开关磁阻电机组成-概念解析以及定义

开关磁阻电机组成-概述说明以及解释

1.引言

1.1 概述

开关磁阻电机是一种新型的电机,它利用磁阻效应来实现能量转换。相比传统电机,它具有结构简单、体积小、效率高的优点,因此在各种领域都有着广泛的应用前景。本文将对开关磁阻电机的原理、组成部分、工作特点以及未来发展前景进行深入探讨,旨在帮助读者全面了解这一新型电机的优势和应用领域,以及对未来的展望。1.1 概述部分的内容

1.2 文章结构

文章结构部分介绍了整篇文章的框架和组织方式。首先,我们会简要介绍每个章节的内容,包括引言、正文和结论部分。然后,我们会详细说明每个章节的具体内容和重点,以便读者了解文章的整体结构和主要讨论内容。最后,我们会强调本文的目的和意义,引导读者对整篇文章有一个清晰的认识。通过文章结构部分的介绍,读者可以更好地把握整篇文章的主旨和重点内容,有助于他们更好地理解和消化文章所述的知识。

1.3 目的

本文旨在深入探讨开关磁阻电机的组成和工作原理,以便读者对其有更全面的了解。通过对开关磁阻电机的结构和工作特点进行介绍,读者可以更好地理解其在工程和科技领域的应用。同时,本文也旨在总结开关磁

阻电机的优势,并展望其在未来的发展前景,为读者提供关于这一领域的前沿信息和未来发展趋势。希望本文能够为读者提供有益的知识,让他们对开关磁阻电机有更深入的了解和认识。

2.正文

2.1 开关磁阻电机的原理

开关磁阻电机的原理是基于磁通分配原理。当电机的定子和转子上的绕组通电时,产生的磁场会使铁心中的磁通分布发生变化。在转子位置发生变化时,会引起定子和转子之间的相对运动,从而产生电动势和电流,从而驱动转子转动。

开关磁阻电机利用磁阻效应来调节电机转子位置,从而实现电机的正反转和调速。它通过在绕组中引入开关电源,改变磁通的路径,使得磁阻产生变化,从而控制转子的位置和速度。

在开关磁阻电机中,通过精确控制磁阻,可以实现高效率、快速响应的电机运行。这种原理使得开关磁阻电机具有良好的动态性能和节能特点,适用于需要快速响应和高效率的应用场景。

2.2 开关磁阻电机的组成部分

开关磁阻电机的组成部分包括以下几个主要部件:

1. 转子:开关磁阻电机的转子通常由多极磁性材料制成,其特殊的磁

路设计可以使得转子在电磁场中产生转动力。

2. 定子:定子是由电磁线圈和铁芯构成的,电流通过定子线圈时会产生电磁场,与转子磁场相互作用从而产生转动力。

3. 传感器:开关磁阻电机通常需要配备传感器来检测转子位置和速度,以便控制电机的运行状态。

4. 控制器:控制器是整个开关磁阻电机系统的核心部件,负责控制电流、转子位置和速度,使电机能够按照预定条件正常工作。

5. 电源模块:提供电能给开关磁阻电机系统,通常包括整流电路、滤波器和逆变器等组件。

这些组成部分共同作用,使得开关磁阻电机能够高效、精准地完成工作,具有较高的动力密度和响应速度。

2.3 开关磁阻电机的工作特点

开关磁阻电机的工作特点是其具有高效率、高动态响应和可靠性。相比传统电机,开关磁阻电机在启动和制动过程中能够实现快速响应,并且能够有效地控制转速和扭矩。此外,开关磁阻电机在高速运转时具有较低的摩擦损失和机械惯性,使得其能够更加节能并且减少了维护成本。总的来说,开关磁阻电机具有优异的性能特点,在工业生产和应用中具有广阔

的发展前景。的内容

3.结论

3.1 总结开关磁阻电机的优势

开关磁阻电机具有以下优势:

