引起锻造缺陷的主要原因
自由锻造的主要缺陷是

自由锻件主要缺陷产生原因一、横向裂纹:1、表面横向裂纹缺陷现象:锻造时坯料表面出现较浅(约10mm深)的横向裂纹或较深的横向裂纹。
产生原因:较浅裂纹是钢锭皮下气泡未焊合形成的,较深裂纹是由钢锭浇注受锭模内壁质量,钢水摆动和钢锭与锭模铸合等因素形成的。
2、内部横向裂纹缺陷现象:在锻件内部产生横向裂纹。
产生原因:冷钢锭在低温区加热过快或中心引起较大拉力造成,高碳钢和高合金钢塑性较差,在锻造操作相对送进量过小造成的。
二、纵向裂纹1、表面纵向裂纹A缺陷现象:经常在第一次拔长或镦粗时出现。
产生原因:锭模内壁缺陷和新锭模未很好退火,操作不当,高温高速浇注,钢锭脱模冷却不当或脱模过早,倒棱时压下量过大,轧制钢锭时产生纵向划痕等。
B缺陷现象:在坯料近帽口中心出现。
产生原因:由于钢锭冷却时缩孔未集中于帽口部分,锻造帽口端切头量过少,使坯料近帽口端存在二次缩孔或残余缩孔,锻造时引起纵向裂纹。
2、内部纵向裂纹A缺陷现象:坯料内部出现的纵向裂纹。
产生原因:这是利用拔长圆截面坯料,金属中心部分受拉力作用所致,或者因坯料未加热透彻,内部温度过低,拔长时内部沿纵向开裂等。
B缺陷现象:坯料内部出现的纵向十字裂纹,一般出现于高合金钢中。
产生原因:这是由于拔长时送进量过大或在同一部位反复多次锻造。
三、炸裂:缺陷现象:一般在坯料锻造前加热时或锻件冷却热处理后,在表面或内部炸开而形成的裂纹。
产生原因:因为坯料具有较高的残余应力,在未予清除的情况下,错误的采用快速加热或不适当的冷却引起裂纹。
四、自行开裂缺陷现象:常常在锻件锻造后、热处理后或锻制拔长后发生。
产生原因:坯料在锻造过程中已经形成微小裂纹,冷却或热处理中使之加剧或由于锻件内部有较大残余应力所致。
五、龟裂缺陷现象:锻件在锻造时表面出现的龟甲状或裂纹,钢料表面较浅的龟裂应清除后再锻造。
产生原因:由于钢中Cu、Sn、As、S的含量较多,或者在加热炉中铜料渗入,熔化的铜渗入钢料晶界,造成钢料热脆或者由于坯料开始锻温度过高,开始锻造时锤击过重等原因造成。
自由锻常见缺陷裂纹的原因

自由锻常见缺陷裂纹的原因自由锻是一种常见的金属加工工艺,通过利用金属的塑性变形特性来加工成型各种零部件。
然而,在实际的生产过程中,由于材料属性、加工工艺等原因,常常会出现各种缺陷,其中最常见的就是裂纹。
裂纹的出现不仅会影响零部件的质量和性能,还可能导致工件失效,因此及时发现并采取措施是非常重要的。
下面将从几个方面介绍自由锻常见缺陷裂纹的原因。
1. 材料因素材料的质量和性能对自由锻过程的裂纹形成起着重要的作用。
首先,原材料的杂质和非金属夹杂物会降低金属的塑性,增加金属的脆性,从而容易形成裂纹。
其次,金属的晶粒度和组织结构也会对裂纹的产生起到影响作用。
晶粒度过大或过小都会导致金属的塑性不足,从而容易出现裂纹。
此外,金属中的残余应力也是裂纹产生的一个重要因素,过大的残余应力会在加工过程中导致金属局部应力集中,进而形成裂纹。
2. 加工工艺因素自由锻的加工工艺对裂纹的形成有着直接的影响。
例如,锻造温度过高或过低都会影响金属的塑性,从而容易形成裂纹。
此外,锻造的速度、变形量等参数设置也会对裂纹的形成起到影响。
