法和减法是向量运算中最基本的运算,其定义和规则与我们熟悉的数值加减法类似。
给定两个向量 A 和 B,其加法和减法定义如下:A +B = (a1 + b1, a2 + b2, a3 + b3)A -B = (a1 - b1, a2 - b2, a3 - b3)二、向量的数乘向量的数乘是向量与标量的乘积,其结果是一个向量,其模长是原向量模长的 k 倍,方向与原向量相同或相反,k 为标量。
给定一个向量 A 和一个标量 k,其数乘定义如下:kA = (ka1, ka2, ka3)三、向量的点积向量的点积,又称内积,是一种计算两个向量之间相似度的方法。
其结果是一个标量,其值等于两个向量模长的乘积与它们的夹角的余弦值的乘积。
给定两个向量 A 和 B,其点积定义如下:A·B = |A|*|B|*cosθ四、向量的叉积向量的叉积,又称外积,是一种计算两个向量之间垂直度的方法。
其结果是一个向量,其模长等于两个向量模长的乘积与它们的夹角的正弦值的乘积,方向垂直于两个向量构成的平面。
给定两个向量 A 和 B,其叉积定义如下:A ×B = (a2*b3 - a3*b2, a3*b1 - a1*b3, a1*b2 - a2*b1)五、向量的模和夹角向量的模,又称向量的长度,是向量的一种度量,等于向量对应端点之间的距离。
给定一个向量 A,其模定义如下:|A| = √(a1^2 + a2^2 + a3^2)向量的夹角,是向量 A 与向量 B 之间的角度,其范围在 0 到π之间。
给定两个向量 A 和 B,它们的夹角定义如下:θ = arccos(A·B / (|A|*|B|))六、齐次坐标和变换齐次坐标是一种用于表示向量的简化方法,它可以将向量的三个分量表示为一个三个元素的序列。
向量公式大全

向量公式设a=〔x,y〕,b=(x',y')。
1、向量的加法向量的加法满足平行四边形法那么和三角形法那么。
AB+BC=AC。
a+b=(x+x' ,y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0AB-AC=CB.即“共同起点,指向被减〞a=(x,y)b=(x',y') 那么a-b=(x-x',y-y').4、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。
当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向〔λ>0〕或反方向〔λ<0〕上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向〔λ>0〕或反方向〔λ<0〕上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)?b=λ(a?b)=(a?λb)。
向量对于数的分配律〔第一分配律〕:(λ+μ)a=λa+μa.数对于向量的分配律〔第二分配律〕:λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。
②如果a≠0且λa=μa,那么λ=μ。
3、向量的的数量积定义:两个非零向量a,b。
作OA=a,OB=b,那么角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积〔内积、点积〕是一个数量,记作a?b。
假设a、b不共线,那么a?b=|a|?|b|?cos〈a,b〉;假设a、b共线,那么a?b=+-∣a∣∣b∣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量公式
设a=(x,y),b=(x',y')。
1、向量的加法
向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0
AB-AC=CB. 即“共同起点,指向被减”
a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').
4、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。
当λ>0时,λa与a同方向;
当λ<0时,λa与a反方向;
当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律
结合律:(λa)•b=λ(a•b)=(a•λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。
②如果a≠0且λa=μa,那么λ=μ。
3、向量的的数量积
定义:已知两个非零向量a,b。
作OA=a,OB=b,则角AOB称作向量a和向量b
的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π
定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。
若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。
向量的数量积的坐标表示:a•b=x•x'+y•y'。
向量的数量积的运算律
a•b=b•a(交换律);
(λa)•b=λ(a•b)(关于数乘法的结合律);
(a+b)•c=a•c+b•c(分配律);
向量的数量积的性质
a•a=|a|的平方。
a⊥b 〈=〉a•b=0。
|a•b|≤|a|•|b|。
向量的数量积与实数运算的主要不同点
1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。
2、向量的数量积不满足消去律,即:由 a•b=a•c (a≠0),推不出 b=c。
3、|a•b|≠|a|•|b|
4、由 |a|=|b| ,推不出 a=b或a=-b。
4、向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。
若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。
若a、b共线,则a×b=0。
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量积运算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
注:向量没有除法,“向量AB/向量CD”是没有意义的。
向量的三角形不等式
1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;
①当且仅当a、b反向时,左边取等号;
②当且仅当a、b同向时,右边取等号。
2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。
①当且仅当a、b同向时,左边取等号;
②当且仅当a、b反向时,右边取等号。
定比分点
定比分点公式(向量P1P=λ•向量PP2)
设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。
则存在一个实数λ,使向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y),则有
OP=(OP1+λOP2)(1+λ);(定比分点向量公式)
x=(x1+λx2)/(1+λ),
y=(y1+λy2)/(1+λ)。
(定比分点坐标公式)
我们把上面的式子叫做有向线段P1P2的定比分点公式
三点共线定理
若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线
三角形重心判断式
在△ABC中,若GA +GB +GC=O,则G为△ABC的重心
[编辑本段]向量共线的重要条件
若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。
a//b的重要条件是 xy'-x'y=0。
零向量0平行于任何向量。
[编辑本段]向量垂直的充要条件
a⊥b的充要条件是 a•b=0。
a⊥b的充要条件是 xx'+yy'=0。
零向量0垂直于任何向量.
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。