锻件缺陷分析报告
锻件缺陷

可用半径样板或外半径、内半径极限样板测量。
5.锻件上角度的检验 锻件上的倾斜角度,可用测角器来测量。 6.锻件孔径检测 (1)如果孔没有斜度,则用游标尺测量,也可用卡钳来测量。 (2)如果孔有斜度,生产批量又大,则可用极限塞规测量。 (3)如果孔径很大,则可用大刻度的游标卡尺,或用样板检验。 7.锻件错位检验 (1)如果锻件上端面高出分模面且有 7-10 度的出模斜度,或者分模面的位置在锻件本体 中间,即可在切边前观察到锻件是否有错位。 (2)如错位不易观察到,则可将锻件下半部固定,对上半部进行划线检验,或者用专用 样板检验。 (3)横截面为圆形的锻件,可用游标卡尺测量分模线的直径误差。 8.锻件挠度直径检验 (1)对于等截面的长轴类锻件,在平板上,慢漫地反复旋转锻件。即可测出轴线的最大 挠度。 (2)将锻件两端支放在专门数据的 V 形块或滚棒上,旋转锻件,通过仪表即可测出锻件 两支点间的最大挠度值。
质量检验内容包括两部分: 1.锻件等级及检验项目(见表 1)。 2.试验方法标准(见表 2)。
表1
锻件几何形状与尺寸的检验 1. 锻件长度尺寸检验
可用直尺、卡钳、卡尺或游标卡尺等通用量具进行测量。 2. 锻件高度(或横向尺寸)与直径检验
一般情况用卡钳或游标卡尺测量,如批量大,可用专用极限卡板测量。 3. 锻件厚度检验
金钢和中合金钢的质量,一般不用于高合金钢。 3.高倍检验 锻件的高倍检验,就是在各种显微镜下检验锻件内部(或断口上)组织状态与微观缺陷。高 倍检验应用的显微镜有以下三种: (1)普通金相显微镜其有效放大倍率一般在 2000 倍以下,分辨极限最小为 2000A。 (2)透射式电子显微镜分辨率可达 0.4-0.8nm,放大倍率可达几十万位。 (3)扫描电子显微镜放大倍数可以从几低倍到高倍(由二十几倍到十几万倍)连续变化,分 辨率一般为 20nm,好一些的可达 10nm。 试样切取后,按顺序极限粗磨-细磨一抛光-浸蚀,最后在显微镜下检查。
锻件的常见缺陷及原因分析

锻件的常见缺陷及原因分析(2007/07/05 10:58)锻件的缺陷很多,产生的原因也多种多样,有锻造工艺不良造成的,有原材料的原因,有模具设计不合理所致等等。
尤其是少无切削加工的精密锻件,更是难以做到完全控制。
1.大晶粒大晶粒通常是由于始锻温度过高和变形程度不足、或终锻温度过高、或变形程度落人临界变形区引起的。
铝合金变形程度过大,形成织构;高温合金变形温度过低,形成混合变形组织时也可能引起粗大晶粒,晶粒粗大将使锻件的塑性和韧性降低,疲劳性能明显下降。
2.晶粒不均匀晶粒不均匀是指锻件某些部位的晶粒特别粗大,某些部位却较小。
产生晶粒不均匀的主要原因是坯料各处的变形不均匀使晶粒破碎程度不一,或局部区域的变形程度落人临界变形区,或高温合金局部加工硬化,或淬火加热时局部晶粒粗大。
耐热钢及高温合金对晶粒不均匀特别敏感。
晶粒不均匀将使锻件的持久性能、疲劳性能明显下降。
3.冷硬现象变形时由于温度偏低或变形速度太快,以及锻后冷却过快,均可能使再结晶引起的软化跟不上变形引起的强化(硬化),从而使热锻后锻件内部仍部分保留冷变形组织。
这种组织的存在提高了锻件的强度和硬度,但降低了塑性和韧性。
严重的冷硬现象可能引起锻裂。
4.裂纹裂纹通常是锻造时存在较大的拉应力、切应力或附加拉应力引起的。
