(新版)冀教版八年级数学下册第二十二章四边形22.2平行四边形的判断第1课时平行四边形的判定定理1教案
最新冀教版八年级数学下册 第二十二章四边形 教案教学设计(含教学反思)

第二十二章四边形22.1 平行四边形的性质 (1)第1课时平行四边形的性质定理1 (1)第2课时平行四边形的性质定理2 (4)22.2 平行四边形的判定 (7)第1课时平行四边形的判定定理1 (7)第2课时平行四边形的判定定理2、3 (9)22.3 三角形的中位线 (12)22.4 矩形 (14)第1课时矩形的性质 (14)第2课时矩形的判定 (17)22.5 菱形 (20)第1课时菱形的性质 (20)第2课时菱形的判定 (24)22.6 正方形 (28)22.7 多边形的内角和与外角和 (33)复习整理 (35)22.1 平行四边形的性质第1课时平行四边形的性质定理1教学目标1.理解平行四边形的概念;(重点)2.掌握平行四边形边、角的性质;(重点)3.利用平行四边形边、角的性质解决问题.(难点)教学过程一、情境导入如图,平行四边形是我们常见的一种图形,它具有十分和谐的对称美.它是什么样的对称图形呢?它又具有哪些基本性质呢?二、合作探究探究点一:平行四边形的定义如图,在四边形ABCD中,∠B=∠D,∠1=∠2.求证:四边形ABCD是平行四边形.解析:根据三角形内角和定理求出∠DAC=∠ACB,根据平行线的判定推出AD∥BC,AB∥CD,根据平行四边形的定义推出即可.证明:∵∠1+∠B+∠ACB=180°,∠2+∠D+∠CAD=180°,∠B=∠D,∠1=∠2,∴∠DAC=∠ACB,∴AD∥BC.∵∠1=∠2,∴AB∥CD,∴四边形ABCD是平行四边形.方法总结:平行四边形的定义既是平行四边形的性质,也是判断一个四边形是平行四边形的重要方法.探究点二:平行四边形的边、角特征【类型一】利用平行四边形的性质求边长如图,在△ABC中,AB=AC=5,点D,E,F分别是AC,BC,BA延长线上的点,四边形ADEF为平行四边形,DE=2,则AD=________.解析:∵四边形ADEF为平行四边形,∴DE=AF=2,AD=EF,AD∥EF,∴∠ACB=∠FEB.∵AB=AC,∴∠ACB=∠B,∴∠FEB=∠B,∴EF=BF.∴AD=BF,∵AB=5,∴BF=5+2=7,∴AD=7.方法总结:本题考查了平行四边形对边平行且相等的性质及等腰三角形的性质,熟练掌握各性质是解题的关键.【类型二】利用平行四边形的性质求角如图,在平行四边形ABCD中,CE⊥AB于E,若∠A=125°,则∠BCE的度数为( ) A.35°B.55°C.25°D.30°解析:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.∵∠A=125°,∴∠B=55°.∵CE⊥AB于E,∴∠BEC=90°,∴∠BCE=90°-55°=35°.故选A.方法总结:平行四边形对角相等,邻角互补,并且已知一个角或已知两个邻角的关系,可求出其他角,所以利用该性质可以解决和角度有关的问题.【类型三】利用平行四边形的性质证明有关结论如图,点G 、E 、F 分别在平行四边形ABCD 的边AD 、DC 和BC 上,DG =DC ,CE =CF ,点P 是射线GC 上一点,连接FP ,EP .求证:FP =EP .解析:根据平行四边形的性质推出∠DGC =∠GCB ,根据等腰三角形性质求出∠DGC =∠DCG ,推出∠DCG =∠GCB ,根据“等角的补角相等”求出∠DCP =∠FCP ,根据“SAS”证出△PCF ≌△PCE 即可得出结论.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DGC =∠GCB .∵DG =DC ,∴∠DGC =∠DCG ,∴∠DCG =∠GCB .∵∠DCG +∠ECP =180°,∠GCB +∠FCP =180°,∴∠ECP =∠FCP .在△PCF 和△PCE 中,∵⎩⎪⎨⎪⎧CF =CE ,∠FCP =∠ECP ,CP =CP ,∴△PCF ≌△PCE (SAS),∴PF =PE .方法总结:平行四边形性质,等腰三角形的性质,全等三角形的性质和判定等常综合应用,利用平行四边形的性质可以解决一些相等的问题,在证明时应用较多. 【类型四】 判断直线的位置关系如图,在平行四边形ABCD 中,AB =2AD ,M 为AB 的中点,连接DM 、MC ,试问直线DM 和MC 有何位置关系?请证明.解析:由AB =2AD ,M 是AB 的中点的位置关系,可得出DM 、CM 分别是∠ADC 与∠BCD 的平分线.又由平行线的性质可得∠ADC +∠BCD =180°,进而可得出DM 与MC 的位置关系.解:DM 与MC 互相垂直.证明如下:∵M 是AB 的中点,∴AB =2AM .又∵AB =2AD ,∴AM =AD ,∴∠ADM =∠AMD .∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠AMD =∠MDC ,∴∠ADM=∠MDC ,则∠MDC =12∠ADC ,同理∠MCD =12∠BCD .∵AD ∥BC ,∴∠ADC +∠DCB =180°,∴∠MDC +∠MCD =12∠BCD +12∠ADC =90°.∵∠MDC +∠MCD +∠DMC =180°,∴∠DMC =90°,∴DM 与MC 互相垂直.方法总结:根据平行四边形的性质,将已知条件转化到同一个三角形中,即可判断两条直线的关系.探究点三:两平行线间的距离如图,已知l 1∥l 2,点E ,F 在l 1上,点G ,H 在l 2上,试说明△EGO 与△FHO 面积相等.解析:结合平行线间的距离相等和三角形的面积公式即可证明.证明:∵l 1∥l 2,∴点E ,F 到l 2之间的距离都相等,设为h .∴S △EGH =12GH ·h ,S △FGH =12GH ·h ,∴S △EGH =S △FGH ,∴S △EGH -S △GOH =S △FGH -S △GOH ,∴△EGO 的面积等于△FHO 的面积.方法总结:根据两平行线间的距离可知,夹在两条平行线间的任何平行线段都相等,而后可推出两三角形同底等高,面积相等.三、板书设计1.平行四边形的定义2.平行四边形的边、角特征3.两平行线间的距离教学反思学生通过观看多媒体课件的演示和动手操作的过程,得出并掌握平行四边形的性质,效果比较好.例题能够引导学生用不同的方法去解决问题并加以变式练习,使教师能根据学生的掌握情况及时解决学生在练习的过程中发现问题,并通过投影指出错误,规范说理过程,极大提高课堂效率.第2课时 平行四边形的性质定理2教学目标1.