1. 高效率:开关磁阻电机在转换电能和机械能的过程中损耗小,因此具有较高的能量转换效率。

2. 负载适应能力强:开关磁阻电机具有良好的负载适应能力,能够在负载变化较大的情况下保持稳定的工作状态。

3. 起动和制动性能优越:开关磁阻电机在起动和制动过程中响应迅速,具有较好的动态特性,能够快速启动并停止。

4. 结构简单:开关磁阻电机的结构相对简单,由于不需要永磁体或者绕组,因此制造成本较低。

5. 可靠性高:由于开关磁阻电机的结构简单,因此故障率较低,具有较好的可靠性。

6. 环保节能:开关磁阻电机在运行过程中不需要永磁体,因此不会产

生电磁污染,符合环保要求;同时由于高效率的特性,也能够节约能源。

综上所述,开关磁阻电机具有高效率、负载适应能力强、起动和制动性能优越、结构简单、可靠性高以及环保节能等优势,在工业和领域有着广泛的应用前景。

3.2 开关磁阻电机的应用前景

开关磁阻电机由于其结构简单、成本低廉、能耗低、响应速度快等优势,具有广阔的应用前景。

首先,在汽车行业中,开关磁阻电机可以用于传动系统和辅助系统,比如用于发动机控制、发动机启停系统、座椅调节系统等,可以提高汽车的燃油效率和性能。

其次,在家电领域,开关磁阻电机可以应用于空调、洗衣机、冰箱等家电产品中,可以提高产品的节能性能,降低成本,提升用户体验。

此外,开关磁阻电机还可以应用于工业自动化设备、医疗器械、智能家居等领域,其稳定性和高效性能让其具有很大的市场需求。

总的来说,开关磁阻电机的应用前景非常广阔,随着技术的不断发展和成熟,相信在未来会有更多的领域会采用开关磁阻电机,推动其发展和普及。

3.3 对未来发展的展望

未来,随着科技的发展和工业的智能化转型,开关磁阻电机将会更加广泛地应用于各个领域。其高效能、高转矩、低功耗的特点将使其在汽车、航空航天、智能家居以及工业自动化等领域发挥重要作用。

同时,随着材料和制造工艺的不断改进,开关磁阻电机的性能也将不断提升。预计未来开关磁阻电机将更加轻量化、高效化,同时还将具备更好的可靠性和耐久性,以满足不断提高的工业需求和环境要求。

另外,随着人工智能和物联网技术的不断发展,开关磁阻电机将会更多地与智能控制系统相结合,实现更高效的能源利用和精准的控制,为未来的智能产业和智能交通等领域带来更多可能性。

总的来说,开关磁阻电机作为一种新型的电机技术,具有巨大的发展潜力和应用前景,并将在未来的科技和工业领域中发挥越来越重要的作用。

对永磁无刷直流电机和开关磁阻电机的理解

对永磁无刷直流电机和开关磁阻电机的理解 一、永磁无刷直流电动机 (1)、简介 直流电动机虽然起动和调速性能好,堵转转矩大,但是直流电动机具有电刷和换向器组成的机械换向装置,其间的滑动接触严重影响了电机的精度和可靠性,缩短电机寿命,需要经常维,产生的火花会引起无线电干扰,并且电刷换向装置又使直流电机变得结构复杂,工作噪声大。在微电子技术、电力电子技术和电机控制技术日趋成熟的基础上,人们应用高性能永磁材料创造出了无接触式换向的直流电机,我们称之为永磁无刷直流电机。 (2)、基本结构 永磁无刷直流电动机主要由永磁电动机本体、转子位置传感器和功率电子开关三部分组成。直流电源通过电子开关向电动机定子绕组供电,由位置传感器检测电动机转子位置并发出电信号去控制功率电子开关的导通和关断,使电动机转动。 (3)、工作原理 以下举一相导通星形三相三状态的例子说明。 一相导通星形三相三状态永磁无刷直流电动机三只光电位置传感器H1、H2、H3在空间对称均布,遮光圆盘与电机转子同轴安装,调整圆盘缺口与转子磁极的相对位置使缺口边沿位置与转子磁极的空间位置相对应。缺口位置使光电传感器H1受光而输出高电平,功率开关管VT1导通,电流流入A相绕组,形成位于A相绕组轴线上的电枢磁动势Fa,Fa顺时针方向超前于转子磁动势Ff150°电角度。Fa与Ff相互作用拖动转子顺时针旋转,当转子转过120°电角度时,与转子同轴安装的圆盘转到使光电传感器H2受光、H1遮光,功率开关管VT1关断、VT2导通,A相绕组断开,电流流入B相绕组,电流换相。电枢磁动势变为Fb,Fb在顺时针方向继续领先转子磁势Ff150°电角度,两者相互作用,又驱动转子顺时针方向旋转。当转子磁极转到240°时,电枢电流从B相换流到C相,产生的电磁转矩继续使电机转子旋转,直至重新回到起始位置,完成一个循环。 (4)、控制方法 永磁无刷直流电动机的控制方法,按有无转子位置传感器,可分为有位置传感器控制和无位置传感器控制。 有位置传感器控制:转子位置传感器产生的转子位置信号,被送至转子位置译码电路,经放大和逻辑变换形成正确的换向顺序信号,去触发导通相应功率开关元件,使之按一定顺序接通或关断绕组,确保电枢产生的步进磁场和转子永磁磁场保持平均的垂直关系,以利于产生最大转矩。换向信号逻辑变换电路则可在控制指令的干预下,根据现行运行状态和对正转、反转,电动、制动,高速、低速等要求实现换相信号分配,导通相应的功率电子开关器件,产生出相应大小和方向的转矩,实现电机的运行控制。保护电路实现电流控制、过电流保护、欠电压保护和过热保护等。 无位置传感器控制:无位置传感器控制方法是指电机无机械式位置传感器,就是不在无刷直流电动机的定子上直接安装位置传感器来检测转子位置。永磁无刷直流电机无位置传感器控制的关键是设计一转子位置信号检测电路,从硬件和软件两个方面来间接获取可靠的转子位置信号。检测得到转子位置信号后电机的控制方法和上述的有位置传感器控制相同。目前大多是利用定子电压、电流等容易获取的物理量进行转子位置的估算,以获取转子位置信号。 二、开关磁阻电机 (1)、简介 开关磁阻电机是一种新型调速电机,是继变频调速系统、无刷直流电动机调速系统的最