裂纹发生的部位通常是在坯料应力最大、厚度最薄的部位。
如果坯料表面和内部有微裂纹、或坯料内存在组织缺陷,或热加工温度不当使材料塑性降低,或变形速度过快、变形程度过大,超过材料允许的塑性指针等,则在镦粗、拔长、冲孔、扩孔、弯曲和挤压等工序中都可能产生裂纹。
5.龟裂龟裂是在锻件表面呈现较浅的龟状裂纹。
在锻件成形中受拉应力的表面(例如,未充满的凸出部分或受弯曲的部分)最容易产生这种缺陷。
引起龟裂的内因可能是多方面的:①原材料合Cu、Sn等易熔元素过多。
②高温长时间加热时,钢料表面有铜析出、表面晶粒粗大、脱碳、或经过多次加热的表面。
③燃料含硫量过高,有硫渗人钢料表面。
大型锻件中常见的缺陷与对策大全

大型锻件中常见的缺陷与对策大全摘要:I.引言- 大型锻件的应用背景- 锻造过程中常见缺陷概述II.大型锻件中的常见缺陷- 锻造裂纹- 夹杂物- 疏松- 偏析- 折叠III.大型锻件缺陷的对策- 针对锻造裂纹的对策- 针对夹杂物的对策- 针对疏松的对策- 针对偏析的对策- 针对折叠的对策IV.结论- 总结大型锻件中常见缺陷及对策- 强调质量控制的重要性正文:I.引言大型锻件广泛应用于航空、航天、能源等各个领域,其质量直接影响着设备的运行安全和可靠性。
在锻造过程中,由于各种原因,锻件中常会出现一些缺陷,如锻造裂纹、夹杂物、疏松、偏析和折叠等。
针对这些缺陷,本文将对大型锻件中的常见缺陷及对策进行探讨。
II.大型锻件中的常见缺陷1.锻造裂纹锻造裂纹是锻件中最常见的缺陷之一,主要由于锻造过程中金属的塑性变形不均匀,内部应力过大而产生。
裂纹可能出现在锻件的表面或内部,对锻件的使用性能产生严重影响。
2.夹杂物夹杂物是指在锻造过程中,金属中混入的氧化物、硅酸盐等非金属杂质。
夹杂物会影响锻件的力学性能和耐腐蚀性能,甚至导致锻件在使用过程中断裂。
3.疏松疏松是指锻件中出现的孔洞或疏松区域,通常由于金属在锻造过程中未完全充填模腔而产生。
疏松会降低锻件的强度和韧性,严重影响锻件的使用性能。
4.偏析偏析是指金属中某些元素或化合物在锻件中分布不均匀的现象。
偏析会导致锻件的性能不均匀,可能出现局部脆弱、疲劳裂纹等问题。
5.折叠折叠是指锻件在锻造过程中产生的折叠状缺陷,通常由于金属在流动过程中受阻或变形不充分而产生。
折叠会降低锻件的强度和韧性,影响锻件的使用性能。
III.大型锻件缺陷的对策1.针对锻造裂纹的对策- 优化锻造工艺,降低金属的内部应力- 严格控制锻造温度,避免过热或过冷- 合理设计模具,确保金属塑性变形均匀2.针对夹杂物的对策- 提高金属原料的质量,减少夹杂物的含量- 采用净化熔炼技术,降低金属中的杂质含量- 合理选择锻造工艺,避免金属氧化和硅酸盐形成3.针对疏松的对策- 提高锻造速度和变形程度,使金属充分充填模腔- 优化模具设计,确保金属流动畅通- 严格控制锻造过程中的润滑剂和冷却剂使用4.针对偏析的对策- 优化金属成分,控制元素含量和分布- 采用均匀化热处理工艺,改善金属的分布状态- 严格控制锻造过程中的温度梯度和冷却速度5.针对折叠的对策- 优化锻造工艺,确保金属流动顺畅- 合理设计模具,避免金属受阻和变形不充分- 严格控制锻造过程中的力度和速度IV.结论大型锻件中的常见缺陷及对策是锻造过程中需要关注的重要问题。
锻件产品缺陷分析及防止方法

