点线面位置关系知识点梳理及例题带解析
2023年高中数学基础知识梳理及基础题型归纳-立体几何模块-第二节 点、线、面的位置关系

第二节点、线、面的位置关系【知识点5】平面的概念及点、线、面之间的位置关系2. 点、线、面之间的位置关系点、直线、平面之间的基本位置关系及语言表达1.平面的概念(1)平面的概念:广阔的草原、平静的湖面都给我们以平面的形象.和点、直线一样,平面也是从现实世界中抽象出来的几何概念.(2)平面的画法:一般用水平放置的正方形的直观图作为平面的直观图一个平面被另一个平面遮挡住,为了增强立体感,被遮挡部分用虚线画出来.(3)平面的表示方法平面通常用希腊字母α,β,γ…表示,也可以用平行四边形的两个相对顶点的字母表示,如图中的平面α、平面AC等.3.平面的基本性质【典例讲解】类型一、符号表示问题【例1】(点、直线、平面之间的位置关系的符号表示)如图,用符号表示下列图形中点、直线、平面之间的位置关系.【反思】(1)用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着用文字语言表示,再用符号语言表示.(2)根据符号语言或文字语言画相应的图形时,要注意实线和虚线的区别.【变式1】若点A在直线b上,b在平面β内,则点A,直线b,平面β之间的关系可以记作________.(填序号)①A∈b∈β;②A∈b⊂β;③A⊂b⊂β;④A⊂b∈β.【变式2】空间两两相交的三条直线,可以确定的平面数是______.【思考1】在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么正方体经过P,Q,R的截面图形是________.【变式1】如图,直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线.类型二、点线共面问题【例2】(点线共面)如图,已知:a⊂α,b⊂α,a∩b=A,P∈b,PQ∥a,求证:PQ⊂α.【变式1】求证:和同一条直线相交的三条平行直线一定在同一平面内.【反思】证明多线共面的两种方法(1)纳入法:先由部分直线确定一个平面,再证明其他直线在这个平面内.(2)重合法:先说明一些直线在一个平面内,另一些直线在另一个平面内,再证明两个平面重合.【变式2】已知l1∩l2=A,l2∩l3=B,l1∩l3=C,如图所示.求证:直线l1,l2,l3在同一平面内.类型三,点共线、线共点问题【例3】(点共线)如图,在正方体ABCD—A1B1C1D1中,设线段A1C与平面ABC1D1交于点Q,求证:B,Q,D1三点共线.【反思】证明多点共线通常利用公理2,即两相交平面交线的唯一性,通过证明点分别在两个平面内,证明点在相交平面的交线上,也可选择其中两点确定一条直线,然后证明其他点也在直线上.【变式1】已知△ABC在平面α外,其三边所在的直线满足AB∩α=P,BC∩α=Q,AC∩α=R,如图所示.求证:P,Q,R三点共线.【变式2】若直线l 与平面α相交于点O ,A ,B ∈l ,C ,D ∈α,且AC ∥BD ,则O ,C ,D 三点的位置关系是________.【例4】(线共点问题)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 为AB 的中点,F 为AA 1的中点.求证:CE ,D 1F ,DA 三线交于一点.【反思】 证明三线共点问题可把其中一条作为分别过其余两条直线的两个平面的交线,然后再证两条直线的交点在此直线上.此外还可先将其中一条直线看作某两个平面的交线,证明该交线与另两条直线分别交于两点,再证点重合,从而得三线共点.【变式1】如图,已知D ,E 是△ABC 的边AC ,BC 上的点,平面α经过D ,E 两点,若直线AB 与平面α的交点是P ,则点P 与直线DE 的位置关系是________.【变式2】如图所示,在空间四边形ABCD 中,E ,F 分别是AB 和CB 上的点,G ,H 分别是CD 和AD 上的点,且AE EB =CF FB =1,AH HD =CGGD=2.求证:EH ,BD ,FG 三条直线相交于同一点.【知识点6】空间两条直线的位置关系典型例题异面直线的判断【例1】(1)在四棱锥P—ABCD中,各棱所在的直线互为异面的有________对.(2)如图是一个正方体的展开图,如果将它还原成正方体,那么AB,CD,EF,GH这四条线段所在直线是异面直线的有几对?分别是哪几对?【反思】(1)判断空间中两条直线位置关系的关键点①建立空间观念,全面考虑两条直线平行、相交和异面三种位置关系,特别关注异面直线.②重视正方体等常见几何体模型的应用,会举例说明两条直线的位置关系.(2)判定两条直线是异面直线的方法1.在同一平面内,两条直线位置关系:平行与相交.空间中,既不平行又不相交的两条直线叫做异面直线。
专题14:点、线、面的位置关系(解析版)-备战2021年高考数学(理)三轮复习查缺补漏特色专题

专题14:点、线、面的位置关系知识点和精选提升题(解析版)知识点:一.空间几何体的三视图正视图:光线从几何体的前面向后面正投影得到的投影图;反映了物体的高度和长度侧视图:光线从几何体的左面向右面正投影得到的投影图;反映了物体的高度和宽度俯视图:光线从几何体的上面向下面正投影得到的投影图。
反映了物体的长度和宽度三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等” 二.空间几何体的直观图斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x O y ∠,使'''x O y ∠=450(或1350)③画对应图形在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半; 直观图与原图形的面积关系:42S ⋅=原图形直观图S 三.空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面 ⑵圆锥侧面积:l r S ⋅⋅=π侧面 ⑶圆台侧面积:l R l r S ⋅⋅+⋅⋅=ππ侧面 h S V ⋅=柱体h S V ⋅=31锥体()13V h S S S S =+⋅+下下台体上上球的表面积和体积 32344R V R S ππ==球球,. 正三棱锥是底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥。
正四面体是每个面都是全等的等边三角形的三棱锥。
