《电力拖动自动控制系统》课程设计《变频液位自动控制系统》
电力拖动控制系统课程设计任务书

安徽工程大学课程设计说明书课程设计名称:课程设计题目:指导教师:专业班级:学生姓名:学号:起止日期:总评成绩:某金属加工机床主轴运动控制系统,采用Z2—71型直流电动机拖动,参数如下:额定功率P nom = 10 Kw额定电压U nom = 220 V额定电流I nom = 55 A额定转速n nom=1000 r.p.m飞轮矩GD2 = 1.0 Kg-m2(考虑系统总飞轮矩扩大一倍)励磁方式采用他励(220V)根据生产工艺的要求,调速系统的性能指标为:调速范围 D = 20静差率S≤5 %电动机空载起动到额定转速的时间t s≤2秒负载基本为恒转矩性质,车间交流电源为三相五线制,试设计一个满足要求的机床主轴运动不可逆调速系统。
设计内容:(1)系统方案分析、比较、选择;(2)系统主电路设计及功率元件计算、选择;(3)控制电路设计及系统动、静态参数计算;(4)绘制系统原理图设计成品:设计说明书一份,系统原理图一张(A3号图纸)某金属加工机床主轴运动控制系统,采用Z2—52型直流电动机拖动,参数如下:额定功率P nom = 7.5 Kw额定电压U nom = 440 V额定电流I nom = 20 A额定转速n nom = 1500 r.p.m电枢电阻Ra=0.3飞轮矩GD2 = 0.5 Kg-m2(考虑系统总飞轮矩扩大一倍)励磁方式采用他励(220V)根据生产工艺的要求,调速系统的性能指标为:调速范围D = 30静差率S≤10 %电动机空载起动到额定转速的时间t s≤2秒负载基本为恒转矩性质,车间交流电源为三相五线制,试设计一个满足要求的机床主轴运动不可逆调速系统。
设计内容:(1)系统方案分析、比较、选择;(2)系统主电路设计及功率元件计算、选择;(3)控制电路设计及系统动、静态参数计算;(4)绘制系统原理图设计成品:设计说明书一份,系统原理图一张(A3号图纸)某金属加工机床主轴运动控制系统,采用Z2—42型直流电动机拖动,参数如下:额定功率P nom = 2.2 Kw额定电压U nom = 180 V额定电流I nom = 15.6 A额定转速n nom= 1000 r.p.m飞轮矩GD2 = 0.4 Kg-m2(考虑系统总飞轮矩扩大一倍)励磁方式采用他励(220V)根据生产工艺的要求,调速系统的性能指标为:调速范围 D = 25静差率S≤5 %电动机空载起动到额定转速的时间t s≤2秒负载基本为恒转矩性质,车间交流电源为三相五线制,试设计一个满足要求的机床主轴运动不可逆调速系统。
电力拖动自动控制系统 教案

电力拖动自动控制系统1. 介绍1.1 任务背景电力拖动自动控制系统是一种能够通过电力传动实现自动控制的技术系统。
该系统通过电动机驱动机械传动装置,实现对机械设备的运动控制和工作过程的自动化。
在工业生产中,电力拖动自动控制系统被广泛应用于各种生产过程中,提高了生产效率、质量和安全性。
1.2 目标本教案旨在介绍电力拖动自动控制系统的原理、应用和发展趋势,帮助学生理解和掌握该技术的基本概念、工作原理和应用场景,并培养学生的动手实践能力和解决问题的能力。
2. 原理2.1 电力拖动原理电力拖动自动控制系统的核心是电动机,通过电动机的转动来驱动机械设备。
电动机将电能转化为机械能,通过机械传动装置将动力传递给工作设备。
电动机的转速和扭矩可以通过控制电机的电压、电流等参数来实现调节。
2.2 控制原理电力拖动自动控制系统通过控制电动机的参数来实现对设备的自动控制。
控制系统可以根据预设的工艺要求和工作条件,自动调节电动机的转速、运行时间等参数。
控制系统通常包括传感器、执行器、控制器和人机界面等组成部分。
3. 应用3.1 工业应用电力拖动自动控制系统在工业领域有广泛的应用,例如生产线上的输送系统、机械加工设备、装配线等。
通过电力拖动自动控制系统,可以实现设备的精确控制,提高生产效率和质量,同时减少人力投入和工作风险。
3.2 交通运输应用电力拖动自动控制系统在交通运输领域也有重要的应用。