(作者单位:1.沈阳万恒锻造有限公司;2.沈阳市汽车工程学校)锻件产品缺陷分析及防止方法◎高杰1王本昊2为了保证质量,对于金属锻件必须进行质量检验。
对检验出有缺陷的锻件,根据使用要求(检验标准)和缺陷的程度确定其合格、或报废、或经过修补后使用。
一、自由锻件常见缺陷及其原因和防止方法(一)裂纹1.表面裂纹。
(1)表面横向裂纹。
锻造时坯料表面出现横向较浅的裂纹,是由于钢锭皮下气泡暴露于表面不能锻合而形成的,其深度可达10mm 以上;或者操作时送进量过大,在塑性较差的金属坯料上也会出现这种缺陷。
锻造时坯料坯料表面出现横向较深的裂纹,是由于钢锭浇注和脱模后冷却不当等多种原因引起的,严重时由于浇注中断而造成横断成两截,成为无法挽救的废品。
表面横向裂纹往往在第1火次锻造中出现。
一经发现,大型锻件可用火焰吹氧清理去掉,小锻件可用小剁刀剁除,以免裂纹在锻造时继续扩大。
防止方法是控制和保证钢锭的质量,改善钢锭起模后的冷却工艺,并控制操作时坯料的送进量。
(2)表面纵向裂纹。
在第一次加热后鐓拔长或粗时,产生在坯料表面上的纵向裂纹,时由于钢锭模内壁缺陷或浇注操作不当或起模后冷却不当,以及钢锭倒棱时压下量过大,或者钢坯在扎制时就产生有纵向划痕造成的。
锻造时一经发现纵向裂纹应立即消除,以免缺陷继续扩大。
防止的方法是:提高钢锭质量;保证浇注操作的正确性;起模时控制冷却工艺;钢锭倒棱时控制压下量;对钢坯表面划痕较多的禁止使用,等等。
2.内部裂纹。
(1)内部横向裂纹。
这是不能从锻件外表看见的缺陷,只能通过磁力探伤、超声波检查发现。
产生的原因是:冷钢锭在加热过程中,低温区的加热速度过快,或者塑性较差的高碳钢、高合金钢在锻造操作时相对送进量L/D (或L/H )小于0.5。
防止的方法是控制冷钢锭的加热速度,特别是在低温区;还有就是控制锻造操作时的相对送进量。
(2)内部纵向裂纹。
锻件内部可能产生3种纵向裂纹:①在坯料冒口端中心附近因存在残余缩孔或二次缩孔,锻后引起纵向内裂纹。
12Cr2Mo1钢环锻件内部缺陷分析

照此方 案进 行改 造 ,具 有很好 的推 广价 值 。
M W ( 0 1 6 2) 2 10 1
综 上 所 述 ,由 于 1C o 钢 环 锻 件 所 产 生 的 2  ̄M l
坯 中 ,以致 后 续轧 制 成 环 锻 件 产 品 时 ,夹 杂 物 在 轧 制 力 的 作 用 下 聚 集 成 链 状 ,孔 洞 变 形 拉 长 成 管 状
等 。后 经重 新 炼 制钢 锭 ,严 格 控 制 冶 炼 质 量 ,在 相
诸多缺陷均分布在环锻件内径附近 ,说明了原材 料
钢 锭 在冶 炼 过程 中 ,钢 锭 中心 部 位 存 在 大 量 的气 孔 以及 夹 杂 物 等 缺 陷 。 因此 在 油 压 机 锻 造 制 坯 过 程 中 ,尽 管钢 锭 中 心部 位 缺 陷 以小直 径 圆形 心 料 的形 式 被 冲孔 去 除 ,但 是 仍 有 少 部 分缺 陷残 留在 环 形 毛
处理 正火 +回火 处 理 ,粗 车 加 工 后 ,表 面 光 洁 无 异
标 准 ≤0 1 ≤O 5 0 3 0 6 . 0—1 1 . 0— .0 .5 . 0 .0— .0O 9 .0 2 O 2 5
实 测 0 1 .3 成分 P
0 4 .5 处 理 工 艺 下 ,再 未 发 现 类 似
缺 陷 。MW