第二章 点、直线、平面之间的位置关系知识点总结一. 平面基本性质即三条公理公理 1公理2公理3图形语言文字语言如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 过不在一条直线上的三点,有且只有一个平面.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号语言 ,,A l B l l A B ααα∈∈⎫⇒⊂⎬∈∈⎭,,,,A B C A B C α⇒不共线确定平面,lP P P l αβαβ=⎧∈∈⇒⎨∈⎩作用 判断线在面内确定一个平面证明多点共线公理2的三条推论:推论1 经过一条直线和这条直线外的一点,有且只有一个平面; 推论2 经过两条相交直线,有且只有一个平面; 推论3 经过两条平行直线,有且只有一个平面.二.直线与直线的位置关系共面直线: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。
点线面间的位置关系知识点总结(含题)(

点线面间的位置关系知识点总结一、三个公理公理1如果一条直线上的两点在一个平面内,那么_________________________________________公理2:过________________________ 的三个点,有且只有一个平面公理3:如果两个不重合的平面有一个公共点,那么它们有且只有_____________________________二、空间两条直线间的位置关系分类为:______________ , ______________ ,_______________ ;其中__________ , _________ 合称为______________三、空间直线与平面间的位置关系分类为:__________________ ,____________ ,__________________ ;其中__________ , _________ 合称为______________四、空间平面与平面间的位置关系分类为:______________ ,当两个平面成90。
时,属于____________ 关系常用证明技巧一、线面平行列1 (2IH1年怀化楓蝌)如图所示*已知几0是单位止方WABCn-A^.C^的面A^BA和面』肮2>的中心*求证:卩总〃平面ncr^n.练习1. 正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q且AP = DQ. 求证:PQ//平面BCE.2・妇匿,四棱链/一乩噸一平面所裁*截面为平厅四边形吕他求证,m/zz面日捌3* (加10年彌考■陕丙雜)如图’在四棱饰P ABCD中.底血ABCD^矩形「只4 丄平SLUJC/h .lP-.Ltf, BP-IiC-1, E, F分别&l f B T PC 的中点.门)证明* EF//平血知";卩)求二棱锥E—.【号「的休枳匚(2)1/3二、线面垂直1、(2006年北京卷)如图,在底面为平行四边形的四棱锥P ABCD中,AB 点E是PD的中点•(I)求证:AC PB ; (n)求证:PB〃平面AEC ;2、( 2006年浙江卷)如图,在四棱锥P-ABCD中,底面为直角梯形BAD=90 ° ,PA丄底面ABCD,且PA= AD=AB=2BC,M、N 分别为PC、PB 求证:PB丄DM;3、(2006年福建卷)如图,四面体ABCD中,0、E分别是BD、BC的中点,CA(I)求证:AO 平面BCD;AC , PA 平面ABCD,且PA AB , CB CD BD 2, AB AD . 2.,AD // BC, /的中点•ADOE4、( 2006年重庆卷)如图,在四棱锥P—ABCD中,PA 底面ABCD, PC、DAB 为直角,AB II CD,AD=CD=24B,E、F 分另U为CD的中点.(I)试证:CD 平面BEF;5、(全国H ?理?9题)如图,在四棱锥SCS-ABCD中,底面ABCD为正方形,侧棱SD丄底面ABCD , E、F分别是AB、的中点。
高中数学:点线面关系知识总结和练习(附答案)

//a α//a b点线面位置关系总复习知识梳理一、直线与平面平行 1.判定方法(1)定义法:直线与平面无公共点。
(2)判定定理:(3)其他方法://a αββ⊂ 2.性质定理://a abαβαβ⊂⋂=二、平面与平面平行 1.判定方法(1)定义法:两平面无公共点。
(2)判定定理:////a b a b a b Pββαα⊂⊂⋂=//αβ(3)其他方法:a a αβ⊥⊥//αβ; ////a γβγ//αβ 2.性质定理://a bαβγαγβ⋂=⋂=三、直线与平面垂直(1)定义:如果一条直线与一个平面内的所有直线都垂直,则这条直线和这个平面垂直。
(2)判定方法 ① 用定义.//a b a b αα⊄⊂//a α//a b//a b② 判定定理:a b a cb c A bc αα⊥⊥⋂=⊂⊂a α⊥③ 推论://a a bα⊥b α⊥ (3)性质 ①a b αα⊥⊂a b ⊥ ②a b αα⊥⊥四、平面与平面垂直(1)定义:两个平面相交,如果它们所成的二面角是直线二面角,就说这两个平面互相垂直。
(2)判定定理a a αβ⊂⊥αβ⊥ (3)性质①性质定理la a lαβαβα⊥⋂=⊂⊥αβ⊥ ②lP P A A αβαβαβ⊥⋂=∈⊥垂足为A l ∈ ④lP PA αβαβαβ⊥⋂=∈⊥PA α⊂“转化思想”面面平行 线面平行 线线平行 面面垂直 线面垂直 线线垂直●求二面角1.找出垂直于棱的平面与二面角的两个面相交的两条交线,它们所成的角就是二面角的平面角.2.在二面角的棱上任取一点O,在两半平面内分别作射线OA⊥l,OB⊥l,则∠AOB叫做二面角的平面角例1.如图,在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC,且分别交AC于D,交SC于E,又SA=AB,SB=BC,求以BD为棱,以BDE和BDC为面的二面角的度数。
●求线面夹角定义:斜线和它在平面内的射影的夹角叫做斜线和平面所成的角(或斜线和平面的夹角)方法:作直线上任意一点到面的垂线,与线面交点相连,利用直角三角形有关知识求得三角形其中一角就是该线与平面的夹角。
点线面位置关系(知识点加典型例题)

2.1空间中点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系 1、教学重点和难点重点:空间直线、平面的位置关系。
难点:三种语言(文字语言、图形语言、符号语言)的转换 2、三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为A ∈LB ∈L => L α ,A ∈α ,B ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。
