活性炭的制备

合集下载

活性炭的制作方法

活性炭的制作方法

活性炭的制作方法活性炭是一种由木炭、煤炭或其他有机物加热到高温,其中的有机物被氧化等热处理完成而得到的碳状物质。

它具有极大的表面积,能吸收、吸附、催化反应,具有广泛的应用。

活性炭的制作方法,可以根据其原料和制作技术的不同而分为几类,如低温热处理法、化学活性法、电弧炉活性炭制备法、高温气流活性炭制备法等。

一、低温热处理法低温热处理法是常用的活性炭制备方法,它由木炭、煤炭等可烧制物质作为原料,在不同的温度中通过慢燃烧来产生氧化作用,从而形成高活性的炭状物质。

这种方法热处理的原料温度一般在800℃~1000℃之间,制得的活性炭具有较高的吸附性和催化性能,并可应用于污水处理、空气净化、固体废弃物处理等领域。

二、化学活化法化学活化法是将无机物经过化学活化处理,形成具有活性的有机物质,再经过热处理,制成活性炭。

这种方法可以用原料更多样,如硅灰、氧化锌、膨润土等,这些有机物经过不同程度的活化后,形成含氧碳的有机物,然后在高温下加热,使其氧化、烧结,制成活性炭物质。

三、电弧炉活性炭制备法电弧炉活性炭制备法是利用空气中的电弧火焰作为激发源,将空气中的碳氧原子分子热挥发,形成一种新的含碳氧有机物,然后再经高温氧化,制成活性炭。

该法可生产出高纯度的活性炭,可用于脱硫、脱硝、污水处理等领域。

四、高温气流活性炭制备法高温气流活性炭制备法是将废弃物、燃料油和其他有机物混合粉状,然后将其通过高温气流的方法制成活性炭。

此法的活性炭吸附性能好,可制备出活性炭近体材料,具有良好的结晶性,分子量结构均衡,可应用于活性炭制剂、锂离子电池、固态电容器等领域。

以上就是活性炭的制作方法,活性炭的制作方法从原料的挑选、热处理技术到制备过程的控制,都会影响最终的活性炭性能,因此,需要根据应用场合的不同,考虑不同的原料、不同的活性炭制备方法,结合自身的实际情况,筛选出合适的活性炭。