( 0 1 7 9 2 10 0 )
磊 工热 热 兰薹 。 工 处 篓 墨§ 加
4 9
≥1 8 2 0
≥4 1 4 5
16~2 1 3 0 15 5
析仪等对产生的缺陷性质与原因进行 了详细的分析。
1 .试 验 材 料 及 方 法 ( )试 验 材料 1 试验 用材 料 为某 厂 生产 的 钢锭 ,
锻件缺陷的特征及其产生的原因

层状断口严重队低钢材横向力学性能,锻造时极易沿分层破裂
成分偏析带
在某些合金结构钢,如40GrNiMoA,38GrMoAlA等锻件的纵向低倍上,沿流线方向出现不同于流线的条状或条带状缺陷。缺陷区的显微硬度与正常区的明显不同
白点在合金结构钢中常见,在普通碳钢中也有发现
由于钢中含氢较多和相变时组织应力大引起。大型钢坯锻轧后冷却较快时容易产生白点
白点是隐藏在内部的裂纹,降低钢的塑性和强度,白点是应力集中点,在交变载荷作用下易引疲劳裂纹
缩孔残余
在锻件低倍检查时,出现不规则的皱折Байду номын сангаас缝隙,形似裂纹,呈现深褐色或灰白色;高倍检查缩孔残余附近有大量非金属夹杂物,质脆易剥落
浇注时,由于钢液飞溅而凝结在钢锭表面,轧制时被压成薄腊而贴附在轧材表面即为结疤。锻后经酸洗清理,结疤剥落,锻件表面上出现凹坑
折缝
(折叠)
在轧材端面上的直径两端出现方向相反的折缝。折缝同圆弧切线成一角度,折缝内有氧化夹杂,四周有脱碳
轧辊上型槽定径不正确,或型槽磨损面产生的毛刺在轧制时被卷成折叠
锻前若不去掉,将残留锻件表面
成分偏析带主要是由于原材生产过程中合金元素发生偏析造成的
轻微的成分偏析带对力学性能影响不大,严重的偏析带低明显降低锻件的塑性和韧性
亮条或亮带
在锻件表面或锻件加工过的表面上,出现长度不等的亮条。亮条大多沿锻件纵向分布。这种缺陷主要出现在钛合金和高温合金锻件中
由于合金元素偏析造成。钛合金锻件中的亮条,多属低铝低钒偏析区;高温合金锻件上的亮条区,多属镍铬钴等元素偏高
具有粗晶环的坯料,锻造时容易开裂,如留在锻件上将降低零件性能
铝合金锻件的常见缺陷及对策

铝合金锻件的常见缺陷及对策铝合金材料因其密度较小,强度适宜,因而得到广泛的应用。
根据成分和工艺性能不同,铝合金分为变形铝合金和铸造铝合金两大类。
变形铝合金按其热处理强化能力又可分为热处理不强化铝合金和热处理强化铝合金。
变形铝合金按其使用性能及工艺性能可分为防锈铝合金(用LF表示)、硬铝合金(用LY表示),超硬铝合金(用LC 表示)和锻铝合金(用LD表示)。
影响铝合金再结晶温度的主要因素有:合金成分、压力加工前的均匀化规范、压力加工方式(应力状态)、变形温度、变形速度、变形程度和最终热处理制度等。
铝合金的晶粒尺寸对力学性能有较大影响,铝合金锻件中的粗晶显著降低强度极限和屈服极限,降低零件的使用性能和寿命。
因此,锻造铝合金时需注意控制晶粒度。
铝合金锻件的晶粒大小与变形温度、变形程度、受剪切变形的情况以及固溶处理前的组织状态等有关。
详见几种主要缺陷形成的机理和对策中的备料不当产生的缺陷及其对锻件的影响。
供锻造和模锻的铝合金原坯料,一般采用铸锭和挤庄坯料,个别情况下亦采用轧制坯料。
铸锭坯料往往具有疏松、气孔、缩孔、裂纹、成层、夹渣、氧化膜和树枝状偏析等缺陷。
挤压坯料一般具有粗晶环、成层、缩尾、夹渣、氧化膜和表皮气泡等缺陷。