如果变形量过大或变形速度过快,可能使金属的应力超过其承载能力,导致裂纹的产生。
还有一些其他因素,比如锻造过程中的冷却速度、锻后的热处理工艺等也会对裂纹的形成产生影响。
3. 设计因素零部件的设计也是影响裂纹产生的因素之一。
不合理的结构设计、过于尖锐的转角或者挤压形状等都可能会导致金属在锻造过程中产生应力集中,从而形成裂纹。
因此,在设计零部件时,应该尽量避免设计过于尖锐的结构,合理控制转角和挤压形状,以减少应力集中点的产生。
4. 操作因素操作人员的技术水平和操作规范也会对裂纹的产生起到影响。
不合理的操作方法、过于急躁的操作、缺乏经验的操作人员等都有可能导致裂纹的产生。
因此,操作人员需要具备良好的技术水平和严格的操作规范,以避免不必要的裂纹产生。
5. 设备因素锻造设备的状态和性能也会对裂纹产生起到影响。
例如,设备的润滑状态不良、设备磨损严重、设备结构设计不合理等都有可能导致应力集中,从而形成裂纹。
锻件常见表面缺陷原因及注意事项

序号
缺陷种类产生原因防来自措施1折叠1.镦粗时弯曲
2.压下量太大
3.进砧太满
4.砧子圆角太小
1.镦粗时要放正
2.拔长压下量25%
3.砧宽比选择0.5~0.8
4.平砧要有圆角
2
端部凹心
1.坯料未烧透
2.砧宽比太小
1.加热要烧匀烧透
2.注意砧宽比和调整
成形顺序
3
棱角裂纹
1.锻造温度太低
2.进砧太宽太满
1.控制成形温度
2.修棱角时窄进砧
4
表面凹坑
氧化皮清理不及时
及时清理锻件、砧面
和转台上的氧化皮
5
过烧
加热温度太高及
时间太长
不允许超过工艺规定
的温度急烧
6
龟裂
加热温度过高
1.装炉温度不能太高
2.升温速度不能太快
3.不准超过温度上限
7
表面脱碳
加热时间太长
因故障维修等待时间
太长时要降温
8
气割补焊裂纹
1.气割工艺不当
2.焊后冷却太快
1.高碳、合金钢预热割
2.补焊后及时退火
9
表面氢脆开裂
1.锻后冷却太快
2.热处理不及时
1.大锻件不能急冷
2.锻后及时正回火
10
短尺亏肉
1.懒于测量尺寸
2.锻造操作不当
1.及时测量尺寸
2.锻造时精心操作
常见锻造缺陷

锻造缺陷一、原材料缺陷造成的锻造缺陷1. 层状断口2. 碳化物偏析:含碳量高的合金钢开坯和轧制时共晶碳化物未被打碎造成不均匀偏析。
危害:带状碳化物使工件在淬火时产生较大的变形,并沿着碳化物带状处产生裂纹。
当碳化物级别较高时,对高速钢刀具的使用寿命极为不利,级别>5级是,可造成刀具崩刃或断裂。
3. 缩管残余:钢锭冒口部分切除不净,开坯轧时将夹杂物缩松或偏析残留在钢材内部,淬火时形成裂纹。
二、落料不当造成的锻件缺陷1. 锻件端面与轴线倾斜:剪切时未压紧2. 撕裂:刀片间隙太大3. 毛刺:切料时,部分金属被带入剪刀间隙之间,产生尖锐和毛刺。
后果:造成加热时局部过烧,锻造时产生折叠和开裂。
4. 端部裂纹:剪切大断面坯料时,圆形端面变成椭圆形,材料中产生很大的内应力,引起应力裂纹。
另外,气割落料前,原材料没有预热,产生加工应力导致裂纹5. 凸芯开裂:车床下料时,棒料端面中心留有凸芯,锻造时凸芯冷却快,由于应力集中造成开裂。