掌握平行四边形对角线互相平分的性质;(重点)2.利用平行四边形对角线互相平分解决有关问题.(难点)教学过程一、情境导入如图,在平行四边形ABCD 中,AC ,BD 为对角线,BC =6,BC 边上的高为4,你能算出图中阴影部分的面积吗?二、合作探究探究点一:平行四边形的对角线互相平分 【类型一】 利用平行四边形对角线互相平分求线段已知▱ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,△AOB 的周长比△DOA 的周长长5cm ,求这个平行四边形各边的长.解析:平行四边形周长为60cm ,即相邻两边之和为30cm.△AOB 的周长比△DOA 的周长长5cm ,而AO 为共用,OB =OD ,因而由题可知AB 比AD 长5cm ,进一步解答即可.解:∵四边形ABCD 是平行四边形,∴OB =OD ,AB =CD ,AD =BC .∵△AOB 的周长比△DOA的周长长5cm ,∴AB -AD =5cm ,又∵▱ABCD 的周长为60cm ,∴AB +AD =30cm ,则AB =CD =352cm ,AD =BC =252cm. 方法总结:平行四边形被对角线分成四个小三角形,相邻两个三角形的周长之差等于邻边边长之差.【类型二】 利用平行四边形对角线互相平分证明线段或角相等如图,▱ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AB 、CD 分别相交于点E 、F .求证:OE =OF .解析:根据平行四边形的性质得出OD =OB ,DC ∥AB ,推出∠FDO =∠EBO ,证出△DFO ≌△BEO 即可.证明:∵四边形ABCD 是平行四边形,∴OD =OB ,DC ∥AB ,∴∠FDO =∠EBO .在△DFO 和△BEO 中,⎩⎪⎨⎪⎧∠FDO =∠EBO ,OD =OB ,∠FOD =∠EOB ,∴△DFO ≌△BEO (ASA),∴OE =OF .方法总结:利用平行四边形的性质解决线段的问题时,要注意运用平行四边形的对边相等,对角线互相平分的性质.【类型三】 判断直线的位置关系如图,平行四边形ABCD 中,AC 、BD 交于O 点,点E 、F 分别是AO 、CO 的中点,试判断线段BE 、DF 的关系并证明你的结论.解析:根据平行四边形的性质“对角线互相平分”得出OA =OC ,OB =OD .利用中点的意义得出OE =OF ,从而利用△FOD ≌△EOB 可得出BE =DF ,BE ∥DF .解:BE =DF ,BE ∥DF .理由如下:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .∵E 、F 分别是OA 、OC 的中点,∴OE =OF ,又∵∠FOD =∠EOB ,∴△FOD ≌△EOB (SAS),∴BE =DF ,∠ODF =∠OBE ,∴BE ∥DF .方法总结:在解决平行四边形的问题时,如果有对角线的条件时,则首选对角线互相平分的方法解决问题.探究点二:平行四边形的面积在▱ABCD 中,(1)如图①,O 为对角线BD 、AC 的交点.求证:S △ABO =S △CBO ;(2)如图②,设P 为对角线BD 上任一点(点P 与点B 、D 不重合),S △ABP 与S △CBP 仍然相等吗?若相等,请证明;若不相等,请说明理由.解析:(1)根据“平行四边形的对角线互相平分”可得AO =CO ,再根据等底等高的三角形的面积相等解答;(2)根据平行四边形的性质可得点A 、C 到BD 的距离相等,再根据等底等高的三角形的面积相等解答.(1)证明:在▱ABCD 中,AO =CO .设点B 到AC 的距离为h ,则S △ABO =12AO ·h ,S △CBO =12CO ·h ,∴S △ABO =S △CBO ;(2)解:S △ABP =S △CBP .理由如下:在▱ABCD 中,点A 、C 到BD 的距离相等,设为h ,则S △ABP =12BP ·h ,S △CBP =12BP ·h ,∴S △ABP =S △CBP . 方法总结:平行四边形的对角线将平行四边形分成四个面积相等的三角形.另外,等底等高的三角形的面积相等.三、板书设计1.平行四边形对角线互相平分2.平行四边形的面积教学反思通过分组讨论学习和自主探究,加强了学生在教学过程中的实践活动,也使学生之间的合作意识增强,与同学交流学习的气氛更浓厚,从而加深了同学之间的友谊和师生之间的教学和谐,使得教学过程更加流畅,教学相长.22.2 平行四边形的判定第1课时平行四边形的判定定理1教学目标1.掌握“一组对边平行且相等的四边形是平行四边形”的判定方法;(重点)2.平行四边形性质定理与判定定理的综合应用.(难点)教学过程一、情境导入我们已经知道,如果一个四边形是平行四边形,那么它就具有如下的一些性质:1.两组对边分别平行且相等;2.两组对角分别相等;3.两条对角线互相平分.那么,怎样判定一个四边形是否是平行四边形呢?当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定.那么是否存在其他的判定方法呢?二、合作探究探究点一:一组对边平行且相等的四边形是平行四边形已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.解析:首先根据条件证明△AFD≌△CEB,可得到AD=CB,∠DAF=∠BCE,可证出AD∥CB,根据一组对边平行且相等的四边形是平行四边形可证出结论.解:四边形ABCD 是平行四边形,证明:∵DF ∥BE ,∴∠AFD =∠CEB ,又∵AF =CE 、DF =BE ,∴△AFD ≌△CEB (SAS),∴AD =CB ,∠DAF =∠BCE ,∴AD ∥CB ,∴四边形ABCD 是平行四边形.方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出三角形全等.探究点二:平行四边形的判定定理与性质的综合应用 【类型一】 利用性质与判定证明如图,已知四边形ABCD 是平行四边形,BE ⊥AC 于点E ,DF ⊥AC 于点F .(1)求证:△ABE ≌△CDF ;(2)连接BF 、DE ,试判断四边形BFDE 是什么样的四边形?写出你的结论并予以证明. 解析:(1)根据“AAS ”可证出△ABE ≌△CDF ;(2)首先根据△ABE ≌△CDF 得出AE =FC ,BE =DF ,再利用已知得出△ADE ≌△BCF ,进而得出DE =BF ,即可得出四边形BFDE 是平行四边形.(1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD .∴∠BAC =∠DCA .∵BE ⊥AC于E ,DF ⊥AC 于F ,∴∠AEB =∠DFC =90°.在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠DFC =∠BEA ,∠FCD =∠EAB ,AB =CD ,∴△ABE≌△CDF (AAS);(2)解:四边形BFDE 是平行四边形,理由如下:∵△ABE ≌△CDF ,∴AE =FC ,BE =DF ,∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB .∴∠DAC =∠BCA .在△ADE 和△CBF 中,⎩⎪⎨⎪⎧AD =BC ,∠DAE =∠BCF ,AE =FC ,∴△ADE ≌△CBF ,∴DE =BF ,∴四边形BFDE 是平行四边形.方法总结:平行四边形对边相等,对角相等,对角线互相平分及它的判定,是我们证明直线的平行、线段相等、角相等的重要方法,若要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.【类型二】 利用性质与判定计算如图,已知六边形ABCDEF 的六个内角均为120°,且CD =2cm ,BC =8cm ,AB =8cm ,AF =5cm.试求此六边形的周长.解析:由∠A=∠B=∠C=∠D=∠E=∠F=120°,联想到它们的邻补角(即外角)均为60°,如果能够组成三角形的话,则必为等边三角形.事实上,设BC、ED的延长线交于点N,则△DCN为等边三角形.由∠E=120°,∠N=60°,可知EF∥BN.同理可知ED∥AB,于是从平行四边形入手,找出解题思路.解:延长ED、BC交于点N,延长EF、BA交于点M.∵∠EDC=∠BCD=120°,∴∠NDC =∠NCD=60°.∴∠N=60°.同理,∠M=60°.∴△DCN、△FMA均为等边三角形.∴∠E+∠N=180°.同理∠E+∠M=180°.∴EM∥BN,EN∥MB.∴四边形EMBN是平行四边形.∴BN =EM,MB=EN.∵CD=2cm,BC=8cm,AB=8cm,AF=5cm,∴CN=DN=2cm,AM=FM=5cm.∴BN=EM=8+2=10(cm),MB=EN=8+5=13(cm).∴EF+FA+AB+BC+CD+DE=EF+FM +AB+BC+DN+DE=EM+AB+BC+EN=10+8+8+13=39(cm),∴此六边形的周长为39cm.方法总结:解此题的关键是作辅助线,将“不规则”的六边形变成“规则”的平行四边形,从而利用平行四边形的知识来解决.三、板书设计一组对边平行且相等的四边形是平行四边形教学反思本节课,学习了平行四边形的两种判定方法,对整个课堂的学习过程进行反思,能够促进理解,提高认识水平,从而促进数学观点的形成和发展,更好地进行知识建构,实现良性循环.第2课时平行四边形的判定定理2、3教学目标1.掌握平行四边形的判定定理;(重点)2.综合运用平行四边形的性质与判定解决问题.(难点)教学过程一、情境导入我们已经学习了哪些平行四边形的判定方法?平行四边形的对角线互相平分的逆命题是什么?是否是真命题.是否存在其他的判定方法?二、合作探究探究点一:两组对边分别相等的四边形是平行四边形如图,在△ABC 中,分别以AB 、AC 、BC 为边在BC 的同侧作等边△ABD 、等边△ACE 、等边△BCF .试说明四边形DAEF 是平行四边形.解析:根据题意,利用全等可证明AD =FE ,DF =AE ,从而可判断四边形DAEF 为平行四边形.解:∵△ABD 和△FBC 都是等边三角形,∴∠DBF +∠FBA =∠ABC +∠ABF =60°,∴∠DBF =∠ABC .又∵BD =BA ,BF =BC ,∴△ABC ≌△DBF (SAS),∴AC =DF =AE .同理可证△ABC ≌△EFC ,∴AB =EF =AD ,∴四边形DAEF 是平行四边形(两组对边分别相等的四边形是平行四边形).方法总结:利用“两组对边分别相等的四边形是平行四边形”时,证明边相等,可通过证明三角形全等解决.探究点二:对角线相互平分的四边形是平行四边形如图,AB 、CD 相交于点O ,AC ∥DB ,AO =BO ,E 、F 分别是OC 、OD 的中点.求证:(1)△AOC ≌△BOD ;(2)四边形AFBE 是平行四边形.解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC ≌△BOD ;(2)此题已知AO =BO ,要证四边形AFBE 是平行四边形,根据全等三角形,只需证OE =OF 即可.证明:(1)∵AC ∥BD ,∴∠C =∠D .在△AOC 和△BOD 中,∵⎩⎪⎨⎪⎧∠C =∠D ,∠COA =∠DOB ,AO =BO ,∴△AOC ≌△BOD (AAS);(2)∵△AOC ≌△BOD ,∴CO =DO .∵E 、F 分别是OC 、OD 的中点,∴OF =12OD ,OE =12OC ,∴EO =FO .又∵AO =BO ,∴四边形AFBE 是平行四边形.方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.探究点三:平行四边形的判定定理的应用 【类型一】 利用平行四边形的判定定理证明线段或角相等如图,在平行四边形ABCD 中,AC 交BD 于点O ,点E ,点F 分别是OA ,OC 的中点,请判断线段DE ,BF 的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的性质“对角线互相平分”得出OA =OC ,OB =OD .利用中点的意义得出OE =OF ,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定四边形BFDE 是平行四边形,从而得出DE =BF ,DE ∥BF .解:DE =BF ,DE ∥BF .∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .∵E ,F 分别是OA ,OC 的中点,∴OE =OF ,∴四边形BFDE 是平行四边形,∴DE =BF ,DE ∥BF .方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.【类型二】 平行四边形的判定定理的综合运用如图,已知四边形ABCD 是平行四边形,BE ⊥AC 于点E ,DF ⊥AC 于点F .(1)求证:△ABE ≌△CDF ;(2)连接BF 、DE ,试判断四边形BFDE 是什么样的四边形?写出你的结论并予以证明. 