例如,电动车、地铁、高铁等交通工具都采用了电力拖动自动控制系统来驱动车辆。
通过该系统,可以实现对车辆的自动运行、刹车和悬挂等控制,提高了交通运输的安全性和舒适性。
4. 发展趋势4.1 智能化随着人工智能和物联网技术的发展,电力拖动自动控制系统也呈现出智能化的趋势。
未来的电力拖动自动控制系统将更加智能化,能够自动学习和优化控制策略,实现更高效、更精准的控制。
4.2 节能环保电力拖动自动控制系统也将朝着节能环保的方向发展。
通过优化控制策略和节能设备的应用,可以减少能源消耗和环境污染,实现可持续发展。
电力拖动自动控制系统课程设计

电力拖动自动控制系统课程设计设计目的本课程设计旨在让学生掌握电力拖动自动控制系统的基本原理和设计方法,通过实际操作和仿真,深化对电力拖动自动控制系统的理解和应用。
设计背景电力拖动自动控制系统被广泛应用于各种工业设备和交通工具中,通过自动电控技术实现设备的高效、安全和稳定运行。
本课程设计旨在让学生通过实际操作和仿真,深化对电力拖动自动控制系统的理解和应用。
设计内容本课程设计包括以下三个部分:1. 电力拖动自动控制系统的原理本部分主要介绍电力拖动自动控制系统的基本原理,包括:•电力拖动系统的结构和组成•电力拖动系统的各种传感器和执行器的工作原理•电力拖动系统的信号处理和控制方法2. 电力拖动自动控制系统的实际操作本部分主要介绍电力拖动自动控制系统的实际运行和操作方法,包括:•电力拖动系统的系统参数和性能测试•电力拖动系统的PID控制器的参数设置和校准•电力拖动系统的自动控制模式的设置和调试3. 电力拖动自动控制系统的仿真本部分主要介绍电力拖动自动控制系统的仿真和模拟方法,包括:•电力拖动系统的MATLAB/Simulink仿真模型的建立和调试•电力拖动系统的虚拟仿真平台的使用和应用案例分析设计流程本课程设计的流程如下:1.学习电力拖动自动控制系统的基本原理和相关知识。
2.利用实际设备进行电力拖动自动控制系统的实际操作和调试。
3.利用MATLAB/Simulink软件进行电力拖动自动控制系统的仿真模拟。
4.根据仿真结果进行电力拖动自动控制系统的优化和改进。
设计要求本课程设计的要求如下:1.学生需要按要求完成每个部分的实验和作业。
2.学生需要完成一份课程设计报告,内容应涵盖各个部分,报告格式为Markdown文本格式。
3.学生需要在规定时间内提交课程设计报告,否则视为未完成课程设计。
设计评价本课程设计的评价主要考核以下方面:1.学生是否达到了课程设计目的和要求。
2.学生对电力拖动自动控制系统的掌握程度和应用能力。
《电力拖动自动控制系统》课程设计报告

《电力拖动自动控制系统》课程设计报告(1)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊目录一﹑前言 (2)1. 1设计目的 (2)1. 2设计内容 (2)二﹑伺服系统的基本组成原理及电路设 (2)1.伺服系统基本原理及系统框图 (2)三﹑调试后的图 (8)四﹑设计心得与体会 (13)五﹑参考文献 (14)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊《电力拖动自动控制系统》课程设计报告一、前言1.1设计目的和要求1.使学生进一步掌握电力拖动自动控制系统的理论知识,培养学生工程设计能力和综合分析问题、解决问题的能力;2.使学生基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力;3.熟悉并学会选用电子元器件,为以后从事生产和科研工作打下一定的基础。
1.2设计内容1、分析和设计具有三环结构的伺服系统,用绘图软件(matlab)画原理图还有波形图;2、分析并理解具有三环结构的伺服系统原理。
