基于单片机的开关磁阻电机驱动系统设计

基于单片机的开关磁阻电机驱动系统设计

摘要:该文介绍了开关磁阻电机的基本原理,设计了一种用80C196单片机实现的开关磁阻电机驱动系统,并对该开关磁阻电机调速系统的性能进行了实验与测试,实验证明该系统运行可靠。

1 引言

开关磁阻电动机是磁阻电动机与电子开关驱动控制器组成的控制装置,又称开关磁阻电机驱动系统(Switched Reluctance Motor drive,简称SRD)。电机结构简单坚固,运行可靠,系统具有启动转矩高、启动电流低、调速范围宽、运行效率高,特别适用于频繁启停及正反转运行,使得SRD成为交,直流电机驱动系统以及无刷直流电机驱动系统的强有力竞争者。目前,SRD已用于多个领域,如:电动车驱动、家用电器、伺服与调速系统等许多领域。

本文设计了一个以80C196单片机为控制核心的SRD的控制系统,充分利用了SRD电机控制方式灵活的特点,采用数字化控制系统对SR电机进行控制,简化了硬件电路,提高了系统的可靠性。

2 SR电机工作原理

SR电机运行原理遵循磁阻最小原理——磁通总要沿着磁阻最小的路径闭合,因磁场扭曲而产生切向的磁拉力,当具有一定形状的铁心在移动到最小磁阻位置时,必使自己的主轴线与磁场的轴线重合。典型的SR电机结构原理如图1所示。

具体过程如下:当A相绕组电流控制开关S1,S2闭合时,A相励磁,所产生的磁场力使转子旋转到转子轴线与定子轴线重合的位置,从而产生磁阻性质的电磁转矩。顺序给A-B-C-D 相绕组通电(B、C、D各相绕组在图中未画出),则转子便按逆时针方向连续转动起来。反之,依次给B-A-D-C相绕组通电,则转子会按顺时针方向转动。

图1 SR电机结构原理图

由于是磁阻性质的电磁转矩,SR电机的转向与相绕组的电流方向无关,仅取决于相绕组的通电顺序,这使得能够简化功率变化器电路,当S1或S2闭合时,A相绕组从电源上吸收电能,而S1或S2断开时,绕组电流通过二极管VD1、VD2将剩余能量回馈给电源,因此SR 电机具有能量回馈的特点,系统效率高。

2 SRD系统硬件设计

2.1系统基本组成

SRD系统主要由四部分组成:开关磁阻电机、功率变换器、控制器及传感器。它们之间的关系如图2所示。

图2 SRD基本组成结构图

SR电动机是整个系统的执行部件,采用双凸极结构的磁阻的电机、功率变换器向SR电

动机提供运转所需要的能量,位置检测器是转子位置及速度等信号的提供者,控制器是系统的中枢,它综合处理速度指令、速度反馈信号及电流传感器、位置传感器的反馈信号,从而控制功率变换器中主开关器件的工作状态,实现对SR电动机运行状态的最终控制。

2.2 功率变换电路

本文采用的是四相8/6极磁阻电动机作为系统控制的实验平台,功率电路采用H型的功率电路,如图3所示。A,B,C,D为SR电机的四相绕组,VD1~VD4为续流二极管,AB,CB,CD,AD两相同时导通,循环导通工作。若V1,V3同时导通,则A,B相通电。若V1关断,V2闭合,则A相关断,C相开始导通,此时,A相绕组将通过二极管VD1续流,C相绕组也将构成回路,使B相电流增大,中性点电位必然增高,促使A相续流迅速衰减,强行换相。紧接着关断V1,开通V4,则C,D相导通,依次循环导通,电机就连续工作起来。其*率开关用PWM控制信号通过驱动电路来进行控制其通断。

图3 功率电路原理图

2.3控制电路结构

控制电路部分主要包括80C196单片机,角度位置检测电路,显示键盘电路以及接口电路。在控制电路中,单片机是核心,负责执行指令、处理数据。角度位置检测电路通过光电传感器检测转子位置,并将位置信号处理好后送给功率变换器和显示电路部分显示系统信息。8279接口电路负责CPU和显示键盘部分的信息交换。系统处于工作状态时,用户通过键盘给定转速,单片机接收到转速指令后通过与实际测的速度相比较,通过内部设定的控制算法输出一个占空比可调的PWM信号,这个PWM信号使得在SR电机的相绕组两端电压的变化,从而实现调速的目的。

3 SRD系统软件设计

系统软件主要由单片机处理软件和PC上位机控制软件组成。

3.1 单片机软件设计

开关磁阻电机控制软件以控制系统硬件为依托。完成对位置信号,输入给定信号及当前运行状态的检测,进行判断和计算,输出合适的电流控制与换相控制信号。它由前台程序和后台程序组成,如图4所示。其中后台程序包括初始化程序,键盘扫描程序,调速控制程序,显示程序,闲时循环程序。前台程序由四个中断程序组成,它们位置中断程序、软件定时器中断,外部中断及串行口中断程序。

图4 开关磁阻电机控制程序流程

初始化程序完成有关单元初始化,选择外部接口的工作方式,CPU各部分功能部件初始化,开启中断等,使整个系统处于准备运行状态。键盘扫描程序检查键盘的输入情况,并进行相应的软件去抖动处理,当确实有键按下时进行相应的判断,如正转、反转、制动。调速控制程序根据给定速度,并根据电机的状态完成电机的启动与制动,当在运行时根据速度的偏差输出相应的PWM信号。显示程序主要完成电机在面板控制方式下的信息显示。电机启动