解析:(1)根据“AAS”可证出△ABE ≌△CDF ;(2)首先根据△ABE ≌△CDF 得出AE =FC ,BE =DF .再利用已知得出△ADE ≌△CBF ,进而得出DE =BF ,即可得出四边形BFDE 是平行四边形.(1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BAC =∠DCA .∵BE ⊥AC于E ,DF ⊥AC 于F ,∴∠AEB =∠DFC =90°.在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠DFC =∠BEA ,∠FCD =∠EAB ,AB =CD ,∴△ABE ≌△CDF (AAS);(2)解:四边形BFDE 是平行四边形.理由如下:∵△ABE ≌△CDF ,∴AE =FC ,BE =DF .∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB ,∴∠DAC =∠BCA .在△ADE 和△CBF 中,⎩⎪⎨⎪⎧AD =BC ,∠DAE =∠BCF ,AE =FC ,∴△ADE ≌△CBF (SAS),∴DE =BF ,∴四边形BFDE 是平行四边形. 方法总结:熟练运用平行四边形的性质,可证明三角形全等,证明边相等,再利用两组对边分别相等可判定四边形是平行四边形.三、板书设计1.平行四边形的判定定理两组对边分别相等的四边形是平行四边形;对角线相互平分的四边形是平行四边形.2.平行四边形的判定定理的应用教学反思在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.22.3 三角形的中位线教学目标1.了解三角形中位线的定义;2.掌握三角形的中位线定理;(重点)3.综合运用平行四边形的判定及三角形的中位线定理解决问题.(难点)教学过程一、情境导入如图所示,吴伯伯家有一块等边三角形的空地ABC,已知点E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,你能求出需要篱笆的长度吗?二、合作探究探究点:三角形的中位线【类型一】利用三角形中位线定理求线段的长如图,在△ABC 中,D 、E 分别为AC 、BC 的中点,AF 平分∠CAB ,交DE 于点F .若DF =3,则AC 的长为( ) A.32B .3C .6D .9解析:如图,∵D 、E 分别为AC 、BC 的中点,∴DE ∥AB ,∴∠2=∠3,又∵AF 平分∠CAB ,∠1=∠3,∴∠1=∠2,∴AD =DF =3,∴AC =2AD =2DF =6.故选C.方法总结:本题考查了三角形中位线定理,等腰三角形的判定等知识.解题的关键是熟记性质并熟练应用.【类型二】 利用三角形中位线定理求角如图,C 、D 分别为EA 、EB 的中点,∠E =30°,∠1=110°,则∠2的度数为( )A .80°B .90°C .100°D .110°解析:∵C 、D 分别为EA 、EB 的中点,∴CD 是三角形EAB 的中位线,∴CD ∥AB ,∴∠2=∠ECD ,∵∠1=110°,∠E =30°,∴∠ECD =∠2=80°,故选A.方法总结:根据三角形中位线定理可得出平行关系,所以利用三角形中位线定理中的平行关系可以解决一些角度的计算问题.【类型三】 运用三角形的中位线定理进行证明如图所示,在四边形ABCD 中,AC =BD ,E 、F 分别为AB 、CD 的中点,AC 与BD 交于点O ,EF 分别交AC 、BD 于M 、N .求证:∠ONM =∠OMN .解析:图中有两个中点,但不在同一个三角形中,取AD 的中点P ,连接EP 、FP ,利用三角形的中位线定理即可证明.证明:取AD 的中点P ,连接EP 、FP ,则EP 为△ABD 的中位线.∴EP ∥BD ,EP =12BD ,∴∠PEF =∠ONM ,同理可知PF 为△ADC 的中位线,∴FP ∥AC ,FP =12AC ,∴∠PFE =∠OMN ,∵AC =BD ,∴PE =PF ,∴∠PEF =∠PFE ,∴∠ONM =∠OMN .方法总结:在三角形中,若已知一边的中点,常取其余两边的中点,以便利用三角形的中位线定理来解题.【类型四】构造三角形中位线解题如图所示,在△ABC中,AB=AC,E为AB的中点,在AB的延长线上取一点D,使BD=AB,求证:CD=2CE.解析:直接找CD与CE之间的数量关系较困难,可取AC的中点F,间接找CD与CE之间的数量关系.证明:取AC的中点F,连接BF.∵BD=AB,∴BF为△ADC的中位线,∴DC=2BF.∵E为AB的中点,AB=AC,∴BE=CF,∠ABC=∠ACB.∵BC=CB,∴△EBC≌△FCB.∴CE=BF,∴CD=2CE.方法总结:恰当地构造三角形中位线是解决线段倍分关系的关键.三、板书设计1.三角形的中位线的概念2.三角形的中位线定理教学反思本节课,通过实际生活中的例子引出三角形的中位线,又从理论上进行了验证.在学习的过程中,体会到了三角形中位线定理的应用时机.对整个课堂的学习过程进行反思,能够促进理解,提高认识水平,从而促进数学观点的形成和发展,更好地进行知识建构,实现良性循环.22.4 矩形第1课时矩形的性质教学目标1.理解并掌握矩形的性质定理及推论;(重点)2.会用矩形的性质定理及推论进行推导证明;(重点)3.会综合运用矩形的性质定理进行证明与计算.(难点)教学过程一、情境导入如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,你会发现什么?可以发现,角的大小改变了,但不管如何,它仍然保持平行四边形的形状.我们若改变平行四边形的内角,使其一个内角恰好为直角,就得到一种特殊的平行四边形,也就是我们早已熟悉的长方形,即矩形,如图所示.二、合作探究探究点:矩形的性质【类型一】运用矩形的性质求线段或角在矩形ABCD中,O是BC的中点,∠AOD=90°,矩形ABCD的周长为24cm,则AB 长为( )A.1cm B.2cm C.2.5cm D.4cm解析:在矩形ABCD中,O是BC的中点,∠AOD=90°.根据矩形的性质得到△ABO≌△OCD,则OA=OD,∠DAO=45°,所以∠BOA=∠BAO=45°,即BC=2AB.由矩形ABCD的周长为24cm,得2AB+4AB=24cm,解得AB=4cm.故选D.方法总结:解题时矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.