铝合金坯料的上述缺陷,不仅锻造时容易开裂,而且直接影响到锻件质量,所以锻前需要按标准对坯料进行检查,合格后方能投产。
铝合金的锻造特点如下:1.塑性较低铝合金的塑性受合金成分和锻造温度的影响较大。
大多数铝合金对变形速度不十分敏感,但是随着合金中合金元素含量的增加,合金的塑性不断下降。
2.流动性差铝合金质地很软,外摩擦系数较大,所以流动性较差,模锻时难于成形。
3.锻造温度范围窄铝合金的锻造温度范围一般都在150℃以内,少数高强度铝合金的锻造温度范围甚至不到100℃,由于铝合金的锻造温度范围很窄,所以一般都采用能精确控制加热温度的带强制循环空气的箱式电阻炉或普通箱式电阻炉进行加热,温差控制在上±10℃以内。
锻造零件缺陷分析

锻造零件缺陷分析摘要:介绍了四种典型锻造缺陷案例并进行了详尽的追述,主要从锻造过程中金属流动和冶金缺陷的重新分布的角度对锻造缺陷产生原因作了比较全面的解析,提出了解决这些问题比较成熟的经验和方法。
关键词:锻造零件;缺陷分析;解决措施1引言锻件缺陷的产生有时往往呈批量性和阶段性,因此及时、准确找出缺陷原因是非常重要的。
而实际锻造生产与理想规范的状态是有较大的出入,有些缺陷产生原因经常出人意料之外,问题的解决也比较周折。
现列举几例来源于生产中比较有代表性的锻造裂纹及其解决办法,希望能给与同行有益的启示。
2案例分析2.1连杆的分模面裂纹2.1.1宏、微观检验我厂生产的船用柴油机连杆(从形状分类属杆类锻件),用45钢在10t模锻锤上锻成。
锻造切边后经探伤均未发现裂纹,但在热处理调质或酸洗后发现裂纹,有时废品率高达30%左右。
裂纹有规律地分布于杆部模面上,呈纵向分布,裂纹长度几乎等于连杆杆部长度(见图1),深度约5~7mm。
裂纹由粗渐细向深扩展,裂纹曲折,沿晶开裂,有分支细裂纹出现[1];裂纹两侧与基体组织一致,无脱碳现象发生,显微组织为回火索氏体+少量铁素体[2](见图2),其硬度为311~319HB。
将未裂的杆部横向切开热蚀(见图3),锻件表层非常致密,心部较为疏松,分模面处流线向外凸出,纤维较粗且疏松严重。
图1分模面裂纹图2裂纹及组织100×图3横截面流线2.1.2裂纹分析连杆杆部是呈工字型的,在模锻过程中,变形量较大。
形变的初期,靠近表层的金属由于型腔的摩擦力而相对流动小,心部金属被挤压向四周而充满型腔,沿桥口横向挤出形成飞边量是比较少的。
这种表层与心部的相对运动,势必造成金属分层,反映在分模面边界处有一道明显的致密与疏松的分界线(见图3);而且原材料的缺陷和夹杂物也都密集于飞边处,分模面的疏松最为严重;同时分模面切边处于流线横向位置,是很容易开裂的。
因此淬火时的高应力致使产生分模面裂纹。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锻造对金属组织、性能的影响与锻件缺陷锻件的缺陷包括表面缺陷和部缺陷。
有的锻件缺陷会影响后续工序的加工质量,有的则严重影响锻件的性能,降低所制成品件的使用寿命,甚至危及安全。
因此,为提高锻件质量,避免锻件缺陷的产生,应采取相应的工艺对策,同时还应加强生产全过程的质量控制。
概要介绍三方面的问题:锻造对金属组织、性能的影响与锻件缺陷;锻件质量检验的容和方法;锻件质量分析的一般过程。