公理2作用:确定一个平面的依据。
推论:① 一条直线和其外一点可确定一个平面②两条相交直线可确定一个平面 ③两条平行直线可确定一个平面(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 (4)公理 4:平行于同一条直线的两条直线平行等角定理:如果一个角的两边和另一个角的两边分别平行且方向相同,那么这两个角相等.2、空间两条不重合的直线有三种位置关系:相交、平行、异面LA ·α C ·B·A· α P· αLβ3、异面直线所成角θ的范围是 00<θ≤900 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。
2 公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上;② 两条异面直线所成的角θ∈(0,);③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
点线面位置关系知识点加典型例题

2.1空间中点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系 1、教学重点和难点重点:空间直线、平面的位置关系。
难点:三种语言(文字语言、图形语言、符号语言)的转换 2、三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为A ∈LB ∈L => L α ,A ∈α ,B ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。
公理2作用:确定一个平面的依据。
推论:① 一条直线和其外一点可确定一个平面②两条相交直线可确定一个平面 ③两条平行直线可确定一个平面(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 (4)公理 4:平行于同一条直线的两条直线平行LA ·α C ·B·A·α P· αLβ等角定理:如果一个角的两边和另一个角的两边分别平行且方向相同,那么这两个角相等.2、空间两条不重合的直线有三种位置关系:相交、平行、异面3、异面直线所成角θ的范围是 00<θ≤900 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。
2 公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上;② 两条异面直线所成的角θ∈(0,);③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;共面直线=>a ∥c2⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
点线面位置关系知识点梳理及经典例题带解析

【知识梳理】(1)四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
符号语言:,,,A l B l A B l ααα∈∈∈∈ ⇒ ∈且。
公理2:过不在一条直线上的三点,有且只有一个平面。
三个推论:① 经过一条直线和这条直线外一点,有且只有一个平面 ② 经过两条相交直线,有且只有一个平面 ③ 经过两条平行直线,有且只有一个平面它给出了确定一个平面的依据。
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(两个平面的交线)。
符号语言:,,P P l P l αβαβ∈∈⇒=∈且。
公理4:(平行线的传递性)平行与同一直线的两条直线互相平行。
符号语言://,////a l b l a b ⇒且。
(2)空间中直线与直线之间的位置关系1.概念 异面直线及夹角:把不在任何一个平面内的两条直线叫做异面直线。
已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的角(或直角)叫异面直线,a b 所成的夹角。
(易知:夹角范围090θ<≤︒)定理:空间中如果一个角的两边分别与另一个角的两边分别平行,那么这两个角相等或互补。
(注意:会画两个角互补的图形)2.位置关系:⎧⎧⎪⎨⎨⎩⎪⎩相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点(3)空间中直线与平面之间的位置关系直线与平面的位置关系有三种://l l A l ααα⊂⎧⎪=⎧⎨⎨⎪⎩⎩直线在平面内()有无数个公共点直线与平面相交()有且只有一个公共点直线在平面外直线与平面平行()没有公共点(4)空间中平面与平面之间的位置关系平面与平面之间的位置关系有两种://l αβαβ⎧⎨=⎩两个平面平行()没有公共点两个平面相交()有一条公共直线直线、平面平行的判定及其性质 1.内容归纳总结 ,//b P a βα=⇒//,a bαββ⊂=,//a b a bγγ==⇒直线、平面平垂直的判定及其性质 1.内容归纳总结 (一)基本概念1.直线与平面垂直:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α垂直,记作l α⊥。
高中数学立体几何空间点线面的位置关系讲义及练习

课 题: 2.1 空间点、直线、平面之间的位置关系一、内容讲解知识点1 平面的概念: 平面是没有厚薄的,可以无限延伸,这是平面最基本的属性 常见的桌面,黑板面都是平面的局部形象 指出: 平面的两个特征:①_薄厚一致___ ②_无限延伸_。
平面的表示:__1.在每个顶点处写大写字母____2.小写的希腊字母,,αβχ______________。
点的表示:大写字母 点A 点B线的表示:小写英文字母 线l,线a 线b平面的画法:在立体几何中,通常画成水平放置的平行四边形来表示平面;锐角画成45ο, 2倍长。
两个相交平面:画两个相交平面时,若一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画。
图形 符号语言 文字语言(读法)A a A ∈a 点A 在直线a 上A aA ∉a 点A 在直线a 外 Aα A ∈α 点A 在平面α上(内) A αA ∉α 点A 在平面α外 b a A a b A =I直线a,b 交于点A a αa α⊂线a 在面α内 aα a α⊄ 线a 在面α外a Aα a A α=I 直线a 交α于点Al αβ=I平面α交β于线l与平面、平面与平面的关系,虽然借用于集合符号,但在读法上仍用几何语言。