【类型二】运用矩形的性质解决有关面积问题如图,矩形ABCD 的对角线的交点为O ,EF 过点O 且分别交AB ,CD 于点E ,F ,则图中阴影部分的面积是矩形ABCD 的面积的( ) A.15 B.14 C.13 D.310解析:∵在矩形ABCD 中,AB ∥CD ,OB =OD ,∴∠ABO =∠CDO .在△BOE 和△DOF 中,⎩⎪⎨⎪⎧∠ABO =∠CDO ,OB =OD ,∠BOE =∠DOF ,∴△BOE ≌△DOF (ASA),∴S △BOE =S △DOF ,∴S 阴影=S △AOB =14S 矩形ABCD .故选B. 方法总结:运用矩形的性质,通过证明全等三角形进行转化,将求不规则图形的面积转化为求简单图形面积是解题的关键.【类型三】 运用矩形的性质证明线段相等如图,在矩形ABCD 中,以顶点B 为圆心、边BC 长为半径作弧,交AD 边于点E ,连接BE ,过C 点作CF ⊥BE 于F .求证:BF =AE .解析:利用矩形的性质得出AD ∥BC ,∠A =90°,再利用全等三角形的判定得出△BFC ≌△EAB ,进而得出答案.证明:在矩形ABCD 中,AD ∥BC ,∠A =90°,∴∠AEB =∠FBC .∵CF ⊥BE ,∴∠BFC =∠A=90°.由作图可知,BC =BE .在△BFC 和△EAB 中,⎩⎪⎨⎪⎧∠A =∠CFB ,∠AEB =∠FBC ,EB =BC ,∴△BFC ≌△EAB (AAS),∴BF =AE .方法总结:涉及与矩形性质有关的线段的证明,可运用题设条件结合三角形全等进行证明,一般是将两条线段转化到一对全等三角形中进行证明.【类型四】 运用矩形的性质证明角相等如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF =ED ,EF ⊥ED .求证:AE 平分∠BAD .解析:要证AE 平分∠BAD ,可转化为△ABE 为等腰直角三角形,得AB =BE .又AB =CD ,再将它们分别转化为两全等三角形的两对应边,根据全等三角形的判定和矩形的性质,即可求证.证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠BAD =90°,AB =CD ,∴∠BEF +∠BFE =90°.∵EF ⊥ED ,∴∠BEF +∠CED =90°.∴∠BFE =∠CED ,∴∠BEF =∠EDC .在△EBF 与△DCE 中,⎩⎪⎨⎪⎧∠BFE =∠CED ,EF =ED ,∠BEF =∠EDC ,∴△EBF ≌△DCE (ASA).∴BE =CD .∴BE =AB ,∴∠BAE =∠BEA=45°,∴∠EAD =45°,∴∠BAE =∠EAD ,∴AE 平分∠BAD .方法总结:矩形的问题可以转化到直角三角形或等腰三角形中去解决.三、板书设计矩形的性质矩形的四个角都是直角;矩形的对角线相等.教学反思通过多媒体演示知识的探究过程,让学生在体验、实践的过程中有更直观地认识,扩大认知结构,发展能力,更好地理解平行四边形与矩形之间的从属关系和内在联系,使课堂教学真正落实到学生的发展上.第2课时 矩形的判定教学目标1.掌握矩形的判定方法;(重点)2.能够运用矩形的性质和判定解决实际问题.(难点)教学过程一、情境导入我们已经知道,有一个角是直角的平行四边形是矩形.这是矩形的定义,我们可以依此判定一个四边形是矩形.除此之外,我们能否找到其他的判定矩形的方法呢?矩形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线相等且互相平分;2.四个内角都是直角.这些性质,对我们寻找判定矩形的方法有什么启示?二、合作探究探究点一:有一个角是直角的平行四边形是矩形如图,在△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB 交AE于点E.求证:四边形ADCE是矩形.解析:首先利用外角性质得出∠B=∠ACB=∠FAE=∠EAC,进而得到AE∥BC,即可得出四边形AEDB是平行四边形,再利用平行四边形的性质得出四边形ADCE是平行四边形,再根据AD是高即可得出四边形ADCE是矩形.证明:∵AB=AC,∴∠B=∠ACB.∵AE是△BAC的外角平分线,∴∠FAE=∠EAC.∵∠B +∠ACB=∠FAE+∠EAC,∴∠B=∠ACB=∠FAE=∠EAC,∴AE∥BC.又∵DE∥AB,∴四边形AEDB是平行四边形,∴AE平行且等于BD.又∵AB=AC,AD⊥BC,∴BD=DC,∴AE平行且等于DC,故四边形ADCE是平行四边形.又∵∠ADC=90°,∴平行四边形ADCE是矩形.方法总结:平行四边形的判定与性质以及矩形的判定常综合运用,解题时利用平行四边形的判定得出四边形是平行四边形再证明其中一角为直角即可.探究点二:对角线相等的平行四边形是矩形如图,在平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,ON=OB,再延长OC至M,使CM=AN.求证:四边形NDMB为矩形.解析:首先由平行四边形ABCD可得OA=OC,OB=OD.若ON=OB,那么ON=OD.而CM=AN,即ON=OM.由此可证得四边形NDMB的对角线相等且互相平分,即可得证.证明:∵四边形ABCD为平行四边形,∴AO=OC,OD=OB.∵AN=CM,ON=OB,∴ON=OM =OD=OB,∴MN=BD,∴四边形NDMB为矩形.方法总结:证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.探究点三:有三个角是直角的四边形是矩形。
八年级数学下册第二十二章四边形22.2平行四边形的判定第1课时平行四边形的判定一课件新版冀教版

4.如图所示,已知 ABCD 为一平行四边形纸片,将它沿 EF 对折.若四边形 ABFE 为平行四边形,则四边形 CDEF 为平行四 边形;若连接 AD,BC,则四边形 ABCD 是平行四边形.
5.如图所示,木工师傅把曲尺的一边紧靠木板边缘,从曲尺 的另一边上可以读出木板边缘的刻度,然后将曲尺移动到另一边 (紧靠木板边缘),如果两次读数相同,说明木板两个边缘平行,你 知道为什么吗?
解:∵AB∥CD,∴∠B+∠C=180°. 又∵∠B=∠D,∴∠C+∠D=180°, ∴AD∥BC,∴四边形 ABCD 是平行四边形. ∴AB=CD=3,BC=AD=6. ∴四边形 ABCD 的周长为 2×6+2×3=18.
一组对边平行且相等的四边形是平行四边形 3.如图,四边形 ABCD 中,AD∥BC,E 是 DC 上一点, 连接 BE 并延长交 AD 延长线于点 F,连接 BD,CF,请你只添 加一个条件:DF=BC,使得四边形 BDFC 为平行四边形.
