线性代数62维数基与坐标

合集下载

《维数基与坐标》课件

《维数基与坐标》课件
描述运动轨迹
维数基可以用来描述物体在空间中的 运动轨迹,通过在各个维度上定义坐 标值的变化,可以描述物体运动的方 向和距离。
坐标系在维数基中的应用
表达空间关系
通过坐标系,我们可以表达空间中物体之间的关系,例如距离、角度、方向等。
进行数学运算
在坐标系中,我们可以进行各种数学运算,例如加法、减法、乘法、除法等,以 解决各种实际问题。
标的应用和发展。
创新研究方法
03
鼓励数学家探索新的研究方法,以解决现有问题并开拓新的研
究领域。
感谢观看
THANKS
维数基与坐标
目 录
• 维数基的基本概念 • 坐标系的基本概念 • 维数基与坐标的关系 • 维数基与坐标的实例分析 • 维数基与坐标的未来发展
01
维数基的基本概念
定义与性质
维数基定义
维数基是线性空间中的一组基底,它由有限个线性无关的向 量组成,可以用来表示线性空间中的任意向量。
维数基的性质
维数基中的向量是线性无关的,即它们不能被其他向量线性 表示;维数基中的向量是正交的,即它们的点积为零;维数 基中的向量是单位向量,即它们的模长为1。
01
更高维度的探索
随着数学理论的发展,对高维空 间的研究将更加深入,有望揭示 更多关于宇宙的奥秘。
几何化代数
02
03
拓扑结构的研究
通过几何方法研究代数结构,将 有助于更好地理解复杂数学对象 。
利用坐标方法研究几何对象的拓 扑性质,将有助于解决一些经典 问题。
维数基与坐标在其他领域的应用前景
物理学
在量子力学和广义相对论等领域,维数基与坐标 有望提供更精确的数学工具。
参数方程
1 2
定义

线性代数-基变换与坐标变换

线性代数-基变换与坐标变换
一、基变换公式与过渡矩阵
问题:在 n 维线性空间 V中,任意 n 个线性 无关的向量都可以作为 V 的一组基.对于不同的 基,同一个向量的坐标是不同的.
那么,同一个向量在不同的基下的坐标有什 么关系呢?换句话说,随着基的改变,向量的坐 标如何改变呢?
设1,2 , ,n及1, 2 , , n是线性空间Vn的
1 , 2
,
,n
P
x2'.
xn
xn'
x1 x1'

x2
P
x2'
.
xn xn'
由 于 矩 阵P可 逆, 所 以
x1'
x1
x2'
P
1
x2 .
xn'
xn
例1 在 P[ x]3中取两个基
1 x3 2 x2 x, 3 x3 2 x2 x 1, 及 1 2 x3 x2 1, 3 2 x3 x2 x 2,
过渡矩阵 P是可逆的.
二、坐标变换公式
定理1 设Vn中的元素 ,在基1 , 2 , , n下的坐标

( x1 , x2 , , xn )T ,
在基1 , 2 ,
,
下的坐
n
标为
( x1', x2 ', , xn ')T ,
若两个基满足关系式
1, 2, , n 1,2, ,n P
则有坐标变换公式
x1 x1'
x1'
x1
x2
P
x2'
,

x2'
P
1
x2 .
xn xn'
xn'