自启动永磁同步电机与开关磁阻电机对比

自启动永磁同步电机与开关磁阻电机对比 1、自启动永磁同步电机 1.1 工作原理 起步过程与异步电机一样,定子绕组三相旋转磁场与转子鼠笼条(铜条)感应电流产生的磁场作用,让电机启动起来,此时永磁体不起作用,当转速起来后,由永磁体与定子旋转磁场作用带动转子旋转。当同步转速稳定后,由于定子磁场转速与转子转速一致,及没有相对运动,不会产生感应电流,鼠笼条(铜条)也就不起作用。 1.2 基本结构 主要由定子铁芯、绕组、机座、端盖、接线盒、转子铁芯、转轴、磁钢等组成。 定子结构转子结构 2、开关磁阻电机 2.1 工作原理 开关磁阻电机磁路始终以“磁阻最小”为转动原则,及当绕组通交流时,会在气隙形成交流磁场,该磁场从定子流动转子,再留回定子形成回路,该回路始终从最小磁阻的路径流过。然后通过控制器依次给三相绕组通电形成旋转磁场,从而带动转子旋转起来。 2.2 基本结构 除转子上没有磁钢外,其余构建与永磁同步电机一致,只是转子形状和绕组排布有差异而已。

3、性能对比 3.1 由于开关磁阻电机定子和转子都有齿槽,气隙磁场畸变比较严重,相比永磁同步电机只有定子开有槽,开关磁阻转矩脉动和电磁噪音大很多。 3.2 自启动永磁同步电机转子有启动绕组,可以直接启动,而开关磁阻电机必须通过控制器才能启动,成本增加,而且需增加控制器安装空间。 3.3 开关磁阻电机由于转子没有安装永磁体,出力全靠定子绕组电流产生,不仅增加了定子绕组和逆变器的负担,也提高了逆变器功率要求,当然成本也会提高。 3.4 永磁同步电机额定效率达95%以上,且高效率区域很宽,而开关磁阻基本在90%左右,高效区也很窄,在负载比较低的工况下,耗电量比较高。 3.5 同功率、转速下,永磁同步电机可以做得比开关磁阻体积小、重量轻。 综上:与开关磁阻电机相比,永磁同步电机的优势更明显,特别是在负载不高的工况下,节能效果比较突出。

开关磁阻发电系统工作原理和控制方案

开关磁阻发电系统工作原理和控制方案 开关磁阻发电系统由双凸极磁阻电机、双向功率变换器、转子位置检测器(或非直接位置检测器)和控制器组成。发电控制系统根据电机的位置检测器产 生的转子位置信号控制功率开关电路中开关管的通断,改变相电流的生成位置,使电磁转矩为负,使机械能转化为电能。电机为12/8结构,转子上无绕组,定子每个齿极上设有一个集中线圈,径向相对的两个线圈形成一对磁极,称为一相。这样共组成6相,可满足双通道开关磁阻发电系统的需要。本研究以单通道为例,简要阐述其工作原理和控制方法。 开关磁阻发电机工作状态电流波形如图1所示。图1中,θ角定义为该相转子齿槽轴线与定子齿极轴线之间的夹角。当转子槽轴线重合时,该相电感最小(定义为θ=0°),当转子齿极轴线与相应定子齿极轴线重合(定义θ=θm)时,该相电感最大。根据电磁场基本理论,伴随磁场的存在,电机转子的电磁转矩同时存在,可以表示为: 若在电感下降区形成电流,产生负转矩,即电机吸收机械能,并可能把它转换成电能输出,故此时开关磁阻电机为发电机工作。 开关磁阻电机控制参数较多,控制灵活,这也是开关磁阻电机的优点之一。对于开关磁阻发电系统有3种常用的控制方案:脉宽调制控制、角度位置控制和电流斩波控制。本研究设计的控制系统运用的是角度位置控制方案。根据图 1中相电流波形可知,θ1和θ2分别为开通角和关断角,即主开关管开通和关断时对应的转子位置角度,对其进行调节可影响发电的励磁过程及相电流。通常开通角θ1在θm之前即在电感上升区,关断角θ2 在θm之后即在电感下降区,开通角提前、关断角推后都可以增加励磁时间、增大励磁电流ic,从而加大励磁强度。角度控制的优点是电机转矩调节范