三、锻造工艺不当造成的缺陷1. 过热:加热停留时间过长或加热温度过高引起材料晶粒粗大2. 过烧:过烧时,晶粒特别粗大,断口呈石状。
对碳钢,金相组织出现晶界氧化和熔化;工模具钢晶界因为熔化而出现鱼骨状莱氏体;铝合金出现晶界熔化三角区或复熔球。
3. 锻造裂纹1)加热裂纹:尺寸大的坯料快速加热造成内外温差大,热应力大造成开裂。
特征:由中心向四周辐射状扩展,多产生于高合金材料2)心部开裂:常在坯料的头部,开裂深度与加热和锻造有关,有事贯穿整个坯料。
原因:加热时保温不足,坯料未热透,外部温度高,塑性好,变形大,内部温度低变形小,内外产生不均匀变形3)材质缺陷开裂:锻造时在缩孔夹渣碳化物偏析等材料缺陷处形成锻造裂纹4. 脱碳和增碳1)脱碳:钢材表面在高温下,碳被氧化发生脱碳,使表层组织含碳量下降,硬度下降,强度下降,脱碳层的深度与钢的成分、炉内气氛、温度有关。
通常高碳钢易氧化脱碳,氧化性气氛中易脱碳。
不同热加工方法引起的缺陷种类及原因

目录一、锻造产生的缺陷及原因 (2)二、铸造产生的缺陷及原因 (5)三、焊接产生的缺陷及原因 (6)四、渗氮产生的缺陷及原因 (9)五、渗氮产生的缺陷及原因 (11)六、淬火产生的缺陷及原因 (13)七、退火和正火产生的缺陷及原因 (15)八、回火产生的缺陷及原因 (16)不同热加工方法引起的缺陷种类及原因热加工工艺包括锻造、铸造、焊接、热处理等,由于加工工艺、工件材料及操作者操作熟练程度的不同,会产生许多缺陷。
下面就不同热加工方法所引起的缺陷种类及原因进行分析。
一、锻造产生的缺陷及原因锻造工艺不当产生的缺陷通常有以下几种1.大晶粒大晶粒通常是由于始锻温度过高和变形程度不足、或终锻温度过高、或变形程度落人临界变形区引起的。
铝合金变形程度过大,形成织构;高温合金变形温度过低,形成混合变形组织时也可能引起粗大晶粒,晶粒粗大将使锻件的塑性和韧性降低,疲劳性能明显下降。
2.晶粒不均匀晶粒不均匀是指锻件某些部位的晶粒特别粗大,某些部位却较小。
产生晶粒不均匀的主要原因是坯料各处的变形不均匀使晶粒破碎程度不一,或局部区域的变形程度落人临界变形区,或高温合金局部加工硬化,或淬火加热时局部晶粒粗大。
3.冷硬现象变形时由于温度偏低或变形速度太快,以及锻后冷却过快,均可能使再结晶引起的软化跟不上变形引起的强化(硬化),从而使热锻后锻件内部仍部分保留冷变形组织。
这种组织的存在提高了锻件的强度和硬度,但降低了塑性和韧性。
4.裂纹裂纹通常是锻造时存在较大的拉应力、切应力或附加拉应力引起的。
裂纹发生的部位通常是在坯料应力最大、厚度最薄的部位。
如果坯料表面和内部有微裂纹、或坯料内存在组织缺陷,或热加工温度不当使材料塑性降低,或变形速度过快、变形程度过大,超过材料允许的塑性指针等,则在撤粗、拔长、冲孔、扩孔、弯曲和挤压等工序中都可能产生裂纹。
5.龟裂龟裂是在锻件表面呈现较浅的龟状裂。
引起龟裂的原因:①原材料合Cu等易熔元素过多。
锻件常见缺陷裂纹的原因

锻件常见缺陷裂纹的原因锻件常见缺陷裂纹的原因有很多,主要包括以下几个方面:1. 锻造前材料的缺陷:锻造前原材料中可能存在着各种缺陷,如夹杂物、气孔、夹渣等。
这些缺陷会在锻造过程中被拉长、扭曲或剪切,最终导致锻件出现裂纹。