知识点2 公理1 :如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内指出:(1)符号语言:____________________________________.(2)应用:这条公理是判定直线是否在平面内的依据,也可用于验证一个面是否是平面。
知识点3 公理2 :如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线指出:(1)符号语言:____________________________________(2)应用:确定两相交平面的交线位置;判定点在直线上 知识点4 公理3 :经过不在同一条直线上的三点,有且只有一个平面 指出:(1)符号语言:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合推论1 经过一条直线和直线外的一点有且只有一个平面.指出:推论1的符号语言:_____________________________-推论2 经过两条相交直线有且只有一个平面指出:推论2的符号语言:____________________________________推论3 经过两条平行直线有且只有一个平面指出:推论3的符号语言:________________________________三、典例解析例1 用符号语言表示下列图形中点、直线、平面之间的位置关系.例2 正方体ABCD-A 1B 1C 1D 1中,对角线A 1C∩平面BDC 1=O ,AC 、BC 交于点M ,求证:点C 1、O 、M 共线.五、备选习题1. 画图表示下列由集合符号给出的关系:(1) A ∈α,B ∉α,A ∈l ,B ∈l ; (2) a ⊂α,b ⊂β,a ∥c ,b ∩c =P ,α∩β=c .2. 根据下列条件,画出图形.(1)平面α∩平面β=l ,直线AB ⊂α,AB ∥l ,E ∈AB ,直线EF∩β=F ,F ∉l ;(2)平面α∩平面β=a ,△ABC 的三个顶点满足条件:A ∈a ,B ∈α,B ∉a ,C ∈β,C ∉a .3. 画一个正方体ABCD —A′B′C′D′,再画出平面ACD′与平面BDC′的交线,并且说明理由.4. 正方体ABCD —A 1B 1C 1D 1的棱长为8 cm ,M 、N 、P 分别是AB 、A 1D 1、BB 1的中点,(1) 画出过M 、N 、P 三点的平面与平面A 1B 1C 1D 1的交线,以及与平面BB 1C 1C 的交线.(2) 设过M 、N 、P 三点的平面与B 1C 1交于点Q ,求PQ 的长.5.已知△ABC 三边所在直线分别与平面α交于P 、Q 、R 三点,求证:P 、Q 、R 三点共线.6. 点A ∉平面BCD ,,,,E F G H 分别是,,,AB BC CD DA 上的点,若EH 与FG 交于P (这样的四边形ABCD 就叫做空间四边形)求证:P 在直线BD 上G H AC D E P空间点、线、面位置关系练习题1、下列命题:其中正确的个数为( )①若直线l 平行于平面α内的无数条直线,则l ∥α;②若直线a 在平面α外,则a ∥α; ③若a ∥b ,α⊂b ,那么直线a 平行于平面α内的无数条直线;A .1B .2C .3D .02、若两个平面互相平行,则分别在这两个平行平面内的直线( )A .平行B .异面C .相交D .平行或异面3、如图,在正方体ABCD —A 1B 1C 1D 1中判断下列位置关系:(1)AD 1所在直线与平面BCC 1的位置关系是 ;(2)平面A 1BC 1与平面ABCD 的位置关系是 ;4、如果直线l 在平面α外,那么直线l 与平面α( )A .没有公共点B .至多有一个公共点C .至少有一个公共点D .有且只有一个公共点5、以下四个命题:其中正确的是( ) A .①② B .②③ C .③④ D .①③ ①三个平面最多可以把空间分成八部分;②若直线⊂a 平面α,直线⊂b 平面β,则“a 与b 相交”等价于“α与β相交”;③若l =⋂βα,直线⊂a 平面α,直线⊂b 平面β,且P b a =⋂,则l P ∈;④若n 条直线中任意两条共面,则它们共面,6、若一条直线上有两点到一个平面的距离相等,那么这条直线和这个平面的位置关系是( )A .在平面内B .相交C .平行D .以上均有可能7、若直线m 不平行于平面α,且α⊄m ,则下列结论中正确的是( )A .α内的所有直线与m 异面B .α内不存在与m 平行的直线C .α内存在唯一一条直线与m 平行D .α内的直线与m 都相交8、在长方体ABCD —A 1B 1C 1D 1的六个表面与六个对角面(面AA 1C 1C ,面BB 1D 1D ,面ABC 1D 1,面ADC 1B 1,面A 1BCD 1及面A 1B 1CD )所在平面中,与棱AA 1平行的平面共有( )A .2个B .3个C .4个D .5个9、两条直线都与一个平面平行,则这两条直线的位置关系是( )A .平行B .相交C .异面D .以上均有可能10、下列命题:其中正确的个数是( )A .0 B .1 C .2 D .3①如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线平行;②如果一条直线与一个平面相交,那么这条直线与平面内的无数条直线异面;③过平面外一点有且只有一条直线与平面平行;④一条直线上有两点到一个平面的距离相等,则这条直线平行于这个平面,11、下列命题中正确的个数是( )A .1 B .2 C .3 D .4①四边相等的四边形是菱形;②若四边形有两个对角都是直角,则这个四边形是圆内接四边形; ③“直线不在平面内”的等价说法是“直线上至多有一个点在平面内”;④若两平面有一条公共直线,则这两个平面的所有公共点都在这条公共直线上;12、若P 是两条异面直线l 、m 外的任意一点,则( )A .过点P 有且仅有一条直线与l 、m 都平行B .过点P 有且仅有一条直线与l 、m 都垂直C .过点P 有且仅有一条直线与l 、m 都相交D .过点P 有且仅有一条直线与l 、m 都异面13、与两个相交平面的交线平行的直线和这两个平面的位置关系是14、经过平面外两点可作这个平面的平行平面的个数是15、设有不同的直线a ,b 和不同的平面γβα,,,给出下列三个命题:其中正确命题的序号是 ①若a ∥α,b ∥α,则a ∥b ;②若a ∥α,a ∥β,则α∥β;③若α∥β,β∥γ,则α∥γ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【知识梳理】(1)四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