二﹑伺服系统的基本组成原理及电路设计2.1伺服系统基本原理及系统框图伺服系统三环的PID控制原理以转台伺服系统为例,其控制结构如图2-1所示,其中r为框架参考角位置输入信号, 为输出角位置信号.┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊图2-1 转台伺服系统框图伺服系统执行机构为典型的直流电动驱动机构,电机输出轴直接与负载-转动轴相连,为使系统具有较好的速度和加速度性能,引入测速机信号作为系统的速度反馈,直接构成模拟式速度回路.由高精度圆感应同步器与数字变换装置构成数字式角位置伺服回路.转台伺服系统单框的位置环,速度环和电流环框图如图2-2,图2-3和图2-4所示.图2-2 伺服系统位置环框图┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊图2-3 伺服系统速度环框图图2-4 伺服系统电流框图图中符号含义如下:r为位置指令;θ为转台转角;u K为PWM功率放大倍数;d K为速度环放大倍数;v K为速度环反馈系数;i K为电流反馈系数;L为电枢电感;R为电枢电阻;m K为电机力矩系数;e C为电机反电动势系数;J为等效到转轴上的转动惯量;b为粘性阻尼系数,其中J=m J+L J,b=m b+L b,m J和L J分别为电机和负载的转动惯量,m b和L b分别为电机和负载的粘性阻尼系数;f T为扰动力矩,包括摩擦力矩和耦合力矩。
电力拖动自动控制系统课程设计

二○一一~二○一二学年第二学期信息科学与工程学院课程设计报告书课程名称:电力拖动自动控制系统程设计班级:自动化2009级 2 班学号:200904134064姓名:指导教师:二○一二年六月一、题目、任务及要求题目:在一个由晶闸管整流装置供电的转速、电流双闭环调速系统中,已知电动机的额定数据为:P N=60 KW,U N=220 V,I N=308 A,n N=1000 r/min,电动势系数Ce=0.196 V∙min/t,主回路电阻R=0.18 Ω,触发整流环节的放大倍数K s=35,等效惯性时间常数T s=0.00333 s。
电磁时间常数T l=0.012 s,机电时间常数T m=0.12 s,电流反馈滤波时间常数T oi=0.0025 s,转速反馈滤波时间常数T on=0.015 s。
额定转速时的给定电压(U n∗)N=10 V,调节器ASR,ACR 饱和输出电压U im∗=10 V,U cm=6.5 V。
系统的静、动态指标为:稳态无静差,调速范围D=10,电流超调量δi≤5%,空载启动到额定转速时的转速超调量δn≤10%。
任务:1)用工程设计方法,设计双闭环调速系统的电流和转速调节器,相应的调节器放大电路,并进行频率校验。
2)用simulink进行双闭环系统性能验证。
二、设计步骤规范化要求按如下步骤,双闭环调速系统的电流和转速调节器的设计。
1. 确定电流反馈系数β(假设启动电流在339 A以内)和转速反馈系数α;2. 设计电流调节器ACR,计算其参数R i、C i和C oi,已知调节器的输入回路电阻R0=40 KΩ;3. 设计转速调节器ASR,计算其参数R n、C n和C on,已知调节器的输入回路电阻R0=40 KΩ;4. 进行频率校验;5. 计算电动机带40%额定负载启动到最低转速时的转速超调量。
6. 计算空载启动到额定转速的时间。
7. 用simulink对所设计闭环系统进行仿真验证;8. 总结本次课程设计的收获体会。
电力拖动控制系统课程设计

图3-4 双闭环直流调速系统的静特性
• 在负载电流小于Idm时表现为转速无静差,转速 负反馈起主要调节作用。 • 当负载电流达到Idm时,转速调节器为饱和输出 U*im,电流调节器起主要调节作用,系统表现为 电流无静差。 • 采用两个PI调节器形成了内、外两个闭环的效果。 • 当ASR处于饱和状态时,Id=Idm,若负载电流减 小,Id<Idm,使转速上升,n>n0,Δn<0,ASR反 向积分,使ASR调节器退出饱和。
1.起动过程分析