活性炭的制备及其应用

活性炭的制备及其应用

活性炭的制备及其应用一、介绍活性炭,是一种广泛应用于化学、食品、环保、药品、水处理、冶金、电力等行业的特种材料。

它具有多孔、高比表面积、吸附性能高、化学稳定性好、耐高温、耐腐蚀等特点。

活性炭的制备和应用领域极为广泛,为了更好地利用这种材料,特在此对活性炭的制备、性质和应用进行详细介绍。

二、制备方法活性炭可以使用多种原料,包括木材、草、杏壳、椰壳、煤、石油焦等。

制备活性炭的方法也各不相同,常见的主要有物理吸附法、化学吸附法、热分解法等。

1. 物理吸附法物理吸附法是指将原料材料由固体直接转换成气态,然后在高温下去除其中的一些物质,留下对目标物质有良好吸附作用的多孔固体。

该方法的原理是对原材料进行热解,使固体原材料气化,制备出具有强吸附性能的活性炭。

这种方法有较高的环保性,且操作简单,但需要较高的能量投入和采用专业的设备。

2. 化学吸附法化学吸附法也称蒸汽活化法,是将原料经过表面修饰后再放入加热设备中高温蒸汽流化床中进行脱水和裂化。

该方法可使原材料中的各种杂质被去除,脱水效果好,制备出具有高比表面积和微孔结构的活性炭。

但该方法需要加入大量的蒸汽,效率低且成本高。

3. 热分解法热分解法是将原材料置于较高温度下打开,使它化学变化,通过燃烧或不燃烧加工原料制成碳质产物。

这种方法的成本较低,操作较为简单,但需要进行高温干燥,在生产上不太方便。

三、性质活性炭的性质主要取决于原材料,加工方法和加工工艺。

活性炭的最大特点就是其巨大的表面积。

具体的表现就是在单位重量下拥有极大的外表面积、孔道面积、和内表面积。

因此,活性炭的特性也主要体现在吸附和筛选两个方面。

作为吸附体,活性炭有以下特点:1. 可吸附大量有机物由于其大的表面积可为其他材质所不能及,且具有良好的化学稳定性,因此活性炭的吸附作用得到了广泛的应用。

2. 可操作范围广它的吸附作用能力可以从室温至接近零度下发生,也可以在高温下持续运作。

3. 可回收使用一些常见的活性炭水处理液尾部处理设备可定期清除直接回收,压缩后重新使用。

活性炭制备实验

活性炭制备实验

活性炭制备实验活性炭是一种具有多种用途的化学物质,其强大的吸附力和毒性使它受到广泛应用。

活性炭通常在水处理,有机合成,纯净制造以及污染物清除等方面有重要作用。

活性炭的典型制备方法有气相法、液相法和湿法。

气相法是活性炭制备最常用的方法,其工艺原理主要是将物料烧成气态,然后在受热延时氧化的条件下产生活性炭。

气相法可制备颗粒度比较大的活性炭,但受到含水率的影响比较大。

液相法是另一种常用的活性炭制备方法,其工艺原理是将物料烧成液态,然后在环境氧化的情况下产生活性炭。

液相法制备的活性炭颗粒度比气相法低,可以很好地调节活性炭的性能,但同时也存在含水率较高的缺点。

湿法是活性炭制备方法中最简单和最可行的方法,其工艺原理是在相对较低的温度和压力下将物料加入溶液中,然后在受热延时氧化的条件下产生活性炭。

湿法制备活性炭可以保证较低的含水率,并且活性炭的颗粒度比较小,可以很好地改善活性炭的性能。

活性炭的制备实验主要通过气相法、液相法和湿法等三种方法分别来进行。

现在,我们以气相法为例,介绍活性炭的制备实验。

首先,采用活性炭原料,如煤炭、木屑、棉籽等,将原料烧成气态。

接着,将气体和气体反应剂(如NH3、氢气、氮气、过氧化氢)混合在一起,放入受热延时氧化的反应柜,调节温度至与反应剂的氧化生成活性炭最佳的温度。

最后,将活性炭收集,并进行检测与性能评估,得出最佳的活性炭。

活性炭的制备实验除了需要具备基本的实验技能外,还要做好严格的实验安全措施,避免因反应气体的温度易变或反应气体本身易爆等因素对实验者造成危险。

活性炭具有良好的应用前景,其制备实验也是生产活性炭必不可少的环节,必须要按照要求进行严格的控制,才能够获得更好的实验效果。

活性炭制备及应用

活性炭制备及应用

活性炭的制备及应用1.活性炭的制备1.1化学活化法1.1.1氯化锌法氯化锌法制造工艺为在原料中加人重量是原料0.5~4倍、比重为1.8左右的浓氯化锌溶液并进行混合,让氯化锌浸渍,然后在回转炉中隔绝空气加热~600-700℃,由于氯化锌的脱水作用,原料里的氢和氧主要以水蒸气的形式放出,形成多孔性结构发达的炭。

1.1.2 磷酸法磷酸活化原则上是将精细粉碎的原料与磷酸溶液混合,接着混合物被烘干,并在转炉内加热到400~600℃,众所熟知的工艺过程是在较高的温度下(1 100℃)进行的。

1.2 气体活化法微波加热法制活性炭含碳原料在600℃以上的温度下进行预热处理,与水蒸气、二氧化碳、含氧气体或活化产生的气体接触,以微波直接加热,即可完成活化.但由通常活化方法能制得活性炭的煤类、石油类、木质类等原料,想用微波加热到完全活化温度是不可能的.例如煤、沥青、木材等原料,若照射微波,最初因水分发热,温度可达100℃左右,然后当水分蒸发完,发热极小,要升温到100℃以上,或不可能或需很长的时间。

1.3 药品活化和气体活化的配合使用气体活化和药品活化有时还配合起来使用.对受过药品活化处理的炭,进一步进行水蒸气活化,有时能制造出特殊细孔分布的产品,并使幅度很广的细孔数增加.用活性炭处理含有会堵塞炭的细孔的那样物质的气体时,例如,用粒状活性炭从城市煤气中吸附除去苯时,活性炭的细孔被城市煤气中的二烯烃堵塞而迅速老化.为制造这种情况下能使用的活性炭,曾应用过这种配合使用的活化方法.勒吉公司的苯佐尔邦牌活性炭就是有代表性的这类活性炭。