2. 异常冷却方式:锻件在冷却过程中,如果冷却速度过快或不均匀,会导致锻件内部产生应力集中,从而引发裂纹。
尤其是在大尺寸、复杂形状的锻件中,由于其冷却速度不均匀,容易出现内部裂纹。
3. 冷、热变形不均匀:锻造过程中,如果材料的冷、热变形不均匀,会导致锻件内部应力分布不均匀,从而引发裂纹的产生。
尤其是在复杂形状、壁厚不一的锻件中,易出现材料贫化、过冷区和高应力区,容易引发裂纹。
4. 锻造温度过低或过高:锻造温度是影响锻件质量的关键因素之一。
如果温度过低,会导致材料的硬化能力不足,易发生塑性变形困难,从而引发裂纹;而温度过高,则会导致材料的焊接性能下降,也容易引发裂纹。
5. 压力不均匀:锻造过程中,如果锻压力不均匀,会使锻件中的应力分布不均匀,从而容易产生应力集中和裂纹。
尤其是在薄壁锻件中,容易出现锻压力不均匀的问题,导致裂纹的发生。
6. 锻件设计不合理:锻件的设计是影响锻件质量的重要因素之一。
如果锻件的形状、结构设计不合理,容易导致应力集中,从而引发裂纹的产生。
尤其是在复杂形状、尺寸大的锻件中,设计不合理会增加裂纹发生的概率。
7. 热处理不当:热处理是锻件制造过程中的关键环节,如果热处理不当,会导致锻件中的应力不释放或释放不充分,从而引发裂纹。
此外,热处理时的温度、时间等参数也需要合适,否则也可能导致裂纹的产生。
这些都是导致锻件常见缺陷裂纹的主要原因。
为了降低或避免裂纹的产生,需要从原材料选用、工艺控制、设备维护等方面做好控制和管理。
同时,制定合理的锻造工艺和热处理工艺,合理设计锻件形状和结构,对裂纹的产生起到有力的控制和避免作用。
还需要加强工作人员的培训和技能提升,提高他们的专业水平和质量意识,从而减少裂纹缺陷的发生,提高锻件的质量。
曲轴常见的锻造缺陷及解析

曲轴常见的锻造缺陷及解析曲轴是一种重要的机械零件,它经常用于内燃机、柴油机、发电机和飞机发动机等的传动装置中。
在曲轴的制造过程中,锻造是一种常用的加工方法。
然而,锻造过程中可能会产生一些缺陷,以下是曲轴常见的锻造缺陷及解析:
1. 晶界氧化物缺陷:这种缺陷是由于锻造过程中钢材表面被氧化而产生的。
这种缺陷通常出现在曲轴的表层,不仅影响曲轴的强度和韧性,而且还会导致曲轴的疲劳寿命缩短。
解决方法是通过增加锻造温度、减少加工速度或采用防氧化剂来减少这种缺陷。
2. 折叠缺陷:这种缺陷是曲轴锻件中最常见的缺陷之一。
折叠缺陷通常是在锤击或挤压中产生的。
这种缺陷会形成各种类型的裂纹,从而降低曲轴的强度和耐久性。
解决方法是通过变换锤击或挤压的方向,以减少折叠的风险。
3. 空洞缺陷:在曲轴的锻造过程中,可能会出现由气体或其他不稳定物质引起的空洞缺陷。
这种缺陷不仅会对曲轴的强度和刚度产生影响,而且还会导致曲轴表面的裂纹。
解决方法包括在制造过程中使用更好的防气体措施,并在生产前进行更彻底的金属质量检查。
4. 脆性缺陷:脆性缺陷产生的原因是当钢材在高温下变形时,钢材中的晶粒晶界会发生断裂。
脆性缺陷会导致曲轴易于断裂和损坏。
解决方法包括在锻造过程中加热和冷却的更准确控制及表面硬度测试的改进。
综上所述,锻造曲轴时需要采取多项措施来避免这些缺陷的发生,其中包括正确控制温度、锤击或挤压方向的变换、使用更好的防气体