符号语言:,,,A l B l A B l ααα∈∈∈∈ ⇒ ∈且。
公理2:过不在一条直线上的三点,有且只有一个平面。
三个推论:① 经过一条直线和这条直线外一点,有且只有一个平面 ② 经过两条相交直线,有且只有一个平面 ③ 经过两条平行直线,有且只有一个平面它给出了确定一个平面的依据。
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(两个平面的交线)。
符号语言:,,P P l P l αβαβ∈∈⇒=∈I 且。
公理4:(平行线的传递性)平行与同一直线的两条直线互相平行。
符号语言://,////a l b l a b ⇒且。
(2)空间中直线与直线之间的位置关系1.概念 异面直线及夹角:把不在任何一个平面内的两条直线叫做异面直线。
已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的角(或直角)叫异面直线,a b 所成的夹角。
(易知:夹角范围090θ<≤︒)定理:空间中如果一个角的两边分别与另一个角的两边分别平行,那么这两个角相等或互补。
(注意:会画两个角互补的图形)2.位置关系:⎧⎧⎪⎨⎨⎩⎪⎩相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点(3)空间中直线与平面之间的位置关系直线与平面的位置关系有三种://l l A l ααα⊂⎧⎪=⎧⎨⎨⎪⎩⎩I 直线在平面内()有无数个公共点直线与平面相交()有且只有一个公共点直线在平面外直线与平面平行()没有公共点(4)空间中平面与平面之间的位置关系平面与平面之间的位置关系有两种://l αβαβ⎧⎨=⎩I 两个平面平行()没有公共点两个平面相交()有一条公共直线直线、平面平行的判定及其性质 1.内容归纳总结直线、平面平垂直的判定及其性质 1.内容归纳总结 (一)基本概念1.直线与平面垂直:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α垂直,记作l α⊥。
直线l 叫做平面α的垂线,平面α叫做直线l 的垂面。
直线与平面的公共点P 叫做垂足。
2. 直线与平面所成的角: 角的取值范围:090θ<<︒。
3.二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
这条直线叫做二面角的棱,这两个半平面叫做二面角的面。
二面角的记法: 二面角的取值范围:0180θ<<︒ ; 两个平面垂直:直二面角。
垂直的判定线,则这两个平面垂直。
足条件与α垂直的平面β有无数个)出”两条相交直线与另一平面平行。
即将“面面平行问题”转化为“线面平行问题”直线与平面垂直的性质同垂直与一个平面的两条直线平行。
,//a b a bαα⊥⊥⇒平面与平面垂直的性质两个平面垂直,则一个平面内垂直与交线的直线与另一个平面垂直。
,,,l aa l aαβαββα⊥=⊂⊥⇒⊥I解决问题时,常添加的辅助线是在一个平面内作两平面交线的垂线【经典例题】典型例题一例1简述下列问题的结论,并画图说明:(1)直线⊂a平面α,直线Aab=I,则b和α的位置关系如何?(2)直线α⊂a,直线ab//,则直线b和α的位置关系如何?分析:(1)由图(1)可知:α⊂b或Ab=αI;(2)由图(2)可知:α//b或α⊂b.说明:此题是考查直线与平面位置关系的例题,要注意各种位置关系的画法与表示方法.典型例题二例2P是平行四边形ABCD所在平面外一点,Q是PA的中点,求证://PC平面BDQ.分析:要证明平面外的一条直线和该平面平行,只要在该平面内找到一条直线和已知直线平行就可以了.证明:如图所示,连结AC,交BD于点O,∵四边形ABCD是平行四边形∴COAO=,连结OQ,则OQ在平面BDQ内,且OQ是APC∆的中位线,∴OQPC//.∵PC在平面BDQ外,∴//PC平面BDQ.说明:应用线面平行的判定定理证明线面平行时,关键是在平面内找一条直线与已知直线平行,怎样找这一直线呢?由于两条直线首先要保证共面,因此常常设法过已知直线作一平面与已知平面相交,如果能证明已知直线和交线平行,那么就能够马上得到结论.这一个证明线面平行的步骤可以总结为:过直线作平面,得交线,若线线平行,则线面平行.典型例题三例3 经过两条异面直线a ,b 之外的一点P ,可以作几个平面都与a ,b 平行?并证明你的结论. 分析:可考虑P 点的不同位置分两种情况讨论. 解:(1)当P 点所在位置使得a ,P (或b ,P )本身确定的平面平行于b (或a )时,过P 点再作不出与a ,b 都平行的平面;(2)当P 点所在位置a ,P (或b ,P )本身确定的平面与b (或a )不平行时,可过点P 作a a '//,b b //'.由于a ,b 异面,则a ',b '不重合且相交于P .由于P b a =''I ,a ',b '确定的平面α,则由线面平行判定定理知:α//a ,α//b .可作一个平面都与a ,b 平行.故应作“0个或1个”平面.说明:本题解答容易忽视对P 点的不同位置的讨论,漏掉第(1)种情况而得出可作一个平面的错误结论.可见,考虑问题必须全面,应区别不同情形分别进行分类讨论.典型例题四例4 平面外的两条平行直线中的一条平行于这个平面,那么另一条直线也平行于这个平面. 已知:直线b a //,//a 平面α,α⊄b . 求证:α//b .证明:如图所示,过a 及平面α内一点A 作平面β. 设c =βαI ,∵α//a , ∴c a //. 又∵b a //, ∴c b //.∵α⊄b ,α⊂c , ∴α//b .说明:根据判定定理,只要在α内找一条直线b c //,根据条件α//a ,为了利用直线和平面平行的性质定理,可以过a 作平面β与α相交,我们常把平面β称为辅助平面,它可以起到桥梁作用,把空间问题向平面问题转化. 和平面几何中添置辅助线一样,在构造辅助平面时,首先要确认这个平面是存在的,例如,本例中就是以“直线及直线外一点确定一个平面”为依据来做出辅助平面的.典型例题五例5 已知四面体ABC S -的所有棱长均为a .求: (1)异面直线AB SC 、的公垂线段EF 及EF 的长; (2)异面直线EF 和SA 所成的角.分析:依异面直线的公垂线的概念求作异面直线AB SC 、的公垂线段,进而求出其距离;对于异面直线所成的角可采取平移构造法求解.解:(1)如图,分别取AB SC 、的中点F E 、,连结CF SF 、. 