开关磁阻电机控制原理

开关磁阻电机控制原理 首先,让我们来了解SRM的工作原理。SRM由铁心、定子和转子组成,其中定子是由若干个相间的线圈组成,而转子则是由多个齿隙组成。当施 加电流到定子线圈时,线圈产生磁场并吸引转子上的磁极,使得转子转动。与其他类型的电机相比,SRM没有永磁体,因此其转子结构更简单。 1. 电流控制(Current Control): SRM的电流控制是通过施加电流来控制电机的转矩和速度。首先需要 测量电机的位置和速度,以便根据实际情况调整电流。通常使用位置传感 器(如霍尔传感器)来测量转子位置,然后通过计算得到电机的速度。基 于这些测量结果,控制器可以确定如何调整电流的大小和方向,以实现所 需的转矩和速度。 在电流控制过程中,还需要考虑到电机的特性和限制。例如,如果电 流过大,可能会导致电机过热或损坏。因此,控制器需要根据电机的额定 电流和温度来限制电流的大小。此外,还需要考虑到电机的响应时间,以 确保电流调整的快速性和准确性。 2. 位置控制(Position Control): SRM的位置控制是用于确定和保持转子的精确位置。在SRM中,转子 的位置是由电流和磁场之间的相对位置决定的。通常使用位置传感器(如 霍尔传感器或编码器)来测量转子位置,并将这些位置信息传递给控制器。控制器使用这些位置信息来调整电流的大小和方向,以将转子移动到所需 的位置。 在位置控制过程中,控制器需要根据转子的位置误差来决定调整电流 的方向和大小。通常使用位置反馈控制算法(如PID控制)来实现这一目

标。控制器将位置误差和其他参数(如转子惯性、负载和电机特性)纳入考虑,并根据算法的要求来调整电流。在实际应用中,位置控制通常需要考虑到转子位置的精确性以及抗干扰和鲁棒性等问题。 总结起来,开关磁阻电机的控制原理主要包括电流控制和位置控制两个方面。电流控制用于调整电机的转矩和速度,而位置控制用于确定和保持转子的精确位置。控制器根据电机的特性和限制,使用合适的控制算法来实现所需的控制效果。通过合理的电流和位置控制,可以使SRM具备优秀的性能和可靠性,适用于各种应用场景。

开关磁阻电机的结构

开关磁阻电机的结构 开关磁阻电机是一种特殊电动机,它的结构相对简单,但性能出色,用于许多领域,特别是在汽车电动助力系统中。下面是开关磁阻电机的结构及相关参考内容。 1. 结构概述 开关磁阻电机主要由转轴、转子、固定子、定子、绕组、永磁装置和控制系统等组成。 2. 转轴 转轴是开关磁阻电机旋转的部分,通常由高强度材料制成,以承受转子的负载和旋转惯性。 3. 转子 转子是开关磁阻电机中负责产生磁场的部分。在开关磁阻电机中,转子是一个金属圆柱体,上面安装有一系列的磁铁。这些磁铁被称为极对,它们的极性可以通过控制系统改变。 4. 固定子和定子 固定子是开关磁阻电机中负责产生磁场的部分。固定子由一系列磁体组成,安装在电机的外部。定子是固定子的支架,将固定子固定在适当的位置。 5. 绕组 绕组是开关磁阻电机中负责通电的部分。它通常由一系列的线圈组成,线圈被绕在转子和固定子上。绕组通电时,通过连接到电源的控制系统,会在绕组中产生电流。

6. 永磁装置 永磁装置通过提供一个恒定的磁场来辅助电机的运行。它由一系列的永磁体组成,这些永磁体通常安装在转子上。 7. 控制系统 控制系统是开关磁阻电机中关键的部分。它通过控制绕组中的电流和转子上的磁极,来实现电机的启动、停止和调速等功能。控制系统通常由微处理器控制,能够实时监测电机运行状态,并根据需要进行调整。 参考内容: - S. Yilmaz, "Switched reluctance motor drives: magnetic design, control and faults diagnosis," IEEE Transactions on Industrial Electronics, vol. 61, no. 11, pp. 6544-6555, Nov. 2014. - F. J. T. E. Ferreira, "Switched reluctance motors," in Handbook of Automotive Power Electronics and Motor Drives, Ed. Marcel Dekker, Inc., pp. 827-843, 2005. - A. Salminen, "Model-based design and powertrains: a case study in switched reluctance motors," in Proceedings of the 2006 American Control Conference, Minneapolis, MN, USA, pp. 3086-3091, Jun. 2006. - M. B. Ebrahimi, "Optimal design of switched reluctance motor drives systems considering the effects of PWM selectivity and bus voltage modulation," IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 807-820, Jul. 2005. - H. Guo, "The finite element analysis method of switched reluctance motor design," in Proceedings of the 2011 International