6.2维数、基与坐标

6.2维数、基与坐标

都可表示为 p a0 p1 a1 p2 a2 p3 a3 p4 +a4 p5 ,
因此 p 在这个基中的坐标为
a0 , a1 , a2 , a3 , a4
T
.
若另取一个基 q1 1, q2 1 x, q3 2 x 2 , q4 x 3 , q5 x 4 ,
线性空间的结构完全被它的维数所决定.
谢谢
x1 , x2 , , xn 这组有序数就称为向量 在这个基中的坐标,
并记作 x1 ,
, xn
T
.
例 在线性空间 P x 中, 4 p1 1, p2 x, p3 x 2 , p4 x 3 , p5 x 4
就是它的一个基. 任一不超过 4 次的多项式
p a4 x4 a3 x3 a2 x 2 a1 x a0
维数、基与坐标
定义:设有线性空间 V , 如果存在n个向量a1, a2, …, an
满足 (i) a1, a2, …, an 线性无关;
(ii) V 中任意一个向量都能由 a1, a2, …, an线性表示; 那么称向量组 a1, a2, …, an是线性空间 V 的一个基, n称为线性空间 V 的维数,
则 p a0 a1 x a2 x 2 a3 x 3 a4 x 4

a0

a1


a1
1

x

a2 2
2x2

a3 x3

a4
x4

a0 a1
q1

a1q2

a2 2
q3

a3q4

a4q5
,

基变换与坐标变换的关系与应用

基变换与坐标变换的关系与应用

基变换与坐标变换的关系与应用基变换和坐标变换是线性代数中的重要概念,它们之间存在一定的关系,并且在许多领域中有广泛的应用。

本文将探讨基变换和坐标变换的关系以及它们在实际应用中的应用案例。

1. 基变换与坐标变换的概念在线性代数中,基是向量空间中一组线性无关的向量。

基变换是将一个向量空间的基转换为另一个基的过程。

而坐标是描述向量在某个基下的表示方式。

坐标变换是从一个基的坐标系转换到另一个基的坐标系的过程。

可以说基变换是在向量空间中改变基的方向和大小,而坐标变换是在坐标系中改变坐标的表示。

2. 基变换与坐标变换的关系基变换和坐标变换之间存在紧密的联系。

考虑一个向量在一个基下的坐标表示,如果我们将该基进行变换,那么基相应的坐标系也会发生变化。

而坐标变换是基变换的结果,通过基变换,我们可以得到向量在新基下的坐标表示。

换句话说,基变换决定了坐标变换的方式。

3. 基变换与坐标变换的应用基变换和坐标变换在许多科学领域中有广泛的应用。

3.1 三维坐标变换在三维计算机图形学和计算机视觉中,我们经常需要对三维空间中的对象进行坐标变换。

通过基变换和坐标变换,我们可以将对象从世界坐标系转换到相机坐标系或者屏幕坐标系。

这样可以实现对象在三维空间中的旋转、缩放和平移等操作。

3.2 坐标系的正交化在机器学习领域中,正交化是一个常见的操作。

通过对数据进行基变换,可以将原始数据映射到一个正交基的坐标系中,从而方便进行数据分析和处理。

例如,在主成分分析(PCA)中,我们通过基变换将数据投影到一个新的基上,实现数据的降维和特征提取。

3.3 图像处理中的颜色空间转换在图像处理中,颜色空间的转换是一个重要的任务。

基于RGB颜色模型的图像可以通过基变换和坐标变换转换到其他颜色空间,如HSV、Lab等。

这样可以方便地实现图像的亮度、饱和度和色彩的调整。

3.4 机器人运动规划中的坐标变换在机器人运动规划中,坐标变换是一个关键的步骤。

通过基变换,可以将机器人末端执行器的位置和姿态从机器人局部坐标系转换到全局坐标系,从而方便进行运动轨迹的规划和控制。

维数基与坐标

维数基与坐标

在线性代数中,维数基和坐标是紧密相关的概念,用来描述向量空间中的向量。

维数基是一个向量空间中的一组线性无关的向量,它可以作为该向量空间的基础。

一个向量空间可以有多组不同的维数基。

维数基的选择不唯一,但是它们具有一些重要的性质,最重要的一点是,使用维数基可以表示该向量空间中的任何向量。

换句话说,我们可以用维数基上的线性组合来描述向量空间中的每个向量。

坐标是描述一个向量在给定维数基下的表示。

当我们选择一个维数基作为参考,我们可以将向量空间中的任意向量表示为这组基向量的线性组合。

而坐标就是指这些线性组合中各个基向量的系数。

举例来说,假设我们有一个三维向量空间,并选择维数基为{v1, v2, v3},那么任意一个向量v可以表示为 v = a1*v1 + a2*v2 + a3*v3,其中a1、a2、a3分别是v在维数基{v1, v2, v3}下的坐标。