措施以及在生产前进行更完善的金属质量检查。
锻件的瑕疵原因及检验方法

锻件的瑕疵原因及检验方法1锻件的瑕疵类别把锻件瑕疵分类,可分为:原料切料时的、加热时的、锻造时的、热处理时的、清除氧化锈皮时的、切削加工时的等许多种类。
每种类又可分为一些小的类别。
但锻件常见的瑕疵和产生瑕疵的原因叙述如下:1)不用模型锻造生产大批锻件,虽然是由同一锻模制造,但有时却还有不准确和尺寸不相同的锻件出现,这是因锻模被磨损的结果。
2)锻模在分模面上错移3)锻件没有锻透4)锻件上有压痕和皱折,这是因金属在模槽中的形状不合适引起每一部分材料堆聚,或者是前面工序锤击过重所形成了卷边后道工序将氧化皮夹在里面,因此产生了夹层。
5)锻件表面上形成斑疤是因为锻件上或锻模槽内氧化锈皮没有清除的结果。
2锻件几何外观质量检验几何尺寸的检查法要点如下:1)检查高度和直径:抽查时用普通卡尺,全查时用极限量规。
2)检查,抽查时用带千分表的卡,全查时用极限卡钳。
3)孔径:用极限量规。
4)检查大孔径,用样板测量。
5)检查长度:如只测量一个尺寸,可用杆状样板以槽宽的公差检查,如同时测量几个尺寸,可用成形样板检查。
6)检查弯曲度:将锻件放置在元宝铁或磙子上旋转,检查脉动,如大量检查曲轴或其他截面有变化的件,可同时检查几处脉动。
7)检查表面翘曲度:将大面积锻件放置在三个支点上,用深度仪检查。
8)检查表面平行度:将锻件放置在基准面上,用深度仪检查。
9)检查表面垂直度:将锻件放置在元宝铁上,用深度仪检查,大量检查时,用电接触仪,尺寸误差超过公差,红灯就亮,合格的锻件,绿灯就亮。
10)检查角度:用量角器或专门的量角仪。
3锻件表面质量检验1)目视检查这是检验锻件表面质量最普遍、最常用的方法,凭肉眼观察锻件表面是否有折叠、裂纹、压伤、疤痕、表面过烧等缺陷。
锻件表面隐藏较深的缺陷,常在酸洗、喷沙或滚筒清除表面氧化皮后进行目视检查。
3)磁力探伤也称磁粉探伤或磁粉检验,可用来发现锻件肉眼不能检查出的表面层中微小缺陷,如微小裂纹、折纹、夹杂等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引起锻造缺陷的主要原因一、原材料的主要缺陷及其引起的锻件缺陷锻造用的原材料为铸锭、轧材、挤材及锻坯。
而轧材、挤材及锻坯分别是铸锭经轧制、挤压及锻造加工成的半成品。
一般情况下,铸锭的内部缺陷或表面缺陷的出现有时是不可避免的。
例如,内部的成分与组织偏析等。
原材料存在的各种缺陷,不仅会影响锻件的成形,而且将影响锻件的最终质量。
根据不完全的统计,在航空工业系统中,导致航空锻件报废的诸多原因中,由于原材料固有缺陷引起的约占一半左右。
因此,千万不可忽视原材料的质量控制工作。
由于原材料的缺陷造成的锻件缺陷通常有:1.表面裂纹表面裂纹多发生在轧制棒材和锻制棒材上,一般呈直线形状,和轧制或锻造的主变形方向一致。
造成这种缺陷的原因很多,例如钢锭内的皮下气泡在轧制时一面沿变形方向伸长,一面暴露到表面上和向内部深处发展。
又如在轧制时,坯料的表面如被划伤,冷却时将造成应力集中,从而可能沿划痕开裂等等。
这种裂纹若在锻造前不去掉,锻造时便可能扩展引起锻件裂纹。