由已知,得SAB ∆≌CAB ∆. ∴CF SF =,E 是SC 的中点, ∴SC EF ⊥.同理可证AB EF ⊥∴EF 是AB SC 、的公垂线段.在SEF Rt ∆中,a SF 23=,a SE 21=. ∴22SE SF EF -=a a a 22414322=-. (2)取AC 的中点G ,连结EG ,则SA EG //.∴EF 和GE 所成的锐角或直角就是异面直线EF 和SA 所成的角. 连结FG ,在EFG Rt ∆中,a EG 21=,a GF 21=,a EF 22=. 由余弦定理,得22222124142412cos 222222=⋅⋅-+=⋅⋅-+=∠a a aa a EF EG GF EF EG GEF . ∴ο45=∠GEF .故异面直线EF 和SA 所成的角为ο45.说明:对于立体几何问题要注意转化为平面问题来解决,同时要将转化过程简要地写出来,然后再求值.典型例题六例6 如果一条直线与一个平面平行,那么过这个平面内的一点且与这条直线平行的直线必在这个平面内. 已知:直线α//a ,α∈B ,b B ∈,a b //. 求证:α⊂b .分析:由于过点B 与a 平行的直线是惟一存在的,因此,本题就是要证明,在平面α外,不存在过B 与a 平行的直线,这是否定性命题,所以使用反证法.证明:如图所示,设α⊄b ,过直线a 和点B 作平面β,且'b =αβI . ∵α//a ,∴α//'b .这样过B 点就有两条直线b 和'b 同时平行于直线a ,与平行公理矛盾. ∴b 必在α内.说明:(1)本例的结论可以直接作为证明问题的依据. (2)本例还可以用同一法来证明,只要改变一下叙述方式.如上图,过直线a 及点B 作平面β,设'b =αβI .∵α//a ,∴α//'b .这样,'b 与b 都是过B 点平行于a 的直线,根据平行公理,这样的直线只有一条, ∴b 与'b 重合.∵α⊂'b ,∴α⊂b .典型例题七例7 下列命题正确的个数是( ).(1)若直线l 上有无数个点不在平面α内,则α//l ; (2)若直线l 平行于平面α内的无数条直线,则α//l ;(3)若直线l 与平面α平行,则l 与平面α内的任一直线平行; (4)若直线l 在平面α外,则α//l .A .0个B .1个C .2个D .3个分析:本题考查的是空间直线与平面的位置关系.对三种位置关系定义的准确理解是解本题的关键.要注意直线和平面的位置关系除了按照直线和平面公共点的个数来分类,还可以按照直线是否在平面内来分类.解:(1)直线l 上有无数个点不在平面α内,并没有说明是所在点都不在平面α内,因而直线可能与平面平行亦有可能与直线相交.解题时要注意“无数”并非“所有”.(2)直线l 虽与α内无数条直线平行,但l 有可能在平面α内,所以直线l 不一定平行α.(3)这是初学直线与平面平行的性质时常见错误,借助教具我们很容易看到.当α//l 时,若α⊂m 且l m //,则在平面α内,除了与m 平行的直线以外的每一条直线与l 都是异面直线.(4)直线l 在平面α外,应包括两种情况:α//l 和l 与α相交,所以l 与α不一定平行. 故选A .说明:如果题中判断两条直线与一平面之间的位置关系,解题时更要注意分类要完整,考虑要全面.如直线l 、m 都平行于α,则l 与m 的位置关系可能平行,可能相交也有可能异面;再如直线m l //、α//l ,则m 与α的位置关系可能是平行,可能是m 在α内. 典型例题八例8 如图,求证:两条平行线中的一条和已知平面相交,则另一条也与该平面相交.已知:直线b a //,P a =α平面I .求证:直线b 与平面α相交.分析:利用b a //转化为平面问题来解决,由b a //可确定一辅助平面β,这样可以把题中相关元素集中使用,既创造了新的线面关系,又将三维降至二维,使得平几知识能够运用.解:∵b a //,∴a 和b 可确定平面β. ∵P a =αI,∴平面α和平面β相交于过点P 的直线l .∵在平面β内l 与两条平行直线a 、b 中一条直线a 相交,∴l 必定与直线b 也相交,不妨设Q l b =I ,又因为b 不在平面α内(若b 在平面α内,则α和β都过相交直线b 和l ,因此α与β重合,a 在α内,和已知矛盾).所以直线b 和平面α相交.说明:证明直线和平面相交的常用方法有:证明直线和平面只有一个公共点;否定直线在平面内以及直线和平面平行;用此结论:一条直线如果经过平面内一点,又经过平面外一点,则此直线必与平面相交(此结论可用反证法证明).典型例题九例9 如图,求证:经过两条异面直线中的一条,有且仅有一个平面与另一条直线平行. 已知:a 与b 是异面直线.求证:过b 且与a 平行的平面有且只有一个.分析:本题考查存在性与唯一性命题的证明方法.解题时要理解“有且只有”的含义.“有”就是要证明过直线b 存在一个平面α,且α//a ,“只有”就是要证满足这样条件的平面是唯一的.存在性常用构造法找出(或作出)平面,唯一性常借助于反证法或其它唯一性的结论.证明:(1)在直线b 上任取一点A ,由点A 和直线a 可确定平面β. 在平面β内过点A 作直线'a ,使a a //',则'a 和b 为两相交直线, 所以过'a 和b 可确定一平面α. ∵α⊂b ,a 与b 为异面直线, ∴α⊄a .又∵'//a a ,α⊂'a ,∴α//a .故经过b 存在一个平面α与a 平行.(2)如果平面γ也是经过b 且与a 平行的另一个平面, 由上面的推导过程可知γ也是经过相交直线b 和'a 的.由经过两相交直线有且仅有一个平面的性质可知,平面α与γ重合, 即满足条件的平面是唯一的.说明:对于两异面直线a 和b ,过b 存在一平面α且与a 平行,同样过a 也存在一平面β且与b 平行.而且这两个平面也是平行的(以后可证).对于异面直线a 和b 的距离,也可转化为直线a 到平面α的距离,这也是求异面直线的距离的一种方法. 典型例题十例10 如图,求证:如果一条直线和两个相交平面都平行,那么这条直线和它们的交线平行.已知:l =βαI ,α//a ,β//a ,求证:l a //.分析:本题考查综合运用线面平行的判定定理和性质定理的能力.利用线面平行的性质定理,可以先证明直线a 分别和两平面的某些直线平行,即线面平行可得线线平行.然后再用线面平行的判定定理和性质定理来证明a 与l 平行.证明:在平面α内取点P ,使l P ∉,过P 和直线a 作平面γ交α于b . ∵α//a ,γ⊂a ,b =αγI , ∴b a //.同理过a 作平面δ交β于c . ∵β//a ,δ⊂a ,c =βδI , ∴c a //. ∴c b //.∵β⊄b ,β⊂c , ∴β//b .