• 电流Id从零增长到Idm,然后在一段时间内维 持其值等于Idm不变,以后又下降并经调节 后到达稳态值IdL。 • 转速波形先是缓慢升速,然后以恒加速上 升,产生超调后,到达给定值n*。 • 起动过程分为电流上升、恒流升速和转速 调节三个阶段, • 转速调节器在此三个阶段中经历了不饱 和、饱和以及退饱和三种情况。
2.2 调节器的工程设计方法
3.3.1 控制系统的动态性能指标 • 在控制系统中设置调节器是为了改善系统 的静、动态性能。 • 控制系统的动态性能指标包括对给定输入 信号的跟随性能指标和对扰动输入信号的 抗扰性能指标。
1、跟随性能指标
• 以输出量的初始值为零,给定信号阶跃 变化下的过渡过程作为典型的跟随过程, • 此跟随过程的输出量动态响应称作阶跃 响应。 • 常用的阶跃响应跟随性能指标有上升时 间、超调量和调节时间。
稳态结构图与参数计算
图3-2
转速、电流反馈控制直流调速系统原理图
ASR——转速调节器 ACR——电流调节器 TG——测速发电机
1. 稳态结构图和静特性
• 转速调节器ASR的输出限幅电压决定了电流给定 的最大值,电流调节器ACR的输出限幅电压限制 了电力电子变换器的最大输出电压, • 当调节器饱和时,输出达到限幅值,输入量的变 化不再影响输出,除非有反向的输入信号使调节 器退出饱和; • 当调节器不饱和时,PI调节器工作在线性调节状 态,其作用是使输入偏差电压在稳态时为零。 • 对于静特性来说,只有转速调节器饱和与不饱和 两种情况,电流调节器不进入饱和状态 。
电力拖动自动课程设计

电力拖动自动课程设计一、课程目标知识目标:1. 掌握电力拖动自动控制的基本原理,了解电机运行特性及控制方法。
2. 学会分析电力拖动系统的电路图,并能正确识别主要部件及参数。
3. 掌握电力拖动自动控制系统的调试与维护方法。
技能目标:1. 能够运用所学知识,设计简单的电力拖动自动控制电路。
2. 培养学生动手操作能力,学会使用相关工具和仪器进行电力拖动系统的调试。
3. 培养学生团队协作能力,提高问题分析和解决问题的能力。
情感态度价值观目标:1. 培养学生对电力拖动自动控制技术的兴趣,激发学习热情。
2. 培养学生严谨的科学态度,注重实践操作的安全性和准确性。
3. 增强学生的环保意识,了解电力拖动系统在节能环保方面的应用。
本课程针对高年级学生,结合课程性质、学生特点和教学要求,明确课程目标,旨在帮助学生掌握电力拖动自动控制的基本知识和技能,提高实践操作能力,培养学生团队协作意识和创新精神。
通过本课程的学习,使学生具备一定的电力拖动系统设计和维护能力,为未来从事相关领域工作打下坚实基础。
二、教学内容本章节教学内容主要包括以下几部分:1. 电力拖动自动控制基本原理:介绍电力拖动系统的组成、工作原理及运行特性,涉及电机控制基础知识。
2. 电力拖动自动控制系统电路分析:分析常见电力拖动系统电路图,识别主要部件及参数,讲解各部分功能及其相互关系。
3. 电力拖动自动控制电路设计:根据实际需求,设计简单的电力拖动自动控制电路,培养学生实际操作能力。
4. 电力拖动自动控制系统调试与维护:学习调试方法,掌握维护技巧,提高系统运行稳定性。
教学内容安排如下:1. 第1周:电力拖动自动控制基本原理学习。
2. 第2-3周:电力拖动自动控制系统电路分析。
3. 第4-5周:电力拖动自动控制电路设计。
4. 第6-7周:电力拖动自动控制系统调试与维护。
教学内容与教材关联性如下:1. 教材第1章:电力拖动自动控制基本原理。
2. 教材第2章:电力拖动自动控制系统电路分析。
电力拖动运动控制系统课程设计

电力拖动运动控制系统课程设计电力拖动运动控制系统课程设计一、课程设计背景随着工业化的不断发展,机械设备越来越多地依赖电力拖动。
电力拖动是指利用电动机转换电能为机械能,实现各种机械设备的动力源。
随着生产规模的不断扩大,电力拖动控制系统的重要性也愈发显现。
电力拖动运动控制系统作为一种非常重要的控制技术,应用范围广泛,如机械、汽车、船舶、军工、石油、化工等。
针对上述背景,为提升学生的综合能力和实践能力,本课程设计将对电力拖动运动控制系统进行深入研究。