随堂演基础练训(1练0分钟)
应用平行四边形的定义判定 1.如图所示,在▱ABCD 中,点 E,F 分别在边 AD,BC 上,且 BE∥DF,若∠EBF=45°,则∠EDF 的度数是 45°.
解析:根据定义可判定四边形 EBFD 是平行四边形.
2.如图,在四边形 ABCD 中,AB∥CD,∠B=∠D,BC=6, AB=3,求四边形 ABCD 的周长.
证明:(1)∵点 C 是 AB 的中点,
∴AC=BC.在△ADC 与△CEB 中,∵CADD==CBEE,, AC=BC,
∴△ADC≌△CEB(SSS).
(2)连接 DE,如图所示:
冀教版数学八年级下册 22.2平行四边形的判定 教案设计

平行四边形的判定【课时安排】2课时【第一课时】【教学目标】1.掌握用一组对边平行且相等来判定平行四边形的方法。
2.会综合运用平行四边形的四种判定方法和性质来证明问题。
3.通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力。
【教学重难点】1.重点:平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法。
2.难点:平行四边形的判定定理与性质定理的综合应用。
【教学过程】一、课堂引入取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC,AD加固,得到的四边形ABCD是平行四边形吗?结论:一组对边平行且相等的四边形是平行四边形。
二、习题分析1.已知:如图,平行四边形ABCD中,E、F分别是AD,BC的中点,求证:BE=DF。
分析:证明BE=DF,可以证明两个三角形全等,也可以证明四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单。
证明:∵四边形ABCD 是平行四边形,∵AD ∵CB ,AD =CD 。
∵E 、F 分别是AD ,BC 的中点,∵DE ∵BF ,且DE =21AD ,BF =21BC 。
∵DE =BF 。
∵四边形BEDF 是平行四边形(一组对边平行且相等的四边形平行四边形)。
∵BE =DF 。
此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路。
2.已知:如图,平行四边形ABCD 中,E 、F 分别是AC 上两点,且BE ∵AC 于E ,DF ∵AC 于F 。
求证:四边形BEDF 是平行四边形。
分析:因为BE ∵AC 于E ,DF ∵AC 于F ,所以BE ∵DF 。
需再证明BE =DF ,这需要证明∵ABE 与∵CDF 全等,由角角边即可。
证明:∵四边形ABCD 是平行四边形,∵AB =CD ,且AB ∵CD 。
八年级数学下册第二十二章四边形22.2平行四边形的判定教案新版冀教版

22.2 平行四边形的判定教学设计思想:为了加深学生对平行四边形的认识,充分调动学生的学习兴趣,激发学生的探索欲望,本课不仅让学生观察,还动手实际操作,然后老师设置问题,引导学生积极思考,讨论交流,大胆说理,充分发挥学生的主体作用。
老师根据学生情况适当点拨,给予指导,辅助学生探究。
教学目标:知识与技能:熟记平行四边形的判定条件,并会在解题过程中灵活应用;会根据简单的条件画出平行四边形,并说明画图的依据是什么;能说出平行四边形的性质与判定在应用时前提条件的差别。
过程与方法:经历平行四边形判定条件的探究过程,并能灵活运用平行四边形的3个判定条件;学会探究的方法,发展说理的基本技能。
情感态度价值观:通过学习,体会几何证明的方法美。
教学重难点:重点:探究平行四边形的识别条件,能灵活应用难点:掌握平行四边形的性质和判定的区别及熟练应用教学方法:启发探索、讨论分析法课时安排:1课时教具准备:多媒体或小黑板,常用画图工具学具准备:三角板,四根长度相等的小木棒教学过程一、复习引入上节课我们已经知道了平行四边形的边、角及对角线所具有的性质,请同学们回忆一下都有哪些?学生口答,老师板书.反过来,如果已经给出一个任意的四边形,我们能否利用平行四边形的边、角、对角线的特性来判断它是不是一个平行四边形呢?这节课我们就来一起研究一下(板书课题)二、观察与思考1、利用定义:两组对边分别平行→ 平行四边形探究:从平行四边形的性质定理1 可知,平行四边形的对边相等,那么反之是否成立呢?已知,四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD为平行四边形.证明: AB//CD, AD//BC平行四边形判定定理1:如果一个四边形的两组对边分别相等,那么这个四边形是平行四边形简述为:两组对边分别相等的四边形是平行四边形探究:两组对边分别平行,两组对边分别相等都可证明一个四边形是平行四边形,那么一组对边即平行又相等能否得到一个四边形是平行四边形呢?已知,四边形ABCD中,AB//CD,AB=CD.求证:四边形ABCD为平行四边形.平行四边形判定定理2:如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形.简述为:一组对边平行且相等的四边形是平行四边形.注:平行和相等的是同一组对边三、范例讲解已知:如图,□ABCD 中,E、F分别是边AB、CD的中点. 求证:四边形EBFD为平行四边形.四、课堂小结我们一起回忆一下平行四边形的识别办法都有哪些?在今后解决平行四边形问题时要尽可能地运用平行四边形的相应定理,不要总是依赖于全等三角形,否则不利于掌握新的知识.五、板书设计。
冀教版八年级下册-22.2《平行四边形的判定(1)》-课件(共36张PPT)

A
E
证明:连接BD,交AC于点O.
D
∵四边形ABCD是平行四边形
OF
∴ AO=CO,BO=DO
∵AE=CF
B
C
∴AO-AE=CO-CF 即EO=FO
14
又∵ BO=DO
∴ 四边形BFDE是平行四边形
说一说
已知:AB=DC=EF AD=BC DE=CF,则图 中有哪些互相平行的线段?
A
D
E
H
O
F
G
B
C
A
D
E
H
O
F
G
B
C
答:四边形EFGH是平行四边形
理由是:
∵四边形ABCD是平行四边形
∴OA=OC,OB=OD
又∵点E,F,G,H分别是OA,OB,OC,OD的中点
∴OE=1/2OA,OG=1/2OC,OF=1/2OB,OH=1/2OD
∴OE=OG,OF=OH
∴四边形EFGH是平行四边形
证明:∵四边形ABCD是
A
E
D
平行四边形
∴AD∥BC AD=BC
∵ DE=1/2AD
BF=1/2BC
∴DE∥BF DE=BF
B
F
C
∴四边形EBFD是平 行四边形
∴EB=DF
练习3:
□ ABCD的对角线相交于点O,点E、F、 G、H分别是OA、OB、OC、OD的中 点。四边形EFGH是平行四边形吗? 为什么?