维数基和坐标两者的关系是紧密相连的,通过选择不同的维数基,可以得出不同的坐标表示。

而坐标的选择也是由维数基的选择决定的。

通常我们使用标准基作为维数基,如在三维空间中使用{i, j, k}作为标准基,此时坐标表示就变为(vx, vy, vz)。

但是在不同的情景中可能会选择其他的维数基,而相应的坐标表示也会不同。

在实际应用中,维数基和坐标有着广泛的应用,如线性变换、向量运算、数据分析等。

对于线性代数的深入理解,理解维数基和坐标的概念是非常重要的。

维数基与坐标

维数基与坐标

维数基与坐标1. 引言在数学中,维数基和坐标是描述向量空间中向量的重要概念。

维数基是向量空间的一组基础向量,用于表示空间中的任意向量。

坐标则是基于维数基的一种表示方法,通过一组数字来描述向量在各个维度上的大小。

本文将详细介绍维数基和坐标的概念、属性和应用,并通过示例和图表进行解释和说明。

2. 维数基2.1 定义维数基是向量空间的一组基础向量,它们可以线性组合得到空间中的任意向量。

一个向量空间的维数基通常由线性无关的向量组成,并且可以表示空间的维数。

2.2 特性•维数基是线性无关的,即其中任意一个向量不能由其他向量线性表示。

•维数基可以通过线性组合生成空间中的任意向量。

•维数基的数量等于向量空间的维数。

2.3 示例考虑二维平面上的向量空间,我们可以选择两个线性无关的向量作为维数基,比如:v1 = [1, 0]v2 = [0, 1]这两个向量分别表示平面上的 x 轴和 y 轴,它们可以通过线性组合得到平面上的任意向量。

3. 坐标3.1 定义坐标是一种用数字表示向量在各个维度上大小的方法。

坐标是基于维数基的,通过将向量在维数基上的投影来确定各个维度上的大小。

3.2 坐标系坐标系是描述向量空间的一种方式,它由维数基和原点组成。

常见的坐标系有笛卡尔坐标系、极坐标系等。

在笛卡尔坐标系中,维数基通常是正交的单位向量,原点是空间的起点。

以二维平面为例,笛卡尔坐标系的维数基为:e1 = [1, 0]e2 = [0, 1]3.3 坐标表示假设有一个向量 v,它可以由维数基 e1 和 e2 线性组合得到:v = a * e1 + b * e2其中 a 和 b 是向量在 e1 和 e2 上的投影,也就是向量的坐标。