二、课程设计目的本课程设计的主要目的是使学生具备下列能力:1.掌握电力拖动运动控制系统的基本原理、结构和性能。
2.熟悉常见的电力拖动运动控制系统的设计方法。
3.能够独立完成电力拖动运动控制系统的设计、调试和检测。
三、课程设计内容1.电力拖动运动控制系统的原理与结构(8学时)⑴电力拖动系统的基本结构⑵电力拖动运动控制系统的基本原理⑶电力拖动运动控制系统的运动学分析⑷电力拖动控制系统的信号处理方法2.电力拖动运动控制系统设计(16学时)⑴电力拖动运动控制系统的模型建立⑵电力拖动运动控制系统的闭环控制设计⑶电力拖动控制系统的参数整定方法⑷电力拖动运动控制系统的实时仿真3.电力拖动运动控制系统调试与检测(16学时)⑴电力拖动控制系统的调试流程⑵电力拖动运动控制系统的实验平台搭建⑶电力拖动运动控制系统的实时监测⑷电力拖动运动控制系统的故障诊断和维修四、课程设计方法1.理论授课通过理论课程,学生将掌握电力拖动运动控制系统的基本原理和结构,并了解电力拖动技术在工程领域中的应用。
2.案例分析通过对典型案例的分析,学生将了解到在不同的工程领域中,电力拖动技术的应用场景和解决方案。
3.仿真实验通过基于MATLAB/Simulink的仿真实验,学生将学会对电力拖动运动控制系统进行建模、仿真和实时监测的方法。
4.实验指导通过实验指导的方式,指导学生独立完成电力拖动运动控制系统的调试、检测和维修。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扬州大学能源与动力工程学院本科生课程设计题目:变频液位自动控制系统课程:电力拖动自动控制系统专业:电气工程及其自动化班级:电气学号:姓名:指导教师:完成日期:第一部分任务书电力拖动自动控制系统课程设计任务书一、课程设计的目的通过电力拖动自动控制系统的设计、了解一般交直流调速系统设计过程及设计要求,并巩固交直流调速系统课程的所学内容,初步具备设计电力拖动自动控制系统的能力。
为今后从事技术工作打下必要的基础。
二、课程设计的要求1、熟悉交直流调速系统设计的一般设计原则,设计内容以及设计程序的要求。
2、掌握控制系统设计制图的基本规范,熟练掌握电气控制部分的新图标。
3、学会收集、分析、运用自动控制系统设计的有关资料和数据。
4、培养独立工作能力、创造能力及综合运用专业知识解决实际工程技术问题的能力。
三、课程设计的内容完成某一给定课题任务,按给出的工艺要求、运用变频调速对系统进行控制。
四、进度安排:共周本课程设计时间共周,进度安排如下:1、设计准备,熟悉有关设计规范,熟悉课题设计要求及内容。
(天)2、分析控制要求、控制原理设计控制方案(天)3、绘制控制原理图、控制流程图、端子接线图。
(2天)4、编制程序、梯形图设计、程序调试说明。
(天)5、整理图纸、写课程设计报告。
(天)五、课程设计报告内容完成下列课题的课程设计及报告(课题工艺要求由课程设计任务书提供)1、退火炉温度控制系统2、变频液位自动控制系统设计3、变频流量自动控制系统设计4、变频供水系统设计5、变频调速恒张力控制系统设计6、变频器在温度控制系统中的应用7、线缆设备恒张力变频器控制设计六、参考书1、陈伯时主编电力拖动自动控制系统(第二版) 机械工业出版社 19922、陈伯时, 陈敏逊交流调速系统机械工业出版社 19983、张燕宾着 SPWM变频调速应用技术?? 机械工业出版社 19974、王兆义主编《可编程控制器教程》主编5、徐世许主编《可编程控制器教程原理、应用、网络》主编6、《工厂常用电气设备手册》(第2版)上、下册中国电力出版社第二部分课程设计报告目录一液位自动控制系统方案设计 (6)(一)概述 (6)(二)系统控制要求 (6)(三)系统控制方案设计 (7)二系统硬件选型 (8)(一)PLC选型 (8)(二)变频器选型 (10)(三)液位传感器选型 (11)三液位自动控制系统的原理图 (12)(一)主电路 (12)(二)PLC控制电路 (13)(三)变频器控制电路 (13)四液位控制系统变频器的节能控制分析 (14)五 PID原理分析及应用 (16)六设计小结 (19)七参考文献 (20)一、液位自动控制系统方案设计(一)概述随着电力电子技术以及工业自动控制技术的发展,使得交流变频调速系统在工业电机拖动领域得到了广泛应用。