A
D
解:AD∥BC
E
DE∥CF AB∥DC∥EF
B
C
F
想一想
已知:在平行四边形ABCD中,点
1.2 平行四边形的识别 课件(冀教版八年级下)

这节课你学到了什么?
Z。,,xxk
22.2平行四边形的识别
平行四边形的识别方法
1、两组对边分别平行的四边形是平行 四边形.(定义)
2.一组对边平行且相等的四边形是平 行四边形. 3.两组对边分别相等的四边形是平行 四边形. 4.对角线互相平分的四边形是平行四 边形.
zxxk
如图:已知□ABCD的两条对角线AC、 BD交于点O, E、F分别是OA、OC的中 点.请说明四边形EBFD是平行F分别沿OA,OC的的方向移 动,使AE=CF,那么这个四边形 EBFD是否仍是平行四边形?
A D
E
O
F
B C
如果点E,F分别沿OA,OC的的方向移动, 使AE=CF,那么这个四边形EBFD是否 仍是平行四边形?
Zxx。。k
E
A
D
O
B
C F
公园要修建一块 平行四边形草坪, 已经修好了一部分 (如图),现派小 明完成这项工作, 请你帮他设计合适 的方案,并说明作 法.
八年级数学下册 22.2《平行四边形的判定》课件1 (新版)冀教版
∵∠A=∠C,∠B=∠D (已知)
∴四边形ABCD是平行四边形
(两组对角(duì jiǎo)分别相等的四边形是平行四边
形)
第十四页,共20页。
A
D
从
边 1 定义
来 判 定
2两组对边分别相等
的四边形是平行四边形
O
B
C
∵AB∥CD,AD∥BC
∴四边形ABCD是平行四边形
。
∵AB=CD ,AD=BC
∴四边形ABCD是平行四边形
第二十页,共20页。
第九页,共20页。
已知:在四边形ABCD中,AC、BD交于点O且OA=OC,OB=OD 求证(qiúzhèng):四边形ABCD是平行四边形
A
31
O 2
证明(zhèngmíng):在△AOB和△COD中
OA=OC(已知) ∠AOB=∠COD(对顶角相等)
D
OB=OD(已知)
4 ∴△AOB≌△COD(SAS)
A
∵ AB ∥ CD
1
∴ ∠1 = ∠2
D 2
在△ABC和△CDA中 B
C
AB = CD
∠1=∠2
∵ AD = BC AB=CD
CA== AC
∴△ABC≌△CDA
∴AD= BC
∴四边形ABCD是平行四边形
第十七页,共20页。
平行四边形的判定(pàndìng)方法5:
一组对边平行(píngxíng) 且相等的四边形A是平行 D (píngxíng)四边形
22.2 平行四边形的判定 (pàndìng)
第一页,共20页。
1.理解并掌握平行四边形的判定定理 2.掌握应用判定定理对平行四边形的判定进行说明。 3.在活动中发展推理(tuīlǐ)意识,逐步掌握说理的基本 方法。
冀教版八年级下册-22.2《平行四边形的判定(2)》-课件(共19张PPT)
22.2 平行四边形的判定
第2课时 平行四边形的判定定理2、3
导入新课
讲授新课
当堂练习
课堂小结
复习回顾
通过上节课的学习,我们掌握了哪些判 定平行四边形方法呢?
(1)两组对边分别平行的四边形叫做 平行四边形。(定义)
(2)一组对边平行且相等的四边形是 平行四边形。(判定定理)
导入新课
∴ AH=CF ∴△AEH≌△CGF(SAS), ∴EH=GF.
在平行四边形ABCD中, AB=CD,AD=BC, ∴AB-AE=CD-CG, 即BE=DG,BF=DH. 又∵∠B=∠D, ∴△BEF≌△DGH, ∴GH=EF, ∴四边形EFGH是平行四边形.
二 平行四边形的判定定理3
合作探究 工具:两根长度不相等的硬纸条. 动手:能利用这两纸条摆出一个平行四边形吗?试试看!
∴ ∠BAO=∠DCO, ∠ ABO=∠CDO
C 对顶角相等.
∴AB∥ CD , AD∥ BC
∴四边形ABCD是平行四边形.
归纳小结
• 平行四边形的判定定理: 对角线互相平分的四边形是平行四边形
A
D 符号语言:
O
∵ OA=OC,OB=OD(已知)
B
C
∴四边形ABCD是平行四边形
例2. 已知:E、F是平行四边形ABCD对角线AC上的两点,
求证:四边形ABCD是平行四边形.
A
D
4 3
2
B
1C
证明:连结AC,
在△ABC和△CDA中, AB=CD (已知) AC=CA (公共边) BC=DA(已知)
∴△ABC≌△CDA(SSS) ∴ ∠1=∠4 , ∠ 2=∠3 ∴AB∥ CD , AD∥ BC
春冀教版数学八下22.2《平行四边形的判定》ppt课件1
图中有多少平行四边形?
D
G
C
E
O
F
A
H
B
我能行 2
已:如图, □ ABCD中,E、F分别是
边AB和CD的中点. 求证:EF=BC
我能行 3
已知:如图,□ ABCD中,E、F、G、H分别是
AB、BC、CD、AD上的点,且AE=CG,BF=DH. 求证:四边形EFGH是平行四边形.
A
E
B
F
H
D
G
C
提示:也可从边、角、对角线方面考虑
1、利用定义:
两组对边分别平行 → 平行四边形
探究: 从平行四边形的性质定理1 可知
平行四边形的对边相等,那么反之是否成立呢?
已知,四边形ABCD中,
D
C AB=CD,AD=BC.
A
B
提示:
求证:四边形ABCD为 平行四边形.
证明 AB//CD, AD//BC
平行四边形判定定理1:
如果一个四边形的一组对边平行且相等, 那么这个四边形是平行四边形
简述为:
一组对边平行且相等的四边形是平行四边形
注:平行和相等的是同一组对边
例题选讲
已知:如图,□ABCD 中,E、F分别是
边AB、CD的中点.
求证:四边形EBFD为平行四边形.
A
D
E
F
B
C
已知:如图,DC//EF//AB, DA//GH//CB,
简述为:
两组对边分别相等的四边形是平行四边形
探究:
两组对边分别平行,两组对边分别相等 都可证明一个四边形是平行四边形,那么 一组对边即平行又相等能否得到一个四边 形是平行四边形呢?