电动车开关磁阻电机的结构和原理总结

电动车开关磁阻电机的结构 【陆地方舟电动汽车网】电动汽车开关磁阻电机的基本组成部件有转子、定子和电子开关,如图所示。 开关磁阻电机的构成 (1)转子 开关磁阻电机的转子由导磁性能良好的硅钢片叠压而成,转子的凸极上无绕组。开关磁阻电机转子的作用是构成定子磁场磁通路,并在磁场力的作用下转动,产生电磁转矩。转子的凸极个数为偶数。实际应用的开关磁阻电机的转子凸极最少有4个(2对),最多有16个(8对)。 (2)定子 电动汽车开关磁阻电机的定子铁心也是由硅钢片叠压而成的,成对的凸极上绕有两个互相串联的绕组。定子的作用是定子绕组按顺序通电,产生的电磁力牵引转子转动。定子凸极的个数也是偶数,最少的有6个,最多的有18个。 定子和转子的极数组合见表,目前应用较多的四相8/6极结构和三相6/4极结构。 电动汽车开关磁阻电机的极数组合 电动汽车开关磁阻电机的原理 与其他类型的电机相比,开关磁阻电机的结构和工作原理都有很大的不同。 开关磁阻电机的定子和转子均为双凸极结构,依据磁路磁阻最小原理产生电磁转矩,使转子转动。 开关磁阻电机的定子双凸极上绕有集中绕组,转子凸极上没有绕组。其电磁转矩产生如图所示。 图中仅画出其中一相绕组(A相)的连接情况。当定子、转子凸极正对时,磁阻最小;

当定子、转子凸极完全错开时,磁阻最大。当B相绕组施加电流时,由于磁通总是选择磁阻最小的路径闭合,为减少磁路的磁阻,转子将顺时针旋转,直到转子凸极2与定子凸极B 的轴线重合。 四相8/6极开关磁阻电机 当各电子开关依次控制A、B、C、D四个定子绕组通电时,转子就会不断受电磁力的作用而持续转动。如果定子绕组按D-A-B-C的顺序通电,则转子就会逆着励磁顺序以逆时针方向连续旋转。反之,若按B-A-D-C的顺序通电,则电机转子就会沿顺时针方向转动。 根据定子、转子凸极对数的配比,开关磁阻电机可以设计成不同的结构,如图所示。 开关磁阻电机的不同凸极配比

开关磁阻电机的原理及其控制系统

开关磁阻电机的原理及其控制系统 开关磁阻电机80年代初随着电力电子、微电脑和控制理论的迅速发展而发展起来的一种新型调速驱动系统。具有结构简单、运行可靠、成本低、效率高等突出优点,目前已成为交流电机调速系统、直流电机调速系统、无刷直流电机调速系统的强有力的竞争者。 一、开关磁阻电机的工作原理 开关磁阻电机的工作原理遵循磁磁阻最小原理,即磁通总是要沿着磁阻最小路径闭合。因此,它的结构原则是转子旋转时磁路的磁阻要有尽可能大的变化。所以开关磁阻电动机采用凸极定子和凸极转子的双凸极结构,并且定转子极数不同。 开关磁阻电机的定子和转子都是凸极式齿槽结构。定、转子铁芯均由硅钢片冲成一定形状的齿槽,然后叠压而成,其定、转子冲片的结构如图1所示。

图1:开关磁阻电机定、转子结构图 图1所示为12/8极三相开关磁阻电动机,S1. S2是电子开关,VD1, VD2是二极管,是直流电源。 电机定子和转子呈凸极形状,极数互不相等,转子由叠片构成,定子绕组可根据需要采用串联、并联或串并联结合的形式在相应的极上得到径向磁场,转子带有位置检测器以提供转子位置信号,使定子绕组按一定的顺序通断,保持电机的连续运行。电机磁阻随着转子磁极与定子磁极的中心线对准或错开而变化,因 为电感与磁阻成反比,当转子磁极在定子磁极中心线位置时,相绕组电感最大,