另外,由于PLC的功能强大、容易使用、高可靠性,常常被用来作为现场数据的采集和设备的控制。
此处的设计就是利用变频器和PLC实现水池水位的控制。
变频器技术是一门综合性的技术,它建立在控制技术、电子电力技术、微电子技术和计算机技术的基础上。
它与传统的交流拖动系统相比,利用变频器对交流电动机进行调速控制,有许多优点,如节电、容易实现对现有电动机的调速控制、可以实现大范围内的高效连续调速控制、实现速度的精确控制。
容易实现电动机的正反转切换,可以进行高额度的起停运转,可以进行电气制动,可以对电动机进行高速驱动。
完善的保护功能:变频器保护功能很强,在运行过程中能随时检测到各种故障,并显示故障类别(如电网瞬时电压降低,电网缺相,直流过电压,功率模块过热,电机短路等),并立即封锁输出电压。
这种“自我保护”的功能,不仅保护了变频器,还保护了电机不易损坏。
本课题就是应该PLC和变频器,设计液位自动控制系统。
PLC的作用是运用PID算法对系统进行控制,而变频器的作用则是最电机进行调速,最终达到维持提气塔液位稳定的目的。
(二)系统控制要求汽提塔液位自动控制系统用浮子液位计、PLC与变频器构成反馈的闭环液位控制系统。
用调节化工泵转速,保证废水液位稳定、满足汽提塔的工艺要求、并可根据现场处理情况自动切换流量,满足工业现场废水处理要求。
两台变频器、两台化工泵一用一备(互为备用)保证系统运行可靠。
汽提塔液位实时显示。
在废水处理液位自动控制系统中,采用 PLC的PID 积分分离智能型PI调节控制、编程简单、控制可靠,适合于汽提塔液位自动控制系统。
汽提塔液位控制稳定、控制精度高、液位稳定在20cm±1cm,满足汽提塔液位控制要求。
3#水泵PLC Pc 工控机3#变频器4#变频器阀门汽提塔热交换器隔离开关SF 4断路器SF 5断路器KM3KM4M4M34#水泵处理后废水蒸汽电动调节器电磁阀SF3断路器回收废气安全阀磁性浮子液位传感器温度传感器1压差传感器2压力表………………处理废水厌氧池图 汽提塔液位控制系统的工作原理(三)系统控制方案实现本系统恒压变量供水系统是在2台kW电机拖动的水泵机组能够满足废水总量设计要求的前提下,达到全自动闭环液位控制系统,并具有手动控制功能,同时还应达到以下要求:液位稳定在20cm ±1cm ,满足汽提塔液位控制要求;具有短路、欠压、过载、过流等诸多保护功能。
根据系统的总体原理图以及系统的控制要求,可以初步构建出液位自动控制系统的结果框图,如图所示。
图液位自动控制系统结构框图二、系统硬件选型(一)PLC的选型1、机型的选择PLC机型选择的基本原则是,在功能满足要求的前提下,选择最可靠、维护使用最方便以及性能价格比的最优化机型。
在工艺过程比较固定、环境条件较好(维修量较小)的场合,建议选用整体式结构的PLC;其它情况则最好选用模块式结构的PLC。
对于开关量控制以及以开关量控制为主、带少量模拟量控制的工程项目中,一般其控制速度无须考虑,因此,选用带A/D转换、D/A转换、加减运算、数据传送功能的低档机就能满足要求。
而在控制比较复杂,控制功能要求比较高的工程项目中(如要实现PID运算、闭环控制、通信联网等),可视控制规模及复杂程度来选用中档或高档机。
其中高档机主要用于大规模过程控制、全PLC的分布式控制系统以及整个工厂的自动化等。
对于一个大型企业系统,应尽量做到机型统一。
这样,同一机型的PLC模块可互为备用,便于备品备件的采购和管理;同时,其统一的功能及编程方法也有利于技术力量的培训、技术水平的提高和功能的开发;此外,由于其外部设备通用,资源可以共享,因此,配以上位计算机后即可把控制各独立系统的多台PLC联成一个多级分布式控制系统,这样便于相互通信,集中管理。