1.4 连续炭化活化法用比较简单的流动加热炉连续进行炭化和限制氧化活化的活性炭生产方法,并且操作省工、产品质量较好.该方法特点是:把含水率调整到l5%~30%的活性炭原料,连续地送入流动加热炉,同时由炉底鼓入适量的空气,使炉内进行炭化和限制氧化活化,在原料入炉前到载入炉时,仅向炉内送入少量火种,加上从炉的下部鼓入适量空气,促使原料部分燃烧,以便加热原料本身.炉内温度和炭化速度靠鼓入空气量和投料量进行调整.鼓风除用于原料部分燃烧和加热外,还用于使炭化过程中的粒子流态化和连续不断进行的活化反应中。

活性炭的制备和用途

活性炭的制备和用途

活性炭的制备和用途活性炭是一种具有高度孔隙度和吸附能力的化学吸附剂,由于其优异的过滤和吸附性能,在多个应用领域占有重要地位,例如治水、治污、制氧、净化大气、化学和医学等。

今天我们将探讨活性炭的制备和用途。

一、活性炭的制备活性炭的制备可分为物理法和化学法两种。

1. 物理法物理法制备活性炭是指将含碳物质(木质材料、煤炭、木炭等)在高温、空气匮乏的条件下热分解,得到活性碳。

物理法制备活性炭过程简单,能够制备出高孔隙度、高吸附性能的活性炭。

同时,制备过程对环境的影响很小。

2. 化学法化学法制备活性炭是指将含有碳的物质通过化学方法,例如浸泡、氧化、还原、部分氧化或活性化等,使其具有孔隙结构和活性表面。

化学法制备活性炭的优点在于可以通过控制制备过程的条件来获得理想的活性炭性能,例如孔径、表面化学性质和表面分布等。

二、活性炭的用途1. 水处理活性炭在水处理中具有很广泛的应用,可以去除水中不良气味、有毒有害物质、颜色和味道等。

活性炭的孔隙表面能够吸附污染物,例如重金属、有机物和氯化物等。

此外,活性炭还能够减少起泡现象并改善水的口感。

2. 空气净化活性炭在空气净化中也是一种重要的材料。

活性炭可以吸附空气中的污染物,例如挥发性有机物、苯和二氧化氮等。

将活性炭与空气过滤器结合使用,可以有效地净化室内空气。

3. 医疗用途活性炭也可用于医疗用途。

在医学上,活性炭常用于治疗急性中毒和药物过量。

活性炭可以吸附毒素,防止其被人体吸收并在排泄系统中排出。

在一些消化不良和腹泻的情况下,活性炭还能起到缓解症状的作用。

4. 食品加工在食品加工产业中,活性炭也有广泛的应用,例如去除油脂中的杂质、脱色和去除刺激性成分等。

这种方式越来越受到各种食品加工企业的青睐。

5. 其他应用领域活性炭还可以用于气体分离、催化剂载体、电容储能材料等多个应用领域。

总之,活性炭具有吸附性强、处理效果明显、日常使用方便等优点。

通过其制备工艺的改良,不断优化其性能和应用范围,活性炭在人们的日常生活和工业生产中将更加广泛地使用。

活性炭的制备与应用

活性炭的制备与应用

活性炭的制备与应用活性炭是一种非常高效的吸附材料,适用于各种领域的应用,如环境保护、工业生产、医药、食品加工等。

活性炭的制备方法有很多种,包括物理法、化学法和物理化学法等。

下面将介绍活性炭的制备方法和应用领域。

1.物理法:物理法是通过加热含有碳源的原料,使其在高温条件下缺氧炭化得到的活性炭。

常用的物料有木材、椰壳、煤炭等。

物理法制备的活性炭具有较高的孔隙度和比表面积,吸附性能较好。

2.化学法:化学法是通过在炭化过程中加入化学活性剂来制备活性炭。

常用的活性剂有磷酸等,活性剂与原料反应生成化合物,然后进行炭化处理得到活性炭。

化学法制备的活性炭具有较高的亲水性和抗酸性能。

3.物理化学法:物理化学法是综合应用物理和化学方法制备活性炭,常用的方法有物理化学激活法和沸腾法等。

在物理化学激活法中,活性炭原料在高温条件下与氧气或水蒸气反应,产生孔隙结构,增加活性炭的比表面积。

沸腾法是将活性炭原料加热至沸腾,通过瞬间脱去反应物质,制备活性炭。

活性炭的应用领域非常广泛,主要包括以下几个方面:1.环境保护:活性炭可以吸附有机物和气体中的污染物,如苯、甲醛、二氧化硫等。