(一)锻造对金属组织和性能的影响锻造生产中,除了必须保证锻件所要求的形状和尺寸外,还必须满足零件在使用过程中所提出的性能要求,其中主要包括:强度指针、塑性指针、冲击韧度、疲劳强度、断裂韧度和抗应力腐蚀性能等,对高温工作的零件,还有高温瞬时拉伸性能、持久性能、抗蠕变性能和热疲劳性能等。
锻造用的原材料是铸锭、轧材、挤材和锻坯。
而轧材、挤材和锻坯分别是铸锭经轧制、挤压及锻造加工后形成的半成品。
锻造生产中,采用合理的工艺和工艺参数,可以通过下列几方面来改善原材料的组织和性能:1)打碎柱状晶,改善宏观偏析,把铸态组织变为锻态组织,并在合适的温度和应力条件下,焊合部孔隙,提高材料的致密度;2)铸锭经过锻造形成纤维组织,进一步通过轧制、挤压、模锻,使锻件得到合理的纤维方向分布;3)控制晶粒的大小和均匀度;4)改善第二相(例如:莱氏体钢中的合金碳化物)的分布;5)使组织得到形变强化或形变——相变强化等。
由于上述组织的改善,使锻件的塑性、冲击韧度、疲劳强度及持久性能等也随之得到了提高,然后通过零件的最后热处理就能得到零件所要求的硬度、强度和塑性等良好的综合性能。
但是,如果原材料的质量不良或所采用的锻造工艺不合理,则可能产生锻件缺陷,包括表面缺陷、部缺陷或性能不合格等。
(二)原材料对锻件质量的影响原材料的良好质量是保证锻件质量的先决条件,如原材料存在缺陷,将影响锻件的成形过程及锻件的最终质量。
如原材料的化学元素超出规定的围或杂质元素含量过高,对锻件的成形和质量都会带来较大的影响,例如:S、B、Cu、Sn等元素易形成低熔点相,使锻件易出现热脆。
为了获得本质细晶粒钢,钢中残余铝含量需控制在一定围,例如Al酸0.02%~0.04%(质量分数)。
含量过少,起不到控制晶粒长大的作用,常易使锻件的本质晶粒度不合格;含铝量过多,压力加工时在形成纤维组织的条件下易形成木纹状断口、撕痕状断口等。
又如,在1Cr18Ni9Ti奥氏体不锈钢中,Ti、Si、Al、Mo的含量越多,则铁素体相越多,锻造时愈易形成带状裂纹,并使零件带有磁性。
如原材料存在缩管残余、皮下起泡、严重碳化物偏析、粗大的非金属夹杂物(夹渣)等缺陷,锻造时易使锻件产生裂纹。
原材料的树枝状晶、严重疏松、非金属夹杂物、白点、氧化膜、偏析带及异金属混人等缺陷,易引起锻件性能下降。
原材料的表面裂纹、折叠、结疤、粗晶环等易造成锻件的表面裂纹。
(三)锻造工艺过程对锻件质量的影响锻造工艺过程一般由以下工序组成,即下料、加热、成形、锻后冷却、酸洗及锻后热处理。
锻造过程中如果工艺不当将可能产生一系列的锻件缺陷。
加热工艺包括装炉温度、加热温度、加热速度、保温时间、炉气成分等。
如果加热不当,例如加热温度过高和加热时间过长,将会引起脱碳、过热、过烧等缺陷。
对于断面尺寸大及导热性差、塑性低的坯料,若加热速度太快,保温时间太短,往往使温度分布不均匀,引起热应力,并使坯料发生开裂。
锻造成形工艺包括变形方式、变形程度、变形温度、变形速度、应力状态、工模具的情兄和润滑条件等,如果成形工艺不当,将可能引起粗大晶粒、晶粒不均、各种裂纹、折叠。
寒流、涡流、铸态组织残留等。
锻后冷却过程中,如果工艺不当可能引起冷却裂纹、白点、网状碳化物等。
(四)锻件组织对最终热处理后的组织和性能的影响奥氏体和铁素体耐热不锈钢、高温合金、铝合金、镁合金等在加热和冷却过程中,没有同素异构转变的材料,以及一些铜合金和钛合金等,在锻造过程中产生的组织缺陷用热处理的办法不能改善。
