02章矩阵(2)矩阵的初等变换及初等矩阵

合集下载

矩阵的初等变换与初等矩阵

矩阵的初等变换与初等矩阵

§2.2 矩阵的初等变换与初等矩阵1.矩阵的初等变换定义2.1 下列三种变换称为矩阵的初等列变换: (1)交换矩阵的第,i j 列,用i j c c ↔记之; (2)用非零数k 乘矩阵的第i 列,用i kc 记之;(3)把矩阵的第i 列的k 倍加到第j 列,用j i c kc +记之。

矩阵的初等行变换与列变换,统称为矩阵的初等变换。

如果矩阵A 经过有限次初等(行,列)变换,化为矩阵B ,就称矩阵A 与B (行,列)等价,记作~A B 。

矩阵的等价具有以下性质: (1)反身性 ~A A ;(2)对称性 如果~A B ,则~B A ;(3)传递性 如果~A B ,~B C ,则~A C 。

利用初等行变换,将方程组的增广矩阵化为行最简形,从而得出方程组的解。

可见,讨论矩阵的某种结构简单、而形式特定的等价矩阵,在理论和实际应用上都是必要而有价值的。

对矩阵的行最简形再施行初等列变换,可得到一种结构最为简单的形式。

以§A 为例,矩阵A 的行最简形为11610039210103910001300000⎛⎫⎪⎪⎪-⎪ ⎪- ⎪⎪⎝⎭,再经初等列变换344151425253116211,,,,,39393c c c c c c c c c c c c ↔---++化为10000010000010000000⎛⎫ ⎪=⎪ ⎪ ⎪⎝⎭F 。

称矩阵F 为矩阵A 的等价标准形。

定理 2.1 矩阵()ij m n a ⨯=A 经过有限次初等变换可化为如下的等价标准形:()()()()rr n r m r r m r n r ⨯--⨯-⨯-⎛⎫=⎪⎝⎭I O F O O ,其中下方及右边的零行,零列可能空缺。

由行列式的性质可知,行列式不为零的方阵,其等价矩阵的行列式也不为零。

由此可得以下结论:可逆矩阵的等价矩阵也为可逆矩阵;可逆矩阵的行最简形就是等价标准形,且一定是单位矩阵。

2.初等矩阵定义2.2 由单位矩阵经一次初等变换而得的矩阵称为初等矩阵。

矩阵的初等变换

矩阵的初等变换

矩阵的初等变换矩阵是数学中一种重要的数据结构,它可以用来描述和探究物理、金融、社会学和数学科学等各个领域的问题。

矩阵的初等变换是一种常见的矩阵操作,可以将矩阵进行变换,获得新的矩阵。

本文将简要介绍矩阵的初等变换,并通过实例阐述它的定义和相关技巧。

首先,要讨论矩阵的初等变换,需要先理解矩阵的概念。

矩阵是一种数学结构,由行列式组成,用来表示特定系统的数据。

矩阵由数字、向量或符号组成,可以用来描述线性方程和向量空间等,是线性代数的基础。

矩阵的初等变换是指使用一些基本的算术操作将矩阵改变为新的矩阵的过程。

特别地,它可以使用行变换、列变换、行列式变换和折叠操作等技巧。

矩阵的行变换是一种将矩阵的行作为基准,通过添加和减少某一行的某一项,以改变矩阵的值的操作。

例如,给定一个矩阵A,其中有5行,将第2行乘以2和第3行加上第2行可以得到新的矩阵B,即:A:1 2 3 4 52 3 4 5 63 4 5 6 74 5 6 7 85 6 7 8 9B=A+2*R2+R31 2 3 4 54 7 10 13 167 11 15 19 234 5 6 7 85 6 7 8 9行变换可以将矩阵转换为更容易进行操作的形式,如简化矩阵的行列式计算,将矩阵进行分配等。

列变换是一种将矩阵的列作为基准,对矩阵进行添加、减少或替换元素操作,以实现变换的操作。

例如,给定一个矩阵A,其中有7列,通过乘以2,减去第4列和第5列,可以得到新的矩阵B,即: A:1 2 3 4 5 6 72 3 4 5 6 7 83 4 5 6 7 8 9B=A+2*C1-C4-C51 2 3 2 1 0 72 3 4 -2 -3 5 83 4 5 -2 -3 6 9列变换可以用于转换特定的矩阵形式,如获得对称矩阵、对角矩阵、上三角矩阵和下三角矩阵等。