3.4 示例考虑二维平面上的向量 v,它在维数基 e1 和 e2 上的投影分别是 a 和 b。

那么v 的坐标表示为 (a, b)。

4. 应用4.1 线性代数维数基和坐标是线性代数中的重要概念,它们用于描述向量空间和向量的性质和关系。

基变换与坐标变换的理解

基变换与坐标变换的理解

基变换与坐标变换的理解在线性代数的学习过程中,我们经常会遇到基变换和坐标变换的概念。

这两个概念是线性代数中非常重要的概念,对于理解矩阵变换和向量空间变换起着至关重要的作用。

基变换的概念和意义在向量空间中,基是一个线性无关且张成整个向量空间的向量集合。

基变换指的是由一个基向量集合变换为另一个基向量集合的过程。

当我们进行基变换时,实际上是在改变向量表示的方式,但是向量本身不会发生变化。

基变换的本质是将原向量空间中的向量通过一种线性变换映射到一个新的基向量空间中,从而使得原空间中的向量在新的基下有着不同的坐标表示。

通过基变换,我们可以更加方便地对向量空间进行分析和处理。

在实际应用中,基变换也被广泛应用于图像处理、机器学习等领域。

例如,在计算机图形学中,基变换可以帮助我们更好地理解和描述图形的变化和转换。

坐标变换的概念和意义坐标变换是指在给定基的基础上,改变向量在这个基下的坐标表示的过程。

坐标变换实际上是一种基变换的特例,特别是当基是标准正交基时,坐标变换可以简化为矩阵乘法的形式。

通过坐标变换,我们可以将向量从一个坐标系表示转换为另一个坐标系表示,这在实际应用中具有重要意义。

在机器人学中,坐标变换可以帮助我们描述机器人在不同坐标系下的位置关系,从而控制机器人的运动。

在三维图形学中,坐标变换也是不可或缺的工具,可以帮助我们实现图形对象的平移、旋转等操作。

基变换与坐标变换的关系基变换和坐标变换之间有着密切的联系。

在实际应用中,基变换可以通过矩阵乘法来表示,而坐标变换也可以通过矩阵乘法来表示。

基变换和坐标变换的关系可以从几何和代数的角度进行理解。

从几何上看,基变换可以看作是一种向量空间的旋转、拉伸和压缩等操作,而坐标变换则是在这个基的基础上描述向量的位置关系的操作。

从代数的角度看,基变换可以看作是基向量的线性组合,坐标变换可以看作是向量在不同基向量下的系数表示。

通过矩阵的乘法运算,我们可以很方便地实现基变换和坐标变换的转换。

维数、基与坐标

维数、基与坐标
(k) k ()
对任意αV,kK成立.从而
(0) (0) 0 () 0
() ((1)) (1) () () (k11 k22 krr ) (k11) (k22 ) (krr )
k1 (1) k2 (2 ) kr (r )
(2) 若有不全为零的k1,k2,…,kr使
则有
(k11 k2 2 kr r ) 0
由于σ是单射,又只有零元素0才映射到0,

k11 k2 2 kr r 0 即若 (1), (2 ),, (r ) 线性相关也必有 α1,α2,…,αr线性相关;
(3) 由于维数就是线性空间中线性无
关元素的最大个数,设V与W同构,则若V 中最大的线性无关元素组为α1,α2,…,αm,那么 σ(α1), σ(α2),…,σ(αr)也是W中线性无关的,且 任何多于m个的元素组必线性相关.这样,W 的维数必等于V的维数;
设 ε1,ε2,…,εn与η1,η2, …,ηn是n维线性空 间V中的两组基.由基的定义,它们必可以 互相线性表出.设 η1,η2, …,ηn由ε1,ε2,…,εn线 性表出的关系式为
1 a111 a12 2 a1n n , 2a211a222 a2n n , n an11 an2 2 ann n .
(1, 2 ,3 , 4 ) (1, x, x 2 , x3 ) A
其中
(1, 2 , 3 , 4 ) (1, x, x 2 , x3 )B
1 1 1 1
A
2 0 2
1 2 0
0 2 0
3 03
1 1 1 1
B
0 0 0
1 0 0
2 1 0
3 13
于是
(1, 2 , 3 , 4 ) (1, 2 ,3 , 4 )A1B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义 设U、V是两个线性空间,如果它们的元素 之间有一一对应关系 ,且这个对应关系保持线性 组合的对应,那末就称线性空间 U 与 V 同构.
例如
Vn x11 x2 2 xn n x1 , x2 ,, xn R
与 n 维数组向量空间 R n 同构. 因为 T (1) Vn中的元素与R n中的元素( x1 , x2 ,, xn ) 形成一一对应关系;
T
例2 所有二阶实矩阵组成的集合 V ,对于矩阵 的加法和数量乘法,构成实数域 R上的一个线性 空间.对于 V 中的矩阵