在加热和冷却过程中有同素异构转变的材料,如结构钢和马氏体不锈钢等,由于锻造工艺不当引起的某些组织缺陷或原材料遗留的某些缺陷,对热处理后的锻件质量有很大影响。
现举例说明如下:1)有些锻件的组织缺陷,在锻后热处理时可以得到改善,锻件最终热处理后仍可获得满意的组织和性能。
例如,在一般过热的结构钢锻件中的粗晶和氏组织,过共析钢和轴承钢由于冷却不当引起的轻微的网状碳化物等。
2)有些锻件的组织缺陷,用正常的热处理较难消除,需用高温正火、反复正火、低温分解、高温扩散退火等措施才能得到改善。
例如,低倍粗晶、9Cr18不锈钢的孪晶碳化物等。
3)有些锻件的组织缺陷,用一般热处理工艺不能消除,结果使最终热处理后的锻件性能下降,甚至不合格。
例如,严重的石状断口和棱面断口、过烧、不锈钢中的铁素体带、莱氏体高合金工具钢中的碳化物网和带等。
4)有些锻件的组织缺陷,在最终热处理时将会进一步发展,甚至引起开裂。
例如,合金结构钢锻件中的粗晶组织,如果锻后热处理时未得到改善,在碳、氮共渗和淬火后常引起马氏体针粗大和性能不合格;高速钢中的粗大带状碳化物,淬火时常引起开裂。
锻造过程中常见的缺陷及其产生原因在锻造过中常见的缺陷中将具体介绍。
应当指出,各种成形方法中的常见缺陷和各类材料锻件的主要缺陷都是有其规律的。
不同成形方法,由于其受力情况不同,应力应变特点不一样,因而可能产生的主要缺陷也是不一样的。
例如,坯料镦粗时的主要缺陷是侧表面产生纵向或45°方向的裂纹,锭料镦粗后上、下端常残留铸态组织等;矩形截面坯料拔长时的主要缺陷是表面的横向裂纹和角裂,部的对角线裂纹和横向裂纹;开式模锻时的主要缺陷则是充不满、折叠和错移等。
各主要成形工序中常见的缺陷将在各主要成形工序中常见的缺陷与对策中详细介绍。
不同种类的材料,由于其成分、组织不同,在加热、锻造和冷却过程中,其组织变化和力学行为也不同,因而锻造工艺不当时,可能产生的缺陷也有其特殊性。
例如,莱氏体高合金工具钢锻件的缺陷主要是碳化物颗粒粗大、分布不均匀和裂纹,高温合金锻件的缺陷主要是粗晶和裂纹;奥氏体不锈钢锻件的缺陷主要是晶间贫铬,抗晶间腐蚀能力下降,铁素体带状组织和裂纹等;铝合金锻件的缺陷主要是粗晶、折叠、涡流、穿流等锻造工艺缺陷(1)锻造工艺不当产生的缺陷通常有以下几种1.大晶粒大晶粒通常是由于始锻温度过高和变形程度不足、或终锻温度过高、或变形程度落人临界变形区引起的。
铝合金变形程度过大,形成织构;高温合金变形温度过低,形成混合变形组织时也可能引起粗大晶粒晶粒粗大将使锻件的塑性和韧性降低,疲劳性能明显下降,2.晶粒不均匀晶粒不均匀是指锻件某些部位的晶粒特别粗大,某些部位却较小。
产生晶粒不均匀的主要原因是坯料各处的变形不均匀使晶粒破碎程度不一,或局部区域的变形程度落人临界变形区,或高温合金局部加工硬化,或淬火加热时局部晶粒粗大。
耐热钢及高温合金对晶粒不均匀特别敏感。
晶粒不均匀将使锻件的持久性能、疲劳性能明显下降。
3.冷硬现象变形时由于温度偏低或变形速度太快,以及锻后冷却过快,均可能使再结晶引起的软化跟不上变形引起的强化(硬化),从而使热锻后锻件部仍部分保留冷变形组织。
这种组织的存在提高了锻件的强度和硬度,但降低了塑性和韧性。
严重的冷硬现象可能引起锻裂。
4.裂纹裂纹通常是锻造时存在较大的拉应力、切应力或附加拉应力引起的。