2.折叠折叠形成的原因是当金属坯料在轧制过程中,由于轧辊上的型槽定径不正确,或因型槽磨损面产生的毛刺在轧制时被卷入,形成和材料表面成一定倾角的折缝。
对钢材,折缝内有氧化铁夹杂,四周有脱碳。
折叠若在锻造前不去掉,可能引起锻件折叠或开裂(见实例4)。
3.结疤结疤是在轧材表面局部区域的一层可剥落的薄膜。
结疤的形成是由于浇铸时钢液飞溅而凝结在钢锭表面,轧制时被压成薄膜,贴附在轧材的表面,即为结疤。
锻后锻件经酸洗清理,薄膜将会剥落而成为锻件表面缺陷。
4.层状断口层状断口的特征是其断口或断面与折断了的石板、树皮很相似。
层状断口多发生在合金钢(铬镍钢、铬镍钨钢等),碳钢中也有发现。
这种缺陷的产生是由于钢中存在的非金属夹杂物、枝晶偏析以及气孔疏松等缺陷,在锻、轧过程中沿轧制方向被拉长,使钢材呈片层状。
如果杂质过多,锻造就有分层破裂的危险。
层状断口越严重,钢的塑性、韧性越差,尤其是横向力学性能很低,所以钢材如具有明显的层片状缺陷是不合格的,见实例46。
5.亮线(亮区)亮线是在纵向断口上呈现结晶发亮的有反射能力的细条线,多数贯穿整个断口,大多数产生在轴心部分。
亮线主要是由于合金偏析造成的,见实例86。
轻微的亮线对力学性能影响不大,严重的亮线将明显降低材料的塑性和韧性。
6.非金属夹杂非金属夹杂物主要是熔炼或浇铸的钢水冷却过程中由于成分之间或金属与炉气、容器之间的化学反应形成的。
另外,在金属熔炼和浇铸时,由于耐火材料落入钢液中,也能形成夹杂物,这种夹杂物统称夹渣。
在锻件的横断面上,非金属夹杂可以呈点状、片状、链状或团块状分布。
严重的夹杂物容易引起锻件开裂或降低材料的使用性能,见实例47。
7.碳化物偏析碳化物偏析经常在含碳高的合金钢中出现。
其特征是在局部区域有较多的碳化物聚集。
它主要是钢中的莱氏体共晶碳化物和二次网状碳化物,在开坯和轧制时未被打碎和均匀分布造成的。
碳化物偏析将降低钢的锻造变形性能,易引起锻件开裂。
锻件热处理淬火时容易局部过热、过烧和淬裂。
制成的刀具使用时刃口易崩裂,见实例37、38。
8.铝合金氧化膜铝合金氧化膜一般多位于模锻件的腹板上和分模面附近。
在低倍组织上呈微细的裂口,在高倍组织上呈涡纹状,在断口上的特征可分两类:其一,呈平整的片状,颜色从银灰色、浅黄色直至褐色、暗褐色;其二,呈细小密集而带闪光的点状物。
铝合金氧化膜是熔铸过程中敞露的熔体液面与大气中的水蒸气或其它金属氧化物相互作用时所形成的氧化膜在转铸过程中被卷人液体金属的内部形成的。
锻件和模锻件中的氧化膜对纵向力学性能无明显影响,但对高度方向力学性能影响较大,它降低了高度方向强度性能,特别是高度方向的伸长率、冲击韧度和高度方向抗腐蚀性能。
9.白点白点的主要特征是在钢坯的纵向断口上呈圆形或椭圆形的银白色斑点,在横向断口上呈细小的裂纹。
白点的大小不一,长度由1~20mm或更长。
白点在镍铬钢、镍铬钼钢等合金钢中常见,普通碳钢中也有发现,是隐藏在内部的缺陷。
白点是在氢和相变时的组织应力以及热应力的共同作用下产生的,当钢中含氢量较多和热压力加工后冷却(或锻后热处理)太快时较易产生。
用带有白点的钢锻造出来的锻件,在热处理时(淬火)易发生龟裂,有时甚至成块掉下。