当转子极间中心线对准定子磁极中心线时,相绕组电感最小。 当定子A相磁极轴线OA与转子磁极轴线O1不重合时,开关S1, S2合上,A相绕组通电,电动机内建立起以OA为轴线的径向磁场,磁通通过定子扼、定子极、气隙、转子极、转子扼等处闭合。通过气隙的磁力线是弯曲的,此时磁路的磁导小于定、转子磁极轴线重合时的磁导,因此,转子将受到气隙中弯曲磁力线的切向磁拉力产生的转矩的作用,使转子逆时针方向转动,转子磁极的轴线O1向定子A相磁极轴线OA趋近。当OA和O1轴线重合时,转子己达到平衡位置,即当A相定、转子极对极时,切向磁拉力消失。此时打开A相开关S1, S2,合上B相开关,即在A相断电的同时B相通电,建立以B相定子磁极为轴线的磁场,电动机内磁场沿顺时针方向转过300,转子在磁场磁拉力的作用下继续沿着逆时针方向转过15,。依此类推,定子绕组A-B-C三相轮流通电一次,转子逆时针转动了一个转子极距Tr(T.=2π/N,),对于三相12/8极开关磁阻电机,45,定子磁极产生的磁场轴线则顺时针移动了3×30'=90'空间角。可T=3600/8=o 见,连续不断地按A-B-C-A的顺序分别给定子各相绕组通电,电动机内磁场轴线沿A-B-C-A的方向不断移动,转子沿A-C-B-A的方向逆时针旋转。如果按 A-C-B-A的顺序给定子各相绕组轮流通电,则磁场沿着A-C-B-A的方向转动,转子则沿着与之相反的A-B-C-A方向顺时针旋转。 二、开关磁阻电机的控制原理 传统的PID控制一方面参数的整定没有实现自动化,另一方面这种控制必须精确地确定对象模型。而开关磁阻电动机( SRM) 得不到精确的数学模型, 控制参数变化和非线性, 使得固定参数的PID 控制不能使开关磁阻电动机控制系统在各种工况下保持设计时的性能指标。

开关磁阻电动机工作原理和结构特点分析

开关磁阻电动机的结构和工作原理 开关磁阻电动机( switched reluctance motor,SRM),又称可变磁阻电动机(variable reluctance motor),是磁阻式电动机和开关电源组成的机电一体化的新型电动机。 开关磁阻电动机的结构和工作原理与传统的交、直流电动机有着很大的差别,在结构上,开关磁阻电动机的定子、转子均为凸极式,由硅钢片叠压而成,但定子、转子的极数不相等,一般相差2个。 在图中,定子为8个极,其上装有集中绕组,径向相对极的绕组串联,组成4个独立的四相绕组。转子上有6个齿,其上不装绕组。工作时,由开关电源向四相绕组供电。 开关磁阻电动机是依靠磁阻效应运行的,其运行原理遵循“磁阻最小原理”,即磁通总要沿着磁阻最小的路径闭合,在磁场中,一定形状铁芯的主轴线有向与磁场轴线重合位置运动的趋势。利用这种趋势,开关磁阻电机以定子凸极产生磁场,转子铁芯凸极形成均匀分布的多个主轴线,只要控制定子各相顺序产生磁场,转子就总具有转向磁阻最小位置的趋势,从而产生维持电机运转的连续转矩。 如图所示的四相8/6极开关磁阻驱动电机为例,图中仅画出了定子其中的A相绕组。当B相绕组受到激励时,为减小磁路的磁阻,转子顺时针旋转,直到转子极2与定子极B 相对,此时磁路的磁阻最小(电感最大)。如果切断绕组B的激励,给绕组A施加激励,磁阻转矩使转子极l与定子极A相对。转矩方向一般指向最近的一对磁极相对的位置。因此,根据转子位置传感器的反馈信号,各相绕组按B-A-D-C的顺序导通,使转子沿顺时针方向连续旋转;反之,若按D-A-B-C的顺序导通,则电机会按逆时针方向连续旋转。通过控制加到电机绕组中电流脉冲的幅值、宽度及其与转子的相对位置,即可控制开关磁阻电动机转矩的大小与方向。 开关磁阻电动机的分类和特点 (1)分类 径向相对的两个绕组串联构成一个两极磁体,成为“一相”。根据定转子极数的不同,有多种电机结构,最常用的是三相6/4结构和四相8/6结构,如图所示。 开关磁阻电动机的气隙磁场有三类形式:径向磁场、轴向磁场和混合磁场。 (2)特点 开关磁阻电动机是一种新型电动机,该系统具有很多明显的特点。 ①结构简单开关磁阻电动机结构比其他电动机都要简单,相对于有刷直流电动机,其在电机的转子上没有滑环、绕组;相对于永磁无刷直流电动机和感应同步电动机,其转子上不需要安装永磁体;开关磁阻电动机只是在定子上有简单的集中绕组,绕组的端部较短,没有相间跨接线;开关磁阻电动机的定子和转子均采用凸极结构,定子和转子都是由硅钢片叠片组成;电动机结构简单、坚固,工作可靠,可适应高速、高温及强震动环境。 ②运行效率高开关磁阻电动机的转子不存在励磁及转差损耗,功率变换器元器件少,相应的损耗也小,在较宽的转速范围和较宽的转矩范围内效率可以达到85%-93%。 ③启动和低速性能好开关磁阻电动机启动转矩大,启动电流小,没有启动冲击电流;低速时可以提供很大的转矩;开关磁阻电动机调速系统启动转矩达到额定转矩的150%时,启动电流仅为额定电流的30%。 电动汽车价格https://www.360docs.net/doc/3919218141.html, ④调速性能好调速范围宽广,可控参数多,可控参数有主开关开通角、主开关关断角、相电流幅值、直流电源电压;控制灵活,可实现多种控制方式联合运用;开关磁阻电动机可以四象限运行,容易实现正转,反转和电动、制动等。 ⑤可靠性高开关磁阻电动机结构简单坚固,各相电路独立工作,当某一相线圈发生故障时,只需停止该相线圈工作,电动机仍然可以继续运转。