裂纹发生的部位通常是在坯料应力最大、厚度最薄的部位。
如果坯料表面和部有微裂纹、或坯料存在组织缺陷,或热加工温度不当使材料塑性降低,或变形速度过快、变形程度过大,超过材料允许的塑性指针等,则在撤粗、拔长、冲孔、扩孔、弯曲和挤压等工序中都可能产生裂纹。
5.龟裂龟裂是在锻件表面呈现较浅的龟状裂纹。
在锻件成形中受拉应力的表面(例如,未充满的凸出部分或受弯曲的部分)最容易产生这种缺陷。
引起龟裂的因可能是多方面的:①原材料合cu、sn等易熔元素过多。
②高温长时间加热时,钢料表面有铜析出、表面晶粒粗大、脱碳、或经过多次加热的表面。
③燃料含硫量过高,有硫渗人钢料表面,6.飞边裂纹飞边裂纹是模锻及切边时在分模面处产生的裂纹。
飞边裂纹产生的原因可能是:①在模锻操作中由于重击使金属强烈流动产生穿筋现象。
②镁合金模锻件切边温度过低;铜合金模锻件切边温度过高。
7.分模面裂纹分模面裂纹是指沿锻件分模面产生的裂纹。
原材料非金属夹杂多,模锻时向分模面流动与集中或缩管残余在模锻时挤人飞边后常形成分模面裂纹。
8.折叠折叠是金属变形过程中已氧化过的表层金属汇合到一起而形成的。
它可以是由两股(或多股)金属对流汇合而形成;也可以是由一股金属的急速大量流动将邻近部分的表层金属带着流动,两者汇合而形成的;也可以是由于变形金属发生弯曲、回流而形成;还可以是部分金属局部变形,被压人另一部分金属而形成。
折叠与原材料和坯料的形状、模具的设计、成形工序的安排、润滑情况及锻造的实际操作等有关折叠不仅减少了零件的承载面积,而且工作时由于此处的应力集中往往成为疲劳源9.穿流穿流是流线分布不当的一种形式。
在穿流区,原先成一定角度分布的流线汇合在一起形成穿流,并可能使穿流区、外的晶粒大小相差较为悬殊。
穿流产生的原因与折叠相似,是由两股金属或一股金属带着另一股金属汇流而形成的,但穿流部分的金属仍是一整体穿流使锻件的力学性能降低,尤其当穿流带两侧晶粒相差较悬殊时,性能降低较明显。
10.锻件流线分布不顺锻件流线分布不顺是指在锻件低倍上发生流线切断、回流、涡流等流线紊乱现象锻造工艺缺陷(2)如果模具设计不当或锻造方法选择不合理,预制毛坯流线紊乱;工人操作不当及模具磨损而使金属产生不均匀流动,都可以使锻件流线分布不顺。
流线不顺会使各种力学性能降低,因此对于重要锻件,都有流线分布的要求。
11.铸造组织残留铸造组织残留主要出现在用铸锭作坯料的锻件中。
铸态组织主要残留在锻件的困难变形区。
锻造比不够和锻造方法不当是铸造组织残留产生的主要原因铸造组织残留会使锻件的性能下降,尤其是冲击韧度和疲劳性能等。
12.碳化物偏析级别不符要求碳化物偏析级别不符要求主要出现于莱氏体工模具钢中。
主要是锻件中的碳化物分布不均匀,呈大块状集中分布或呈网状分布。
造成这种缺陷的主要原因是原材料碳化物偏析级别差,加之改锻时锻比不够或锻造方法不当具有这种缺陷的锻件,热处理淬火时容易局部过热和淬裂。
制成的刃具和模具使用时易崩刃等。
13.带状组织带状组织是铁素体和珠光体、铁素体和奥氏体、铁素体和贝氏体以及铁素体和马氏体在锻件中呈带状分布的一种组织,它们多出现在亚共折钢、奥氏体钢和半马氏体钢中。
这种组织,是在两相共存的情况下锻造变形时产生的带状组织能降低材料的横向塑性指针,特别是冲击韧性。
在锻造或零件工作时常易沿铁素体带或两相的交界处开裂。