白点降低钢的塑性和零件的强度,是应力集中点,它像尖锐的切刀一样,在交变载荷的作用下,很容易变成疲劳裂纹而导致疲劳破坏。
所以锻造原材料中绝对不允许有白点。
关于白点的详细介绍请见第三章第七节和实例97。
10.粗晶环粗晶环常常是铝合金或镁合金挤压棒材上存在的缺陷。
经热处理后供应的铝、镁合金的挤压棒材,在其圆断面的外层常常有粗晶环。
粗晶环的厚度,由挤压时的始端到末端是逐渐增加的。
若挤压时的润滑条件良好,则在热处理后可以减小或避免粗晶环。
反之,环的厚度会增加。
粗晶环的产生原因与很多因素有关。
但主要因素是由于挤压过程中金属与挤压筒之间产生的摩擦。
这种摩擦致使挤出来的棒材横断面的外表层晶粒要比棒材中心处晶粒的破碎程度大得多。
但是由于筒壁的影响,此区温度低,挤压时未能完全再结晶,淬火加热时未再结晶的晶粒再结晶并长大吞并已经再结晶的晶粒,于是在表层形成了粗晶环。
有粗晶环的坯料锻造时容易开裂,如粗晶环保留在锻件表层,则将降低零件的性能,见实例76。
有粗晶环缺陷的坯料,在锻造前必需将粗晶环车去。
11.缩管残余缩管残余一般是由于钢锭冒口部分产生的集中缩孔未切除干净,开坯和轧制时残留在钢材内部而产生的。
缩管残余附近区域一般会出现密集的夹杂物、疏松或偏析。
在横向低倍中呈不规则的皱折的缝隙。
锻造时或热处理时易引起锻件开裂,见实例5。
二、备料不当产生的缺陷及其对锻件的影响备料不当产生的缺陷有以下几种。
1.切斜切斜是在锯床或冲床上下料时,由于未将棒料压紧,致使坯料端面相对于纵轴线的倾斜量超过了规定的许可值。
严重的切斜,可能在锻造过程中形成折叠。
2.坯料端部弯曲并带毛刺在剪断机或冲床上下料时,由于剪刀片或切断模刃口之间的间隙过大或由于刃口不锐利,使坯料在被切断之前已有弯曲,结果部分金属被挤人刀片或模具的间隙中,形成端部下垂毛刺。
有毛刺的坯料,加热时易引起局部过热、过烧,锻造时易产生折叠和开裂。
3.坯料端面凹陷在剪床上下料时,由于剪刀片之间的间隙太小,金属断面上、下裂纹不重合,产生二次剪切,结果部分端部金属被拉掉,端面成凹陷状。
这样的坯料锻造时易产生折叠和开裂。
4.端部裂纹在冷态剪切大断面合金钢和高碳钢棒料时,常常在剪切后3~4h发现端部出现裂纹。
主要是由于刀片的单位压力太大,使圆形断面的坯料压扁成椭圆形,这时材料中产生了很大的内应力。
而压扁的端面力求恢复原来的形状,在内应力的作用下则常在切料后的几小时内出现裂纹。
材料硬度过高、硬度不均和材料偏析较严重时也易产生剪切裂纹。
有端部裂纹的坯料,锻造时裂纹将进一步扩展。
5.气割裂纹气割裂纹一般位于坯料端部,是由于气割前原材料没有预热,气割时产生组织应力和热应力引起的。
有气割裂纹的坯料,锻造时裂纹将进一步扩展。
因此锻前应予以预先清除。
6.凸芯开裂车床下料时,在棒料端面的中心部位往往留有凸芯。
锻造过程中,由于凸芯的断面很小,冷却很快,因而其塑性较低,但坯料基体部分断面大,冷却慢,塑性高。
因此,在断面突变交接处成为应力集中的部位,加之两部分塑性差异较大,故在锤击力的作用下,凸芯的周围容易造成开裂。
三、加热工艺不当常产生的缺陷加热不当所产生的缺陷可分为:①由于介质影响使坯料外层组织化学状态变化而引起的缺陷,如氧化、脱碳、增碳和渗硫、渗铜等。