又∵α⊂b ,l =βαI , ∴l b //. 又∵b a //, ∴l a //.另证:如图,在直线l 上取点M ,过M 点和直线a 作平面和α相交于直线1l ,和β相交于直线2l .∵α//a ,∴1//l a , ∵β//a ,∴2//l a ,但过一点只能作一条直线与另一直线平行. ∴直线1l 和2l 重合. 又∵α⊂1l ,β⊂2l , ∴直线1l 、2l 都重合于直线l ,∴l a //. 说明:“线线平行”与“线面平行”在一定条件下是可以相互转化的,这种转化的思想在立体几何中非常重要. 典型例题十一例11 正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各取一点P 、Q ,且DQ AP =.求证://PQ 面BCE .分析:要证线面平行,可以根据判定定理,转化为证明线线平行.关键是在平面BCE 中如何找一直线与PQ 平行.可考察过PQ 的平面与平面BCE 的交线,这样的平面位置不同,所找的交线也不同.证明一:如图,在平面ABEF 内过P 作AB PM //交BE 于M , 在平面ABCD 内过Q 作AB QN //交BC 于N ,连结MN .∵AB PM //,∴AEPEAB PM =. 又∵CD AB QN ////,∴BD BQ DC QN =,即BDBQAB QN =. ∵正方形ABEF 与ABCD 有公共边AB , ∴DB AE =.∵DQ AP =,∴BQ PE =. ∴QN PM =.又∵AB PM //,AB QN //, ∴QN PM //.∴四边形PQNM 为平行四边形. ∴MN PQ //. 又∵⊂MN 面BCE , ∴//PQ 面BCE .证明二:如图,连结AQ 并延长交BC 于S ,连结ES .∵AD BS //,∴QBDQQS AQ =. 又∵正方形ABEF 与正方形ABCD 有公共边AB , ∴DB AE =,∵DQ AP =,∴QB PE =.∴QSAQQB DQ PE AP ==. ∴ES PQ //, 又∵⊂ES 面BEC , ∴//PQ 面BEC .说明:从本题中我们可以看出,证线面平行的根本问题是要在平面内找一直线与已知直线平行,此时常用中位线定理、成比例线段、射影法、平行移动、补形等方法,具体用何种方法要视条件而定.此题中我们可以把“两个有公共边的正方形”这一条件改为“两个全等的矩形”,那么题中的结论是否仍然成立? 典型例题十二例12 三个平面两两相交于三条交线,证明这三条交线或平行、或相交于一点.已知:a =βαI ,b =γβI ,c =αγI .求证:a 、b 、c 互相平行或相交于一点.分析:本题考查的是空间三直线的位置关系,我们可以先从熟悉的两条交线的位置关系入手,根据共面的两条直线平行或相交来推论三条交线的位置关系.证明:∵a =βαI ,b =γβI , ∴β⊂b a 、. ∴a 与b 平行或相交. ①若b a //,如图∵γ⊂b ,γ⊄a ,∴γ//a .又∵c =αγI ,α⊂a ,∴c a //. ∴c b a ////.②若a 与b 相交,如图,设O b a =I ,∴a O ∈,b O ∈.又∵βαI =a ,γβI =b . ∴α∈O ,γ∈O又∵c =γαI ,∴c O ∈.∴直线a 、b 、c 交于同一点O .说明:这一结论常用于求一个几何体的截面与各面交线问题,如正方体ABCD 中,M 、N 分别是1CC 、11B A 的中点,画出点D 、M 、N 的平面与正方体各面的交线,并说明截面多边形是几边形?典型例题十三例13 已知空间四边形ABCD ,AC AB ≠,AE 是ABC ∆的BC 边上的高,DF 是BCD ∆的BC 边上的中线,求证:AE 和DF 是异面直线.证法一:(定理法)如图由题设条件可知点E 、F 不重合,设BCD ∆所在平面α.∴⇒⎪⎪⎩⎪⎪⎨⎧∉∈∉⊂DFE E A DF αααAE 和DF 是异面直线. 证法二:(反证法)若AE 和DF 不是异面直线,则AE 和DF 共面,设过AE 、DF 的平面为β. (1)若E 、F 重合,则E 是BC 的中点,这与题设AC AB ≠相矛盾. (2)若E 、F 不重合,∵EF B ∈,EF C ∈,β⊂EF ,∴β⊂BC .∵β∈A ,β∈D ,∴A 、B 、C 、D 四点共面,这与题设ABCD 是空间四边形相矛盾. 综上,假设不成立.故AE 和DF 是异面直线.说明:反证法不仅应用于有关数学问题的证明,在其他方面也有广泛的应用. 首先看一个有趣的实际问题:“三十六口缸,九条船来装,只准装单,不准装双,你说怎么装?” 对于这个问题,同学们可试验做一做. 也许你在试验几次后却无法成功时,觉得这种装法的可能性是不存在的.那么你怎样才能清楚地从理论上解释这种装法是不可能呢?用反证法可以轻易地解决这个问题.假设这种装法是可行的,每条船装缸数为单数,则9个单数之和仍为单数,与36这个双数矛盾.只须两句话就解决了这个问题. 典型例题十四例14 已知AB 、BC 、CD 是不在同一平面内的三条线段,E 、F 、G 分别是AB 、BC 、CD 的中点,求证:平面EFG 和AC 平行,也和BD 平行.分析:欲证明AC //平面EFG ,根据直线和平面平等的判定定理只须证明AC 平行平面EFG 内的一条直线,由图可知,只须证明EF AC //.证明:如图,连结AE 、EG 、EF 、GF . 在ABC ∆中,E 、F 分别是AB 、BC 的中点. ∴EF AC //.于是AC //平面EFG . 同理可证,BD //平面EFG .说明:到目前为止,判定直线和平面平行有以下两种方法:(1)根据直线和平面平行定义;(2)根据直线和平面平行的判定定理. 典型例题十五例15 已知空间四边形ABCD ,P 、Q 分别是ABC ∆和BCD ∆的重心, 求证:ACD PQ 平面//.分析:欲证线面平行,须证线线平行,即要证明PQ 与平面ACD 中的某条直线平行,根据条件,此直线为AD ,如图.证明:取BC 的中点E .∵P 是ABC ∆的重心,连结AE , 则1∶3=PE AE ∶,连结DE , ∵Q 为BCD ∆的重心, ∴1∶3=QE DE ∶, ∴在AED ∆中,AD PQ //.又ACD AD 平面⊂,ACD PQ 平面⊄, ∴ACD PQ 平面//.说明:(1)本例中构造直线AD 与PQ 平行,是充分借助于题目的条件:P 、Q 分别是ABC ∆和BCD ∆的重心,借助于比例的性质证明AD PQ //,该种方法经常使用,望注意把握.(2)“欲证线面平行,只须证线线平行”.判定定理给我们提供了一种证明线面平等的方法.根据问题具体情况要熟练运用. 