行列式变换通常指的是改变矩阵的行或列,以改变矩阵的行列式的值。

例如,给定一个矩阵A,其中有相同的元素,将第1行减去第2行,第3行减去第2行,可以得到新的矩阵B,即:A:1 2 3 41 2 3 41 2 3 4B=A-R20 0 0 00 0 0 00 0 0 0行列式变换可以用来计算行列式的值,也可以用于转换矩阵的特定形式,如转置、依赖度等。

02章矩阵(2)矩阵的初等变换及初等矩阵

02章矩阵(2)矩阵的初等变换及初等矩阵

1 2
3
4 1 2
( B3 )
3
4
4 2 3
( B4 )
3
4
用“回代”的方法求出解:
x1 x3 4 于是解得 x2 x3 3 x 3 4
其中x3为任意取值.
或令x3 c, 方程组的解可记作
x1 c 4 x2 c 3 x , x3 c 3 x 4 1 4 1 3 即x c 1 0 0 3
1.矩阵的初等变换引进 为了引进矩阵的初等变换,先来分析用消元法 解线性方程组。 例 求解齐次线性方程组
2 x1 x 2 x 3 x4 2, x1 x 2 2 x 3 x4 4, 4 x1 6 x 2 2 x 3 2 x4 4, 3 x1 6 x 2 9 x 3 7 x4 9,
将下列矩阵化为标准形 .
1 2 3 0 1 2 3 0 A 2 3 0 1 1 2 3 0
(1)

A
r1 r4
2 3 0 1 1 2 3 0 2 3 0 1 0 1 2 3
2 1 1 1 1 1 2 1 增广矩阵 B 4 6 2 2 3 6 9 7 1 1 2 1 r1 r2 2 1 1 1 ~ 2 3 1 1 r3 2 3 6 9 7 2 4 4 9 4 2 B1 2 9
变换 r i
r j ,的逆变换就是其本身;
变换 r i×k 的逆变换就是 r i ×(1/k)(或记作 r i ÷k); 变换 r i +kr j 的逆变换是 r i +(-k) r j (或记 作r i -kr j )。

线性代数第2章矩阵

线性代数第2章矩阵

1 0
0 1
+ 00
2n
0
=
1 0
2n
1
.
2.2.12 转置矩阵
将 m n 矩阵
a11 a12
A
a21
a22
am1 a m2
a1n
a2n
amn
的行、列互换得到的矩阵,称为A的转置矩阵, 记为A T,即
a11 a21 AT a12 a22
am1
am
2
a1n a 2n
amn
其中 AT的第i行第j列的元素等于A的第j行第i列的
det
A
21
22
2n
a a a
n1
n2
nn
为方阵A的行列式,记为det A。
方阵行列式定理
定理1 设A、B是任意两个n阶方阵,则
det (AB) = det A det B。
这个定理告诉我们: 1. 两个同阶方阵相乘的行列式等于这两个方 阵的行列式相乘; 2. 两个同阶行列式相乘也可以先求相应的乘 积矩阵,然后求这个乘积矩阵的行列式。 一般地: (1) det (A+B)≠det A + det B (2) det( kA)≠k det A,若A为n阶方阵, 则有 det( kA) = k n det A。
例如 设
A
=
1 1
1 1 ,
B
=
1 1
1
1
,

1 1 1 1 0 0
AB = 1
1 1
1
=
0
0 .
称矩阵A是B的左零因子,矩阵B是A的右零因 子。
2.2.11 矩阵A的m次幂
设A为n阶方阵,m为正整数,则

第二章矩阵的初等变换(4)

第二章矩阵的初等变换(4)

0 1 1 1 0 1
i行
P (i, j )
E
j行
i列
j列
E
k ri
1
1 k 1
1
ቤተ መጻሕፍቲ ባይዱi行
P ( i ( k ))
i列
k r j ri E
1 1 1 k 1
用P(1,2)左乘A:
0 P (1, 2 ) A 1
将A 的第1列的-2 倍加到第2 列上, 对应的3 阶 初等矩阵为
1 P (1, 2 ( 2 ) ) 0 0 2 1 0 1 3 0 6 0
6 3
用P(1,2(-2))右乘A:
1 A P (1, 2 ( 2 )) 4
§1.6 矩阵的初等变换
§1.6.1 矩阵的初等变换与初等矩阵
定义1.13 矩阵A = ( aij )mn, 则三种行初等变换 (1) 对调(i, j)两行, 记作ri rj ; (2) 以非零数 k 乘以第 i 行,记作ri k ; (3) 将第j 行的 k 倍加到第 i 行上,记作 ri + krj 。
1
则由分块矩阵的乘法,有
i P ( i , j ( k )) A
k j A j em
1
i
1A
k
j