2、输入/输出的选择PLC的输入/输出选择包括以下几部分:1)确定I/O点数根据控制系统的要求确定所需要的I/O点数时,应再增加10%~20%的备用量,以便随时增加控制功能。
对于一个控制对象,由于采用的控制方法不同或编程水平不同,I/O 点数也应有所不同。
2)开关量输入/输出通过标准的输入/输出接口可从传感器和开关(如按钮、限位开关等)及控制(开/关)设备(如指示灯、报警器、电动机起动器等)接收信号。
典型的交流输入/输出信号为24~240V,直流输入/输出信号为5~240V。
3)模拟量输入/输出模拟量输入/输出接口一般用来感知传感器产生的信号。
这些接口可用于测量流量、温度和压力,并可用于控制电压或电流输出设备。
这些接口的典型量程为-10~+10V、0~+10V、4~20mA或10~50mA。
4)特殊功能输人/输出5)智能式输入/输出3、PLC存储器类型及容量选择PLC系统所用的存储器基本上由PROM、E-PROM及PAM三种类型组成,存储容量则随机器的大小变化,一般小型机的最大存储能力低于6kB,中型机的最大存储能力可达64kB,大型机的最大存储能力可上兆字节。
使用时可以根据程序及数据的存储需要来选用合适的机型,必要时也可专门进行存储器的扩充设计。
PLC的存储器容量选择和计算的第一种方法是:根据编程使用的节点数精确计算存储器的实际使用容量。
第二种为估算法,用户可根据控制规模和应用目的,按照表4的公式来估算。
为了使用方便,一般应留有25%~30%的裕量,获取存储容量的最佳方法是生成程序,即用了多少字。
知道每条指令所用的字数,用户便可确定准确的存储容量。
4、软件选择在系统的实现过程中,PLC的编程问题是非常重要的。
用户应当对所选择PLC产品的软件功能有所了解。
通常情况下,一个系统的软件总是用于处理控制器具备的控制硬件的。
但是,有些应用系统也需要控制硬件部件以外的软件功能。
例如,一个应用系统可能包括需要复杂数学计算和数据处理操作的特殊控制或数据采集功能。
指令集的选择将决定实现软件任务的难易程度。
可用的指令集将直接影响实现控制程序所需的时间和程序执行的时间。
5、支撑技术条件的考虑选用PLC时,有无支撑技术条件同样是重要的选择依据。
支撑技术条件包括下列内容:1)编程手段2)进行程序文本处理3)程序储存方式4)通信软件包6、PLC的环境适应性(二)变频器选型1、变频器简介变频器是利用电力半导体器件的通断作用将工频电电源变换为另一频率的电能控制装置。
可分为交——交变频器,交——直——交变频器。
交——交变频器可直接把交流电变成频率和电压都可变的交流电;交——直——交变频器则是先把交流电经整流器先整流成直流电,再经过逆变器把这个直流电流变成频率和电压都可变的交流电。
为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC),这个过程叫整流。
把直流电(DC)变换为交流电(AC)的装置,其科学术语为“inverter”(逆变器)。
一般逆变器是把直流电源逆变为一定的固定频率和一定电压的逆变电源。
对于逆变为频率可调、电压可调的逆变器我们称为变频器。
变频器主要是由主电路、控制电路组成。
主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。
电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。
它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。
2、变频器选型通用变频器的选择包括通用变频器的型式选择和容量选择两个方面,选择的原则是:首先其功能特性能保证可靠地事项工艺要求,其次是获得较好的性能价格比。
通用变频器类型的选择要根据负载特性进行。
对于风机、泵类等平方转矩,低速下负载转矩较小,通常可选择专用或普通功能型通用变频器。
对于恒转矩类负载或有较高静态转速精度要求的机械应选用具有转矩控制功能的高功能型通用变频器,这种通用变频器低速转矩、静态机械特性硬度大,不怕负载冲击,具有挖土机特性。