典型例题十六例16 正方体1111D C B A ABCD -中,E 、G 分别是BC 、11D C 的中点如下图. 求证:D D BB EG 11//平面.分析:要证明D D BB EG 11//平面,根据线面平等的判定定理,需要在平面D D BB 11内找到与EG 平行的直线,要充分借助于E 、G 为中点这一条件.证明:取BD 的中点F ,连结EF 、F D 1.∵E 为BC 的中点,∴EF 为BCD ∆的中位线,则DC EF //,且CD EF 21=. ∵G 为11D C 的中点, ∴CD G D //1且CD G D 211=, ∴G D EF 1//且G D EF 1=, ∴四边形G EFD 1为平行四边形,∴EG F D //1,而111B BDD F D 平面⊂,11B BDD EG 平面⊄, ∴11//B BDD EG 平面. 典型例题十七例17 如果直线α平面//a ,那么直线a 与平面α内的( ).A .一条直线不相交B .两条相交直线不相交C .无数条直线不相交D .任意一条直线都不相交解:根据直线和平面平行定义,易知排除A 、B .对于C ,无数条直线可能是一组平行线,也可能是共点线,∴C 也不正确,应排除C .与平面α内任意一条直线都不相交,才能保证直线a 与平面α平行,∴D 正确. ∴应选D .说明:本题主要考查直线与平面平行的定义. 典型例题十八例18 分别和两条异面直线平行的两条直线的位置关系是( ). A .一定平行 B .一定相交 C .一定异面 D .相交或异面解:如图中的甲图,分别与异面直线a 、b 平行的两条直线c 、d 是相交关系; 如图中的乙图,分别与异面直线a 、b 平行的两条直线c 、d 是相交关系.综上,可知应选D .说明:本题主要考查有关平面、线面平行等基础知识以及空间想象能力. 典型例题十九例19 a 、b 是两条异面直线,下列结论正确的是( ). A .过不在a 、b 上的任一点,可作一个平面与a 、b 平行B .过不在a 、b 上的任一点,可作一个直线与a 、b 相交C .过不在a 、b 上的任一点,可作一个直线与a 、b 都平行D .过a 可以并且只可以作一平面与b 平行解:A 错,若点与a 所确定的平面与b 平行时,就不能使这个平面与α平行了. B 错,若点与a 所确定的平面与b 平等时,就不能作一条直线与a ,b 相交. C 错,假如这样的直线存在,根据公理4就可有b a //,这与a ,b 异面矛盾. D 正确,在a 上任取一点A ,过A 点做直线b c //, 则c 与a 确定一个平面与b 平行,这个平面是惟一的. ∴应选D.说明:本题主要考查异面直线、线线平行、线面平行等基本概念. 典型例题二十例20 (1)直线b a //,α平面//a ,则b 与平面α的位置关系是_____________.(2)A 是两异面直线a 、b 外的一点,过A 最多可作___________个平面同时与a 、b 平行. 解:(1)当直线b 在平面α外时,α//b ;当直线b 在平面α内时,α⊂b . ∴应填:α//b 或α⊂b .(2)因为过A 点分别作a ,b 的平行线只能作一条,(分别称'a ,'b )经过'a ,'b 的平面也是惟一的.所以只能作一个平面; 还有不能作的可能,当这个平面经过a 或b 时,这个平面就不满足条件了. ∴应填:1.说明:考虑问题要全面,各种可能性都要想到,是解答本题的关键. 典型例题二十一例21 如图,α//a ,A 是α的另一侧的点,a D C B ∈,,,线段AB ,AC ,AD 交α于E ,F ,G ,若4=BD ,4=CF ,5=AF ,则EG =___________.解:∵α//a ,ABD EG 平面I α=. ∴EG a //,即EG BD //, ∴FCAF AFBD EG CD BC FG EF AC AF CD FG BC EF +==++===.则9204545=+⨯=+⋅=FC AF BD AF EG . ∴应填:920.说明:本题是一道综合题,考查知识主要有:直线与平面平行性质定理、相似三角形、比例性质等.同时也考查了综合运用知识,分析和解决问题的能力.【课堂练习】1.若直线a 不平行于平面α,则下列结论成立的是( )A. α内所有的直线都与a 异面;B. α内不存在与a 平行的直线;C. α内所有的直线都与a 相交;D.直线a 与平面α有公共点. 2.已知两个平面垂直,下列命题①一个平面内的已知直线必垂直于另一个平面的任意一条直线; ②一个平面内的已知直线必垂直于另一个平面的无数条直线; ③一个平面内的任一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面. 其中正确的个数是( ) A.3 B.2 C.1 D.03.空间四边形ABCD 中,若AB AD AC CB CD BD =====,则AC 与BD 所成角为A 、030B 、045C 、060D 、090 4. 给出下列命题:(1)直线a 与平面α不平行,则a 与平面α内的所有直线都不平行; (2)直线a 与平面α不垂直,则a 与平面α内的所有直线都不垂直; (3)异面直线a 、b 不垂直,则过a 的任何平面与b 都不垂直; (4)若直线a 和b 共面,直线b 和c 共面,则a 和c 共面其中错误命题的个数为( ) (A )0 (B ) 1 (C )2 (D )35.正方体ABCD-A 1B 1C 1D 1中,与对角线AC 1异面的棱有( )条 A 3 B 4 C 6 D 8 6. 点P 为ΔABC 所在平面外一点,PO ⊥平面ABC ,垂足为O ,若PA=PB=PC ,则点O 是ΔABC 的( ) (A )内心 (B )外心 (C )重心 (D )垂心 7.如图长方体中,AB=AD=23,CC 1=2,则二面角 C 1—BD —C 的大小为( )(A )300 (B )450 (C )600 (D )9008.直线a,b,c 及平面α,β,γ,下列命题正确的是( )A 、若a ⊂α,b ⊂α,c ⊥a, c ⊥b 则c ⊥αB 、若b ⊂α, a//b 则 a//αC 、若a//α,α∩β=b 则a//bD 、若a ⊥α, b ⊥α 则a//b 9.平面α与平面β平行的条件可以是( )A.α内有无穷多条直线与β平行;B.直线a//α,a//βC.直线a α⊂,直线b β⊂,且a//β,b//αD.α内的任何直线都与β平行 10、 a, b 是异面直线,下面四个命题:①过a 至少有一个平面平行于b ; ②过a 至少有一个平面垂直于b ;AB CDA 1B 1C 1D 1③至多有一条直线与a ,b 都垂直;④至少有一个平面与a ,b 都平行。