jA
em A
A A1 A2 Am
E m
其中 Ai ( a i 1 , a i 2 , , a in ), i 1, 2 , , m ,

二阶矩阵

二阶矩阵

(右矩阵)的行数相等时,两个矩阵才能相乘。
返回
上一页 下一页
例4
A a0
0 b
0c
a1
B
b
1
c 1
0
0
0
求:AB和BA。
0 0 0
解:
0 AB a1ab1bc1c
0 0
BA 0 0 0 0 0 0
注:表明矩阵乘法不满足交换律。
AB=0推不出A=0或B=0
AC=BC且C不为0,推不出A=B (不满足消去律)
上一页
下一页

A11 A12 L AA21 A22 L
M M As1 As2 L
A1r
A2r
k为数,那么
M
Asr
kA11 kA12 L kA kA21 kA22 L
M M kAs1 kAs2 L
则称为数量矩阵.即
a 0 L 0
A
0
a
L
0
M M O M
0
0
L
a
返回
上一页 下一页
4.单位矩阵
如果n阶对角矩阵 A aij 中元素满足 a ii1i1 ,2 ,L,n,
则称为n阶单位矩阵,记为 E n .即
1 0 L 0
En
0 M
1 M
L O
0
M
0
0
L
1
返回
上一页 下一页
§2 矩阵的运算
所以 B0,
故B 可逆。
B = ( A E ) A 1 = [ A ( A E ) ] 1 [ A E A ] 1
返回
上一页
下一页
其中
8 2 6 0
AEA= 8 0 2 6

矩阵的初等变换和初等矩阵


23xxx111
x2 3x2 6x2
2x3 x3 9x3
x4 x4 7 x4
4 2 9
增广矩阵的比较
B
2 1 4 3
1 1
6 6
1 2
2 9
1 1 2 7
42 94
B2
1 2 2 3
1 1 3 6
2 1
1 9
1 1 1 7
24 92
显然 把B的第3行乘以(1/2)即得B2
即 方程③两端乘以(1/2) B的第3行乘以(1/2)
E1ij(k)Eij(-k)
Henan Agricultural University
四、初等矩阵与初等变换的关系
设A是一个mn矩阵 对A施行一次初等行变换 相当于在 A的左边乘以相应的m阶初等矩阵 对A施行一次初等列变换 相当于在A的右边乘以相应的n 阶初等矩阵
3 0 1
例如

A 10
1 1
4 4 9
①②
①②
x1 x2 2x3 x4 4
423xxx111
x2 6x2 6x2
x3 2x3 9x3
x4 2x4 7 x4
2 4 9
增广矩阵的比较
B
21 43
1 1
6 6
1 2
2 9
1 1 2 7
42 94
1 1 2 1 4
B1
2 4 3
1 6
6
1 2 9
1 2
7
2 94
[i,j]
以数k乘第i行加到第j行上 记作 [i(k)j]
Henan Agricultural University
三、初等矩阵
例如,对于3阶单位矩阵E

第2章 线性方程组与矩阵初等变换-郑成勇主编教材配套课件


11
−2
r3
−3r2
0
−10
11
−2
11 3
0
11
r2 r3
−3r1 −11r1
0
−30
33
0
0
0 0 6
最后一个矩阵所对应的线性方程组为
0
x1 + 3x2 x1 −10x2
− 3x3 = 1 +11x3 = −2
.
0x1 + 0x2 + 0x3 = 6
方程组最后一个方程显然矛盾,故方程组无解.
矩阵总可以经过若干次初等变换化为它标准形 F
=
Er O
O
O
mn

04 其中 r 为行阶梯形矩阵中非零行的行数.
OPTION
Linear Algebra
2.3 矩阵初等行变换解线性方程组
第2章 线性方程组与矩阵初等变换 14
定义2.1 矩阵的秩 将一个矩阵 A化成行阶梯阵后, 其非零行的行数称为矩阵的
a21
a22

am1 am2
a1n
a2n
amn
x1
未 知
x
=
x2


xn
b1
常 数 列
b
=
b2
bm
Ax = b
a11 a12
增广矩阵
B =[A
b]
=
a21
a22
am1 am2
a1n b1
a2n
b2
amn bm
A = [a1, a2 , , an ] 其中 ai ( i = 1, 2, , n ) 为矩阵 A 的第i 列,则按分块矩阵乘法运算,