它被广泛应用于空气净化、水处理和废气处理等领域,可以有效去除有害物质,提高环境质量。

2.工业生产:活性炭广泛应用于工业生产中的各个环节,如催化剂载体、分离和回收溶剂、垃圾焚烧废气净化等。

它可以增加化工反应的速度和选择性,提高生产效率。

3.医药领域:活性炭被广泛应用于医药领域的药物吸附和毒物吸附治疗。

它可以吸附体内有害物质,如药物过量、毒素等,达到解毒、治疗的效果。

4.食品加工:活性炭可以用作食品加工中的净化剂和脱色剂,可以去除食品中的色素、异味等有害物质,保持食品的质量和安全。

总之,活性炭是一种非常重要且广泛应用的材料,具有很多优良的性能。

它不仅可以帮助我们改善环境质量,保护身体健康,还可以提高工业生产效率,保障食品安全。

在未来的发展中,活性炭的应用前景将更加广阔。

活性炭的制备与表征

活性炭的制备与表征

活性炭的制备与表征活性炭是一种广泛应用的多孔性材料,具有高度的吸附能力,能够吸附有害气体和颗粒物,也可以用于净水和净化土壤,是环保领域内的重要材料之一。

本文将介绍活性炭的制备与表征。

一、活性炭的制备方法活性炭的制备方法有多种,例如麻花烟煤、木质素等物质在高温下燃烧生成的活性炭、炭化后通过化学方法激活的活性炭、从天然矿物中提取活性炭等。

其中,炭化后通过化学方法激活的活性炭技术得到了广泛应用。

该技术的步骤主要包括:1.炭化原料;2.将炭化后的原料进行化学活化;3.对活化后的原料进行水洗、脱色等处理。

在活化过程中,使用的活化剂有多种,例如氢氧化钾、氢氧化钠、磷酸等。

这些物质都能够破坏原料的晶格结构,从而增加活性炭的孔隙度和表面积。

此外,也有专门的活性炭制备设备,例如流态化床制备活性炭的设备。

该设备能够使用无氧气体对炭材料进行热解,并同时通过流态化技术激活活性炭。

二、活性炭的表征方法对于一种材料来说,准确地表征其特性是非常重要的。

接下来,将介绍几种常用的活性炭表征方法。

1. 肌电图法肌电图法是一种比表面积测试方法,其原理是利用活性炭中孔道内的气体对电极表面电位的影响进行测定,从而推导出活性炭孔隙结构的信息。

该方法适用于测试孔径小于200Å的活性炭材料。

2. 红外光谱法红外光谱法是一种使用红外光谱仪进行物质分析的方法。

其原理是通过红外光的吸收来确定特定化学键的存在。

使用此方法可以测定活性炭中非晶态有机物的含量和分布。

3. 毛细管质谱法毛细管质谱法是一种能够得出活性炭中大分子物质化学组成的方法。

活性炭中含有各种复杂的有机化合物,包括芳香烃和多环脂肪族化合物等,这些物质都是可以被毛细管质谱法检测到的。

4. SEM及TEM扫描电子显微镜(SEM)和透射电子显微镜(TEM)是现代科技在表征活性炭方面最强大的工具。

通过SEM和TEM可以直观地看到活性炭的孔隙结构和形貌,从而获取一系列有关活性炭孔隙分布和孔径大小的信息。

活性炭的合成及其应用研究

活性炭的合成及其应用研究

活性炭的合成及其应用研究活性炭是一种广泛应用于环境治理和工业生产中的材料,它由于具有大比表面积、高吸附性能、化学稳定性好和再生能力强等优良特性,受到大量关注。

本文将从合成方法及其应用方面较为详细地探讨活性炭的研究现状。

一、活性炭的合成方法1. 化学方法通过化学反应,将含有活性炭前驱体的化合物送到高温环境中的反应法被称为化学法。

该方法的优点是可以进行简单而增量化的实验,以得到目标活性炭。

但同时,该方法容易出现非均相反应,导致产物的分布不均匀。

常见的化学方法包括:一氧化碳气相反应(CO2)基于燃烧的活性炭制备法2. 物理方法物理法是通过高温下将含有活性炭前驱体的物质热解成活性炭的方法。

常见的物理方法包括:气相活性碳的制备法干法活性炭制备法3. 生物法生物法主要是以一些天然有机物(如硝酸等)为原料,通过微生物作用发酵的一种制备活性炭方法。