D
2024八年级数学下册第22章四边形22.2平行四边形的判定1由边的关系判定平行四边形课件新版冀教版
由AE=FC,AE∥FC得四边形AECF是平行四边形.
感悟新知
4. 已知:如图,△ABC是等边三角形,点D,F分 知2-练 别在线段BC,AB上,DC=EF,∠EFB=60°. 求证:四边形EDCF是平行四边形.
感悟新知
证明:在等边三角形ABC中,∠B=60°, 因为∠EFB=60°=∠B, 所以EF∥DC, 又因为EF=DC, 所以四边形EDCF是平行四边形.
知2-练
感悟新知
证明:在▱ABCD中,AB=CD,AB∥CD,
知2-练
因为AB∥CD,所以∠ABE=∠CDF,
AB=CD, 在△ABE和△CDF中, ABE=CDF, 所以△ABE≌△CDF, BE=DF,
所以AE=FC,∠AEB=∠CFD,由∠AEB=∠CFD
得∠AEF=∠CFE,所以AE∥CF,
感悟新知
知1-练
3. 下列条件不能判定四边形ABCD是平行四边形的 是( D ) A.∠A=∠C,∠B=∠D B.∠A=∠B=∠C=90° C.∠A+∠B=180°,∠B+∠C=180° D.∠A+∠B=180°,∠C+∠D=180°
感悟新知
4. 小敏不慎将一块平行四边形玻璃打碎成如图所示 知1-练 的四块,为了能在商店配到一块与原来相同的平 行四边形玻璃,她带了两块碎玻璃,其编号应该 是( D ) A.①② B.①④ C.③④ D.②③
感悟新知
5. 如图,在梯形ABCD中,AD∥BC,DE∥AB. 若 知1-练 DE=DC,∠C=80°,则∠A=( C ) A.80° B.90° C.100° D.110°
感悟新知
知识点 2 由一组对边平行且相等判定平行四边形
知2-讲
小明用下列方法得到一个四边形ABCD.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.2 平行四边形的判定
第1课时平行四边形的判定定理1
1.掌握“一组对边平行且相等的四边形是平行四边形”的判定方法;(重点)
2.平行四边形性质定理与判定定理的综合应用.(难点)
一、情境导入
我们已经知道,如果一个四边形是平行四边形,那么它就具有如下的一些性质:
1.两组对边分别平行且相等;
2.两组对角分别相等;
3.两条对角线互相平分.
那么,怎样判定一个四边形是否是平行四边形呢?当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定.那么是否存在其他的判定方法呢?
二、合作探究
探究点一:一组对边平行且相等的四边形是平行四边形
已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.
解析:首先根据条件证明△AFD≌△CEB,可得到AD=CB,∠DAF=∠BCE,可证出AD∥CB,根据一组对边平行且相等的四边形是平行四边形可证出结论.
解:四边形ABCD是平行四边形,证明:∵DF∥BE,∴∠AFD=∠CEB,又∵AF=CE、DF =BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.
方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出三角形全等.
探究点二:平行四边形的判定定理与性质的综合应用
【类型一】利用性质与判定证明
如图,已知四边形ABCD是平行四边形,BE⊥AC于点E,DF⊥AC于点F.
(1)求证:△ABE≌△CDF;
(2)连接BF、DE,试判断四边形BFDE是什么样的四边形?写出你的结论并予以证明.
解析:(1)根据“AAS”可证出△ABE≌△CDF;(2)首先根据△ABE≌△CDF得出AE=FC,BE=DF,再利用已知得出△ADE≌△BCF,进而得出DE=BF,即可得出四边形BFDE是平行四
边形.
(1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD .∴∠BAC =∠DCA .∵BE ⊥AC
于E ,DF ⊥AC 于F ,∴∠AEB =∠DFC =90°.在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠DFC =∠BEA ,∠FCD =∠EAB ,AB =CD ,
∴△ABE
≌△CDF (AAS);
(2)解:四边形BFDE 是平行四边形,理由如下:∵△ABE ≌△CDF ,∴AE =FC ,BE =DF ,∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB .∴∠DAC =∠BCA .在△ADE 和△CBF 中,
⎩⎪⎨⎪⎧AD =BC ,∠DAE =∠BCF ,AE =FC ,
∴△ADE ≌△CBF ,∴DE =BF ,∴四边形BFDE 是平行四边形.
方法总结:平行四边形对边相等,对角相等,对角线互相平分及它的判定,是我们证明直线的平行、线段相等、角相等的重要方法,若要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的. 【类型二】 利用性质与判定计算
如图,已知六边形ABCDEF 的六个内角均为120°,且CD =2cm ,BC =8cm ,AB =8cm ,AF =5cm.试求此六边形的周长.
解析:由∠A =∠B =∠C =∠D =∠E =∠F =120°,联想到它们的邻补角(即外角)均为60°,如果能够组成三角形的话,则必为等边三角形.事实上,设BC 、ED 的延长线交于点N ,则△DCN 为等边三角形.由∠E =120°,∠N =60°,可知EF ∥BN .同理可知ED ∥AB ,于是从平行四边形入手,找出解题思路.
解:延长ED 、BC 交于点N ,延长 EF 、BA 交于点M .∵∠EDC =∠BCD =120°,∴∠NDC =∠NCD =60°.∴∠N =60°.同理,∠M =60°.∴△DCN 、△FMA 均为等边三角形.∴∠E +∠N =180°.同理∠E +∠M =180°.∴EM ∥BN ,EN ∥MB .∴四边形EMBN 是平行四边形.∴BN =EM ,MB =EN .∵CD =2cm ,BC =8cm ,AB =8cm ,AF =5cm ,∴CN =DN =2cm ,AM =FM =5cm.∴BN =EM =8+2=10(cm),MB =EN =8+5=13(cm).∴EF +FA +AB +BC +CD +DE =EF +FM +AB +BC +DN +DE =EM +AB +BC +EN =10+8+8+13=39(cm),∴此六边形的周长为39cm.
方法总结:解此题的关键是作辅助线,将“不规则”的六边形变成“规则”的平行四边形,从而利用平行四边形的知识来解决.
三、板书设计
一组对边平行且相等的四边形是平行四边形
本节课,学习了平行四边形的两种判定方法,对整个课堂的学习过程进行反思,能够促进理解,提高认识水平,从而促进数学观点的形成和发展,更好地进行知识建构,实现良性循环.。