开关磁阻电机参数

开关磁阻电机参数 一、工作原理 开关磁阻电机是一种通过改变磁阻来实现转子运动的电动机。其基本结构由定子和转子组成。定子上有一组线圈,通过电流激励形成磁场。转子上有一组磁阻,其磁阻值可以根据控制信号进行改变。当电流通入定子线圈时,定子磁场将转子磁阻吸引到某一位置,使转子转动。通过改变磁阻的大小和位置,可以控制转子的转动速度和方向。 二、性能特点 1. 高效率:开关磁阻电机具有较高的转换效率,能够将电能有效地转换为机械能。 2. 高精度:开关磁阻电机的运动精度较高,能够实现微小的位置和速度控制。 3. 高可靠性:开关磁阻电机结构简单,无刷子、无集电环等易损件,具有较长的使用寿命。 4. 低噪音:开关磁阻电机的运行噪音较低,适用于对噪音要求较高的场合。 5. 高扭矩密度:开关磁阻电机具有较高的扭矩密度,能够在较小的体积内输出较大的扭矩。 三、参数介绍

1. 额定电压:开关磁阻电机工作所需的电压,通常为直流电压。 2. 额定电流:开关磁阻电机在额定工作条件下所需的电流。 3. 转速范围:开关磁阻电机的转速范围,可以根据不同的应用需求进行调整。 4. 转矩常数:开关磁阻电机在额定电流下输出的转矩与电流之间的比值。 5. 转矩-转速特性:开关磁阻电机的转矩与转速之间的关系,可以通过转矩-转速曲线来表示。 6. 功率因数:开关磁阻电机的功率因数是指实际功率与视在功率之间的比值,反映了电机的功率利用效率。 7. 效率:开关磁阻电机的效率是指输出功率与输入功率之间的比值,反映了电机的能量转换效率。 四、应用领域 开关磁阻电机由于其特有的性能特点,在许多领域得到了广泛的应用。 1. 自动化设备:开关磁阻电机作为一种精密的位置和速度控制装置,广泛应用于自动化设备中,如数控机床、半导体设备等。 2. 机器人技术:开关磁阻电机在机器人技术中具有重要的应用价值,能够实现精确的运动控制,提高机器人的工作效率和精度。 3. 医疗设备:开关磁阻电机在医疗设备中的应用越来越广泛,如手术机器人、医疗影像设备等,可以提供精确的运动控制和定位功能。

开关磁阻电机结构

开关磁阻电机结构 开关磁阻电机,又称为磁阻电动机,是一种新型驱动技术,该技术无需通电即可启动电机。它具有结构简单、可靠性高、效率高、适应性强等优点,被广泛应用于家电、机床、交通等领域。下面将详细介绍开关磁阻电机的结构。 1. 基本结构 开关磁阻电机由转子、定子、机壳、定位部件和速度传感器组成。其中转子和定子之间没有电气连接,靠磁阻力实现转矩传递。转子由铁心、磁性材料和通电绕组组成。定子由铁心、固定绕组和控制绕组组成。机壳由铝合金材料制成,定位部件用于定位转子与定子之间的间隙,速度传感器用于检测电机转速和转向。 2. 转子结构 转子一般采用圆盘形磁阻材料制成,其材料一般选择磁阻率高、居里温度高的材料。转子的铁心结构分为单层和双层铁心结构。单层结构铁心上有一层铁片组成,双层结构则在单层结构的基础上增加了一层环形铁心片。这种结构有利于提高转子的扭矩和转速,并能降低热损失。 3. 定子结构 定子由铁心和绕组组成。绕组分为定子绕组和控制绕组,控制绕组用于产生旋转磁场,定子绕组与控制绕组相互作用,产生