线性代数课件 矩阵的初等变换




第i列
第 j列
11
(2) 以数 k 0 乘某行或某列,得初等倍乘矩阵。
以数k 0乘单位矩阵的第i行( ri k ),得初等 矩阵E ( i ( k )).
1 1 E ( i ( k )) k 1 1
标准形矩阵
特点:左上角为一个单 位矩阵,其他位置上的元素全 都为 0 .
9
二、初等矩阵
矩阵的初等变换是矩阵的一种基本运算,应 用广泛. 定义 由单位矩阵 E 经过一次初等变换得到的方 阵称为初等矩阵. 1 0 0 r 4r 1 0 4 1 3 例如 E 0 1 0 ~ 0 1 0 0 0 1 0 0 1 三种初等变换对应着三种初等方阵. 1. 对调两行或两列; 2. 以数 k 0 乘某行或某列; 3. 以数 k 乘某行(列)加到另一行(列)上去.
3
定义3 如果矩阵 A 经有限次初等变换变成 矩阵 B, 就称矩阵 A 与 B 等价,记作A ~ B.
等价关系的性质:
(1)自反性 A A;
(2)对称性 若 A B , 则 B A; (3)传递性 若 A B, B C, 则 A C.
4
行阶梯形矩阵:
特点: (1)可划出一 条阶梯线,线的 下方全为零; (2)每个台阶 只有一行,
对应的元素上去(第 j 行的 k 倍加到第 i 定义矩阵的初等列变换(所用记号是 把“r”换成“c”).
定义2 矩阵的初等列变换与初等行变换统称为 初等变换.
初等变换的逆变换仍为初等变换, 且变换类型 相同.
ri rj 逆变换 ri rj ; 1 ri k 逆变换 ri ( ) 或 ri k; k ri krj 逆变换 ri ( k )rj 或 ri krj .

初等变换与初等矩阵

上面的“和” 字换成分块线),左乘初等矩阵(即进行初等行变换),最后求
⎡ A⎤ 出 A-1[见 P.68 例 2 的运算(有小错)];也可把 A 和 I 做成列分块矩阵 ⎢⎢L⎥⎥ ,右
⎢⎣ I ⎥⎦ 乘初等矩阵(即进行初等列变换),最后求出 A-1(结果相同).
作业(P.71):1(1) ; 2(2) ; * 6(1).

⎢⎢⎢⎡−116
⎢2
⎢⎢⎣−
1 6
− 13 6 3
2 −1
6
4⎤
3
⎥ ⎥
−1⎥ .

1⎥
3 ⎥⎦

A−1 = ⎢⎢⎢⎡−116
− 13 6 3
4⎤
3
⎥ ⎥
−1⎥ .
⎢2 2

⎢⎢⎣−
1 6
−1 6
1⎥ 3 ⎥⎦
四.分块矩阵的初等变换(简介)
仍以上面求 A 的逆矩阵 A-1 为例,可把 A 和 I 做成行分块矩阵 [A M I ](把
⎥ ⎥ ⎥
⎢⎣
1⎥⎦ ⎢⎣ Am ⎥⎦ ⎢⎣ Am ⎥⎦
2.[ 关于矩阵的等价标准形 ] 表述①任意矩阵 Am×n 都有自己的等价标准形
⎡ Ir ⎢⎣0 q ×r
0r × p 0q×p
⎤ ⎥ ⎦
,其中
0