1 E 11 0 0 E 21 1
0 0 1 , E 12 , 0 0 0 0 0 0 , E 22 0 0 1
f ''(a ) (a ) f ( f (a ), f '(a ), , , ) . 2! ( n 1)!
( n 1) T
三、线性空间的同构
设 1 , 2 , , n 是n维线性空间V n 的一组基, 在 这组基下,V n 中的每个向量都有唯一 确定的坐标. 而向量的坐标可以看作R n 中的元素,因此向量与它 n 的坐标之间的对应就是 V n 到 R 的一个映射. 由于 R n 中的每个元素都有 V n 中的向量与之对 应,同时V n 中不同的向量的坐标不 同,因而对应 R n
(a 1,a 2 ,,a n ) 和 (b1,b 2 ,,b n ) , 则 ( a 1 b1 ) 1 ( a 2 b 2 ) 2 ( a n b n ) n
k k a 1 1 k a 2 2 k a n n
( k 1 2 k 2 k 3 2 k 4 ) x 3 ( 2 k 1 3 k 2 5 k 4 ) x 2 (4 k 1 9 k 2 6 k 3 7 k 4 ) x ( k 1 k 2 5 k 3 5 k 4 ) 0. 2 1 2 k 1 0 1 2 3 0 5 k 2 0 因此 . 4 9 6 7 k3 0 1 1 5 5 0 k 4
x1 1 x2 2 xn n ,
有序数组x1 , x2 , , xn 称为元素在 1 , 2 , , n 这个 基下的坐标 , 并记作
T x1 , x2 ,, xn .
例1 在线性空间P[ x ]4中, p1 1, p 2 x , p 3 x 2 , p 4 x 3 , p 5 x 4 就是它的一个基 .
设该齐次线性方程组的 系数矩阵为A, 则
1 0 3 4 初等行变换 0 1 2 1 A ~ 0 0 0 0 0 0 0 0 因此, f 1 ( x ), f 2 ( x )线性无关, 是 f 1 ( x ), f 2 ( x ), f 3 ( x ),
若 1 , 2 ,, n为Vn的一个基, 则Vn可表示为
Vn x1 1 x2 2 xn n x1 , x2 ,, xn R
二、元素在给定基下的坐标
定义2 设 1 , 2 , , n是线性空间Vn的一个基 , 对
于任一元素 Vn , 总有且仅有一组有序 数x1 , x 2 , , x n , 使
n维线性空间
Vn
R
n
x1 1 x2 2 xn n
x ( x1 , x2 , , xn )
T
( 2)设
( x1 , x2 ,, xn )T ( y1 , Байду номын сангаас2 ,, yn )T
( x1 , x2 ,, xn ) ( y1 , y2 ,, yn )
T T
于是 与k的坐标分别为 T (a 1 b1,a 2 b 2,,a n b n )
(a 1,a 2,,a n ) (b1,b 2,,b n ) T T ( k a 1,k a 2 ,,k a n ) k (a 1,a 2,,a n )
T
T
上式表明: 在向量用坐标表示后 , 它们的运算 就归结为坐标的运算 ,因而线性空间 V n 的讨论就 归结为 R n 的讨论. 下面更确切地说明这一 点.
, 该子空间的维数为 2, 且 f 4 ( x )所生成的子空间的基 有
f 3 ( x ) 3 f 1 ( x ) 2 f 2 ( x ), f 4 ( x ) 4 f 1 ( x ) f 2 ( x ).
T
若取另一基q1 1, q 2 1 x , q 3 2 x 2 , q 4 x 3 , q5 x4 , 则 1 p (a 0 a 1 )q1 a 1 q 2 a 2 q 3 a 3 q 4 a 4 q 5 2 因此 p 在这个基下的坐标为
1 ( a 0 a 1, a 1, a 2 , a 3 , a 4 ) 2 注意 线性空间 V的任一元素在不同的基下所对的 坐标一般不同,一个元素在一个基下对应的坐标是 唯一的.
即 E 11 , E 12 , E 21 , E 22线性无关.
对于任意二阶实矩阵 a 11 a 12 A V , a 21 a 22
有 A a 11 E 11 a 12 E 12 a 21 E 21 a 22 E 22
因此 E 11 , E 12 , E 21 , E 22为V的一组基.
一、线性空间的基与维数
已知:在 R 中,线性无关的向量组最多由 n 个向量组成,而任意 n 1个向量都是线性相关的.
n
问题:线性空间的一个重要特征——在线性空 间 V 中,最多能有多少线性无关的向量?
定义1 满足:
在线性空间 V 中,如果存在 n 个元素 1 , 2 ,, n
(1) 1 , 2 ,, n线性无关;
四、小结
1.线性空间的基与维数;
2.线性空间的元素在给定基下的坐标; 坐标:(1)把抽象的向量与具体的数组向 量联系起来; (2)把抽象的线性运算与数组向量 的线性运算联系起来. 3.线性空间的同构.
思考题
求由P x 3中元素
f1 ( x ) x 2 x 4 x 1,
3 2
而矩阵A在这组基下的坐标是 (a 11, a 12, a 21, a 22) .
T
例3 在线性空间R [ x ]n中, 取一组基
1 1, 2 ( x a ), 3 ( x a ) , , n ( x a )
则由泰勒公式知
2
n 1
f ' ' (a ) 2 f ( x ) f (a ) f ' (a )( x a ) ( x a) 2! ( n 1) (a ) f n 1 ( x a) ( n 1)! 因此 f ( x )在基 1 , 2 , 3 , , n 下的坐标是
任一不超过4次的多项式 p a 4 x 4 a 3 x 3 a 2 x 2 a1 x a 0 可表示为 p a 0 p1 a 1 p 2 a 2 p 3 a 3 p 4 a 4 p 5
因此 p 在这个基下的坐标为 ( a 0 , a 1, a 2 , a 3 , a 4 )
n 中的不同元素.我们称这样的映射是 与 V n R 的一个
1 1对应的映射.这个对应的重要性表现 在它与运 算的关系上.