②由内部组织结构的异常变化引起的缺陷,如过热、过烧和未热透等。
③由于温度在坯料内部分布不均,引起内应力(如温度应力、组织应力)过大而产生的坯料开裂等。
下面介绍其中几种常见的缺陷,其余的可见有关的实例。
1.脱碳脱碳是指金属在高温下表层的碳被氧化,使得表层的含碳量较内部有明显降低的现象。
脱碳层的深度与钢的成分、炉气的成分、温度和在此温度下的保温时间有关。
采用氧化性气氛加热易发生脱碳,高碳钢易脱碳,含硅量多的钢也易脱碳。
脱碳使零件的强度和疲劳性能下降,磨损抗力减弱。
2.增碳经油炉加热的锻件,常常在表面或部分表面发生增碳现象。
有时增碳层厚度达1.5~1.6mm,增碳层的含碳量达1%(质量分数)左右,局部点含碳量甚至超过2%(质量分数),出现莱氏体组织。
这主要是在油炉加热的情况下,当坯料的位置靠近油炉喷嘴或者就在两个喷嘴交叉喷射燃油的区域内时,由于油和空气混合得不太好,因而燃烧不完全,结果在坯料的表面形成还原性的渗碳气氛,从而产生表面增碳的效果。
增碳使锻件的机械加工性能变坏,切削时易打刀。
3.过热过热是指金属坯料的加热温度过高,或在规定的锻造与热处理温度范围内停留时间太长,或由于热效应使温升过高而引起的晶粒粗大现象。
碳钢(亚共析或过共析钢)过热之后往往出现魏氏组织。
马氏体钢过热之后,往往出现晶内织构,工模具钢往往以一次碳化物角状化为特征判定过热组织。
钛合金过热后,出现明显的β相晶界和平直细长的魏氏组织。
合金钢过热后的断口会出现石状断口或条状断口。
过热组织,由于晶粒粗大,将引起力学性能降低,尤其是冲击韧度。
一般过热的结构钢经过正常热处理(正火、淬火)之后,组织可以改善,性能也随之恢复,这种过热常被称之为不稳定过热;而合金结构钢的严重过热经一般的正火(包括高温正火)、退火或淬火处理后,过热组织不能完全消除,这种过热常被称之为稳定过热。
4.过烧过烧是指金属坯料的加热温度过高或在高温加热区停留时间过长,炉中的氧及其它氧化性气体渗透到金属晶粒间的空隙,并与铁、硫、碳等氧化,形成了易熔的氧化物的共晶体,破坏了晶粒间的联系,使材料的塑性急剧降低。
过烧严重的金属,撤粗时轻轻一击就裂,拔长时将在过烧处出现横向裂纹。
过烧与过热没有严格的温度界线。
一般以晶粒出现氧化及熔化为特征来判断过烧。
对碳钢来说,过烧时晶界熔化、严重氧化工模具钢(高速钢、Cr12型钢等)过烧时,晶界因熔化而出现鱼骨状莱氏体。
铝合金过烧时出现晶界熔化三角区和复熔球等。
锻件过烧后,往往无法挽救,只好报废。
5.加热裂纹在加热截面尺寸大的大钢锭和导热性差的高合金钢和高温合金坯料时,如果低温阶段加热速度过快,则坯料因内外温差较大而产生很大的热应力。
加之此时坯料由于温度低而塑性较差,若热应力的数值超过坯料的强度极限,就会产生由中心向四周呈辐射状的加热裂纹,使整个断面裂开。
6.铜脆铜脆在锻件表面上呈龟裂状。
高倍观察时,有淡黄色的铜(或铜的固溶体)沿晶界分布。
坯料加热时,如炉内残存氧化铜屑,在高温下氧化钢还原为自由铜,熔融的钢原子沿奥氏体晶界扩展,削弱了晶粒间的联系。
另外,钢中含铜量较高[>2%(质量分数)]时,如在氧化性气氛中加热,在氧化铁皮下形成富铜层,也引起钢脆。