r

min(m,
n)
;表述②对任意矩阵
Am×n
都存在有限个
m

的初等矩阵 P1 、P2 、… 、P s 和 n 阶的初等矩阵 Q1 、Q 2 、… 、Q t 、、、,使得
⎡2 3 1⎤ 以 A = ⎢⎢0 1 3⎥⎥ 为例[P.68 例 2],对 A 和 I 进行同样的初等行变换:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 2
3
4 1 2
( B1 )
2 3 4
3 21 31
3
4
( B2 )
1 2 2 3 52 4 32
x1 x2 2 x3 x4 4, x x x 0, 2 3 4 2 x 4 6, x 4 3, x1 x2 2 x3 x4 4, x x x 0, 2 3 4 x4 3, 0 0,
2 1 1 1 1 1 2 1 增广矩阵 B 4 6 2 2 3 6 9 7 1 1 2 1 r1 r2 2 1 1 1 ~ 2 3 1 1 r3 2 3 6 9 7 2 4 4 9 4 2 B1 2 9
变换 r i
r j ,的逆变换就是其本身;
变换 r i×k 的逆变换就是 r i ×(1/k)(或记作 r i ÷k); 变换 r i +kr j 的逆变换是 r i +(-k) r j (或记 作r i -kr j )。
如果矩阵 A 经有限次的初等变换变成矩阵 B , 则称矩阵 A 与 B 等价,记作 A ~B 。
1 2
3
4 1 2
( B3 )
3
4
4 2 3
( B4 )
3
4
用“回代”的方法求出解:
x1 x3 4 于是解得 x2 x3 3 x 3 4
其中x3为任意取值.
或令x3 c, 方程组的解可记作
x1 c 4 x2 c 3 x , x3 c 3 x 4 1 4 1 3 即x c 1 0 0 3
(3)把某一行的所有元素的 k 倍加到另一行对应 的元素上去(第 j 行的 k 倍加到第 i 行上,记作 ri +k rj )。 把定义中的“行”换成“列”,即得矩阵的初 等列变换的定义(所用的记号是把“r”换成“c”)。
矩阵的初等行变换和初等列变换统称为初等变换。 三种初等变换都是可逆的,且其逆变换是同一类 型的初等变换:
(2) 矩阵的初等变换
通过对消元法解线性方程组的分析,抽象 出的矩阵的初等变换概念,说明消元过程就是 初等变换过程。
1.矩阵的初等变换引进 为了引进矩阵的初等变换,先来分析用消元法 解线性方程组。 例 求解齐次线性方程组
2 x1 x 2 x 3 x4 2, x1 x 2 2 x 3 x4 4, 4 x1 6 x 2 2 x 3 2 x4 4, 3 x1 6 x 2 9 x 3 7 x4 9,
(2)
其中c为任意常数.
在消元过程中,始终把方程组看作一个整体,
其中用到三种变换, 即(i). 交换方程次序(
i 与 j
相互交换); (ii). 以不等于零的数乘某个方程(以
i ×k 替换 i ); (iii). 一个方程加上另一个方程的
由于这三种变换都是 k 倍(以 i +k j 替换 i )。
矩阵之间的等价关系具有下面的性质: (1)反身性:A~A; (2)对称性:若A~B,则B~A; (3)传递性:若A~B,B~C,则A~C。 数学中,把具有上述三条性质的关系称为等价关 系。 例如,两个线性方程组同解,就称两个方程组是 等价的。
2.矩阵的初等变换作用一 反过来我们能用用矩阵的初等变换来解方程组 例 求解齐次线性方程组
2 x1 x 2 x 3 x4 2, x1 x 2 2 x 3 x4 4, 4 x1 6 x 2 2 x 3 2 x4 4, 3 x1 6 x 2 9 x 3 7 x4 9,
(1)
下面用矩阵的初等变换来解方程组
1 2
3
4
2
(1)

1 2 3 2
(1)
x1 x2 2 x3 x4 4, 2 x x x x 2, 1 2 3 4 2 x1 3 x2 x3 x4 2, 3 x1 6 x2 9 x3 7 x4 9, x1 x2 2 x3 x4 4, 2 x 2 x 2 x 0, 2 3 4 5 x2 5 x3 3 x4 6, 3 x2 3 x3 4 x4 3,
(1)
消元法解线性方程组
分析:用消元法解下列方程组的过程.
引例 求解线性方程组
2 x1 x2 x3 x4 2, x x 2 x x 4, 1 2 3 4 4 x1 6 x2 2 x3 2 x4 4, 3 x1 6 x2 9 x3 7 x4 9,

这里,(B)→ ( B1 ) 是为了消 x1 作准备。
可逆的,因此变换前的方程组与变换后的方程组是同
解的。这三种变换是同解变换。所ห้องสมุดไป่ตู้最后求得的解
(2)是方程组(1)的全部解。
在上述变换过程中,实际上只对方程组的系数和 常数进行运算,未知量并未参与运算。 2 2 1 1 1 1 1 2 1 4 若记 B A b 4 6 2 2 4 3 6 9 7 9
那么上述方程组的变换完全可以转换为对矩阵B(方程 组(1)的增广矩阵)的变换。把方程组的上述三种同 解变换移植到矩阵上,就得到矩阵的三种初等变换。
定义 下面三种变换称为矩阵的初等行变换: (1)对调两行(对调 i , j 两行,记作 ri rj ); (2)以数 k ≠0 乘某一行中的所有元素(第 i 行 乘 k ,记作 ri ×k);
相关文档
最新文档