这种方法节约能源,低污染但时间相对较长,且容易出现非均相反应。

常见的生物法包括:菇类材料发酵活性炭制备法活性呋喃制活性炭法二、活性炭的应用领域1. 水处理领域由于活性炭具有出色的吸附能力,使其在水处理过程中得到广泛应用。

例如,将生产中的废水经过一定处理后布置活性炭吸附器进行吸附处理,可有效去除废水中的污染物,达到绿色净化的目的。

2. 空气治理领域随着工业化,现代社会中污染物不断增加。

空气污染已成为全球公共卫生问题。

活性炭因其高效吸附特性,在空气治理领域得到了广泛应用。

例如,利用活性炭吸附装置,可以过滤气态有害物,并净化空气,确保城市空气质量。

3. 医药领域活性炭在医学领域的应用也非常广泛。

例如,活性炭作为一种具有吸附能力的材料,被用作制作止泻混悬液、解毒剂等药品。

此外,活性炭还常被用于治疗肝病、肠胃病等疾病。

4. 食品加工领域作为一种常用的加工材料,活性炭被广泛应用于食品加工过程中。

例如,在葡萄酒、啤酒等酒类产品的生产过程中,通过活性炭过滤,去除其中的色素、氨基酸等成分,提高成品的质量和口感。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

活性炭的制备
1 活性炭的制备原料 (1)
2 活性炭的制备方法 (1)
3 煤基活性炭的制备方法 (2)
4 煤基活性炭中的粘结剂 (3)
1 活性炭的制备原料
活性炭的结构特性依赖于前躯体的性质、原料的炭化、活化和化学的调整条件[22]。

选择合适的原料是影响活性炭性质的一个重要因素,活性炭可用各种类型的碳质材料来制备,来源非常广泛,大体可以分为以下几类:
①有机高分子聚合物,如萨兰树脂、酚醛树脂、聚糖醇等;
②植物类,主要是利用植物的坚果壳或核,如核桃壳、杏核、椰壳等;
③煤及煤的衍生物,如各种不同煤化度的煤及其混合物。

原料的选择一般以低灰分、高含碳量以及尽可能低的挥发分为最佳。

较好的原料主要是煤(褐煤、长焰煤、烟煤、无烟煤)、木材、果壳。

由于煤来源广泛、价格低廉、制备工艺相对简单而应用较多。

煤的主要成分是碳,表面化学性质活泼,孔隙率高、比表面积大,其多孔结构有利于制成活性吸附材料。

在以煤为原料制备活性炭的技术开发方面,德国、日本、美国、俄罗斯和中国已做了大量的研究工作,并取得了一定成果。

2 活性炭的制备方法
活性炭的制备方法主要可以分为:碳化法、活化法、碳沉积法、热收缩等方法。

碳化法是将碳质原料置于惰性气氛中,以适当的热解条件得到碳化产品的方法。

其基本原理是基于加热过程中各基团、桥键、自由基和芳环等复杂的分解聚合反应,表现为碳化产物的孔隙发展、孔径的扩大和收缩。

在碳化过程中,碳质原料中的热不稳定组分以挥发分形式脱出,从而在半焦上留下孔隙。

碳化法适用于高挥发分原料,是所有其他方法的基础。

影响碳化过程的主要因素是升温速率、碳化温度与恒温时间。

采用的升温速率一般在5~15°C/min,碳化温度多在500~
1100°C,恒温时间为0.5~2h。

活化法是将碳质原料置于活性介质中加热平缓处理,以发展其孔径的方法。

其原理是基于碳质原料部分碳的烧失,使封闭的孔得以打开,从而使其孔隙结构得到发展,孔径大小达到所需要的范围。

常用的活化剂有空气、CO2、水蒸气、H3PO4、KOH、NaOH等。

工业实践中多采用简便易得的水蒸气进行活化。

活化法适用于气孔率较小且挥发分较低,或气孔率较高但孔径较小的碳质原料。

碳沉积是指在高温下通过烃类或高分子化合物的裂解,在多孔材料的孔道内积碳,以达到堵孔、调孔的作用。

其工艺复杂、操作条件严格、实际生产成本较高。

碳沉积常分为气相(CVD)与液相沉积(LVD)。

对于气相沉积过程,气体在反应炉中的浓度较均一,能有效地控制孔径,但不足之外是需外加沉积气源发生装置,还需调节流量,不利于操作;液相沉积对工艺要求较低,操作较容易。