电磁感应力,从而产生转矩。定子绕组的数量决定了电机的性能,一般采用奇数槽数量。定子铁心上会安装固定绕组,该绕组是用于监测反电动势的,以保证电机稳定运行。 4. 控制部分 开关磁阻电机要通过控制绕组来实现电机运行。电机的控制电机通常采用空间矢量控制法及直接转矩控制法。控制电路通过控制绕组的开关状态,使定子绕组与控制绕组形成一个旋转磁场,从而产生电磁力,实现电机的运行。控制绕组在电机运行过程中消耗的电能很少,因此不会产生额外的电磁噪声和损耗,从而降低了电机的噪声和损耗。 总之,开关磁阻电机在结构上十分简单,但能够实现高效、可靠的驱动效果。在家电、机床和交通等领域中得到了广泛应用。未来开关磁阻电机将继续发展,其结构和性能方面将进一步提高。

开关磁阻电机的原理及其控制系统

开关磁阻电机的原理及其控制系统 1.工作原理: 开关磁阻电机是一种以磁阻为主要工作原理的电机。它利用电流在磁阻元件中产生的磁阻变化,从而实现驱动电机转动。该电机主要由定子和转子两部分组成。定子中心构造有磁阻元件(如磁阻电阻块或磁阻隐藏产生器),制造磁场,而转子是磁场作用下的动力元件。电机通过改变定子和转子之间的磁阻关系来实现转矩调速。 工作过程如下: (1)当电机通电时,定子中的磁场会激励转子周围的物质,并产生磁阻。 (2)通过改变通电线圈的电流方向,可以改变磁场中的磁阻分布和大小。 (3)转子在磁场影响下,会发生转动,转动角度和方向与磁阻的变化有关。 (4)控制系统通过改变电流的大小和方向,以调节磁场中的磁阻,从而控制电机的转速和转矩。 2.控制系统: (1)电源供应:控制系统需要提供稳定的电源供应,以保证电机正常工作。可以采用直流电源或交流电源供电,根据实际要求进行选择。 (2)电流控制:电流控制是开关磁阻电机的关键。通过改变电流的大小和方向,可以实现对电机的转速和转矩的调节。可以采用PID控制算法等来实现电流的闭环控制。

(3)角度控制:角度控制是实现电机转动角度的控制手段。可以通过位置传感器等装置来检测电机转子的位置,然后通过控制系统来调整电流方向和大小,从而实现电机转子在指定角度上停留或转动。 (4)速度控制:速度控制是根据实际需求来调节电机转速的手段。可以通过改变电流的大小和方向,或者改变供电频率等方式来实现速度的调节。 总结: 开关磁阻电机是一种利用磁阻变化实现驱动的电机,通过改变电流的大小和方向,可以实现对电机的转速和转矩的调节。其控制系统主要包括电源供应、电流控制、角度控制和速度控制等部分。利用这些控制手段,可以实现对开关磁阻电机的精确控制,满足各种实际应用需求。

开关磁阻电动机

开关磁阻电动机 开关磁阻电动机(Switched Reluctance Drive : SRD)是继变频调速系统、无刷直流电动机调速系统之后发展起来的最新一代无级调速系统,是集现代微电子技术、数字技术、电力电子技术、红外光电技术及现代电磁理论、设计和制作技术为一体的光、机、电一体化高新技术。它具有调速系统兼具直流、交流两类调速系统的优点。英、美等经济发达国家对开关磁阻电动机调速系统的研究起步较早,并已取得显著效果,产品功率等级从数W直到数ti kw,广泛应用于家用电器、航空、航天、电子、机械及电动车辆等领域。 目录 通用系列开关磁阻调速电动机 SRD系统的组成 SRD系统各部件的结构及工作原理 SRD系统特点 SRD在家用电器中的应用 开关磁阻电动机的发展趋势展望 结束语 通用系列开关磁阻调速电动机 SRD系统的组成 SRD系统各部件的结构及丄作原理 SRD系统特点 SRD在家用电器中的应用 开关磁阻电动机的发展趋势展望 结束语 通用系列开关磁阻调速电动机 我国对开关磁阻电动机调速系统的研究与试制起步于20世纪80年代末90年代初,取得了从基础理论到设讣制造技术多方面的成果与进展,但产业化及应用性研究工作相对滞后。由于SRD的产业化,人们通常将其产品称为“开关磁阻调速电动机”。 编辑本段SRD系统的组成 开关磁阻电动机调速系统主要山开关磁阻电动机(SRH)、功率变换器、控制器、转子位置检测器四大部分组成,系统框图如图1。控制器内包含控制电路与功率变换器,而转子位置检测器则安装在垃的一端,电动机与国产Y系列感应电动机同功率同机座号同外形。 图1 SRM系统框图 编辑本段SRD系统各部件的结构及工作原理 开关磁阻电动机调速系统所用的开关磁阻电动机(SRM)是SRD中实现机电能量转换的部件,也是SRD有别于其他电动机驱动系统的主要标志。SRM 系双凸极可变磁阻电动机,其定、转子的凸极均山普通硅钢片叠压而成。转子既无绕组也无永磁

相关文档
最新文档