a1 1 a 2 2 a n n b1 1 b2 2 bn n 即向量 , V在基 1 , 2 , , n 下的坐标分别为
( 2) V中任一元素总可由 1 , 2 ,, n线性 表示, 那末, 1 , 2 ,, n 就称为线性空间V 的一个
基, n 称为线性空间V 的维数.
维数为n的线性空间称为 n 维线性空间 , 记作Vn .
当一个线性空间 V 中存在任意多个线性无关 的向量时,就称 V 是无限维的.
k1 k 2 , k 1 E 11 k 2 E 12 k 3 E 21 k 4 E 22 k3 k4
因此 0 0 , k 1 E 11 k 2 E 12 k 3 E 21 k 4 E 22 O 0 0
k 1 k 2 k 3 k 3 0,
f 2 ( x ) 2 x 3 3 x 2 9 x 1,
f 3 ( x ) x 3 6 x 5,
f4 ( x) 2 x 5 x 7 x 5
3 2
生成的子空间的基与维数.
思考题解答
解 令 k1 f 1 ( x) k 2 f 2 ( x) k 3 f 3 ( x) k 4 f 4 ( x) 0 则得
T T
则有
( x1 , x2 ,, xn )
T
结论 1.数域 P上任意两个n 维线性空间都同 构. 2.同构的线性空间之间具有反身性、对称性 与传递性. 3.同维数的线性空间必同构.
同构的意义
在线性空间的抽象讨论中,无论构成线性空间 的元素是什么,其中的运算是如何定义的,我们所 关心的只是这些运算的代数性质.从这个意义上可 以说,同构的线性空间是可以不加区别的,而有限 维线性空间唯一本质的特征就是它的维数.
相关文档
最新文档