热收缩法,即热缩聚法,是指碳质材料料经碳化、活化后,在1000~1200°C 的高温条件进一步热处理的过程,从而达到缩小孔径的目的。

还有一些制备活性炭的新工艺和方法,如等离子体法、卤化法、模板法、微波加热法等。

实际生产活性炭的工艺过程中,为了获得性能优良的活性炭,通常将以上方法综合起来应用。

一般的,制备活性炭的基本工艺如下图1,其中预处理、活化和碳沉积是选用步骤。

图1 活性炭制备步骤及工艺示意图
3 煤基活性炭的制备方法
以煤为原料制备活性炭,首先是煤的粉碎,有时候还需将煤粉进行预氧化,
接着加入粘结剂成型,干燥后送入马弗炉中经过碳化、活化和碳沉积等步骤制备出活性炭。

粉碎使原料煤的颗粒均匀,这不但可以提高煤粉与粘结剂之间的表面化学凝聚力,增加成型产品的强度,降低成型的难度,还会提高活性炭产品的空分性能[24],在制备时应尽可能降低煤颗粒的粒度,破碎愈细,制备的活性炭性能愈好,一般以颗粒通过160~200目筛为宜。

成型的目的是增加活性炭的机械强度和规则性。

煤基活性炭外观多为粒状,直径2~5mm,长度为3~5mm。

制备活性炭所用原料煤质不同,选用的制备工艺也不同。

褐煤含碳量低(60%~77%),结构疏松,有较发达的孔隙结构,挥发分含量高,受热时析出的挥发性物质如小分子物质CH4、CO2、CO、H2、H2S等有造孔作用,可不采用活化步骤,而仅采用碳化即可制活性炭。

对于胶黏性烟煤,含碳量较高(77%~93%),在细粉碎前需先进行预氧化,预氧化有破黏、扩孔、增大比表面积的作用,预氧化的时间和温度根据煤样的粒度和黏结性而定。

对于高变质程度的无烟煤,预氧化也有利于改善产品的空分性能。

对于无烟煤,则需要活化步骤,进一步扩大碳化产物的细孔容积,调整孔径和孔隙分布。

根据所分离气体的不同,有的还需要采用碳沉积、热收缩等方法,进一步调整活性炭微孔,使孔径均一化。

褐煤、烟煤和无烟煤是制备煤基活性炭的常用原料。

对于褐煤,碳化是主要的控制工序,而对于黏结性烟煤、无烟煤,预氧化破黏、活化是主要工序。

在实际制备过程中,碳沉积较难控制。

为保证煤基活性炭产品性能的稳定,采取合适的制备工艺是尤为重要的。

4 煤基活性炭中的粘结剂
粘结剂对于活性炭的性能有着重要的影响。

首先,它是影响活性炭强度最重要的因素,粘结剂靠二次炭化热解残留的炭把原料颗粒粘结在一起,因此,粘结剂必须具备:能够和原料炭粒均匀混合;较高的高温热解残碳量;炭化过程中粘结剂各组分发生交联反应,把分散的炭颗粒黏结在一起。

另外,粘结剂还影响炭主体的孔结构,粘结剂中某些辅助组分会在二次炭化时完全热解,起到造孔作用,如淀粉。

目前煤焦油是活性炭中最常用的粘结剂,它的主要特点是粘结强度高,价格便宜等。

但是在工业生产中会带来比较严重的污染问题,而且由于它本身的组成的不稳定性,会造成产品质量的波动。

其他常用的成型粘结剂还有煤焦油沥青、石油沥青、木质素配制的水溶液及亚硫酸盐纸浆废液等,其添加量因煤种的不同而有所调整,一般为23%~50%。

近年来,对采用淀粉、废糖蜜等无害新型粘结剂的研究也有报道。

实验证明,适宜的粘结剂及其加入量是影响成型活性炭性能的主要因素之一。

活化是扩孔步骤,一般是在温度500~1000°C下氧化碳质基体表面及边缘活泼碳原子,使其闭孔打开或形成新的孔隙。

常用的活化方法有两类:一类是用氯化锌、磷酸、氢氧化钾等化学品为活化剂的化学活化法;另一类是用水蒸气或二氧化碳等为活化剂的气体活化法。

活化过程对后续调孔特别重要,如果活化出的孔径过大则不利于进一步的碳沉积调孔,过小则在碳沉积的过程中会将小孔堵死,所以严格控制活化工艺条件才能够制备出适当孔径的活性炭,有利于进一步碳沉积缩孔。

相关文档
最新文档