前闪烁显示给定转速,启动后给定实际转速,运行过程中若出现故障,则显示故障性质代码。闲时循环程序由电源检测程序、硬件故障检测、故障处理及对上位机的命令分析程序组成。

位置中断程序即两个位置传感器输出的方波信号的上升沿和下降沿均引起中断,即电机每转过15°就产生依次中断。该程序主要完成运行速度检测、换相控制以及运行模式的切换。定时器中断实现主循环定时,电流采样,电流斩波等功能。而外部中断程序则实现外部键盘输入功能。串行口中断则是实现上位机与单片机之间的通信。

系统的工作过程如下:当单片机接到启动命令时,,在检测系统状态一切正常的情况下,根据位置传感器所提供的转子的位置信号,按启动逻辑给出相应的输出信号,该信号通过功率变换器向电机绕组供电,使电机开始转动。当转子转过一定角度时,控制电路根据位置传感器信号的变化通过功率变换器使电动机通电相位改变。运行时,根据给定速度与实际速度之间的误差输出占空比可以调节的PWM控制信号。当操作命令改变时,如反转,停车,制动时,控制电路再次改变工作逻辑,通过功率变换器使电动机实现操作要求。若在运行中出现故障情况,控制电路将通过关断功率变换器实现保护,并且通过显示电路显示故障代码。

2 PC机软件设计

系统上位机控制软件使用VB语言开发,它的作用是通过串口命令控制单片机工作,并显示实际运行转速。应用该软件,可以实现PC机对电机的正转、反转、停车、制动以及给定具体转动速度。软件的运行界面如图5所示。

图5 软件运行界面

4 小结

本系统采用80C196KC16位单片机为核心,配以8279等外围接口芯片构成检测、给定、显示、保护等外围电路,再加上驱动电路、主电路及磁阻电动机构成完整的SRD系统。对一台2KW的开关磁阻电机进行调速实验,实验结果表明开关磁阻电机的结构简单坚固、调速范围宽、调速性能优异、而且在整个调速范围内都具有很高的效率,系统可靠性高,达到了设计的要求。

开关磁阻电机控制系统设计与仿真

开关磁阻电机控制系统设计与仿真 范盼飞;张团善;杨斌;王国庆;何文莉 【摘要】In order to improve the speed-governing performance of the switched reluctance motor at different speeds and reduce the torque ripple,a control system of switched reluctance motor is designed.A high-performance DSP (TMS570LS1227) being used as the main control chip,magnetic encoder AS5040 measures the rotor position,the gate driver IR2130 receives six-way PWM waves and controls IBGT tube off and on.The current tracking control is adopted at low speed,and the phase voltage PWM chopping control at medium and high speed.Under the Matlab/Simulink environment the linear system model is simulated,and a real machine debugging conducted with a switched reluctance motor,which proves the system runs smoothly with a high-speed performance,and can also effectively inhibit torque ripple and noise of the switched reluctance motor.%为了提高开关磁阻电机(Switched Reluctance Motor)在不同速度运转时的调速性能,降低转矩脉动,设计了一款开关磁阻电机控制系统.控制系统采用高性能DSP(TMS570LS1227)作为主控芯片,磁编码器AS5040测定转子位置,门极驱动器IR2130接收六路PWM波控制IBGT管的通断.低速运行时采用电流跟踪控制,中、高速时采用相电压PWM斩波控制,在 Matlab/Simulink环境下对系统线性模型进行了仿真,并对一台开关磁阻电机进行实机调试.测试结果证明所设计系统运行平稳,调速性能优良,能有效地抑制开关磁阻电机的转矩脉动和噪声.

开关磁阻电机工作原理及其驱动系统

开关磁阻电机工作原理及其驱动系统 开关磁阻电机 Switched Reluctance Drivesystem, SRD 开关磁阻电机驱动系统(Switched Reluctance Drive system, SRD)具有一些很有特色的优点:电机结构简单、坚固、维护方便甚至免维护,起动及低速时转矩大、电流小;高速恒功率区范围宽、性能好,在宽广转速和功率范围内都具有高输出和高效率而且有很好的容错能力。这使得SR电机驱动系统在家用电器、通用工业、伺服与调速系统、牵引电机、高转速电机、航空航天等领域得到广泛应用。 SR电机是一种机电能量转换装置。根据可逆原理,SR电机和传统电机一样,它既可将电能转换为机械能——电动运行,在这方面的理论趋于成熟;也可将机械能转换为电能——发电运行,其内部的能量转换关系不能简单看成是SR电动机的逆过程。 开关磁阻电机的发展概况和发展趋势 “开关磁阻电机(Switched reluctance motor)”一词源见于美国学者 S.A.Nasarl969年所撰论文,它描述了这种电机的两个基本特征:①开关性——电机必须工作在一种连续的开关模式,这是为什么在各种新型功率半导体器件可以获得后这种电机才得以发展的主要原因;②磁阻性——它是真正的磁阻电机,定、转子具有可变磁阻磁路,更确切地说,是一种双凸极电机。开关磁阻电机的概念实际非常久远,可以追溯到19世纪称为“电磁发动机”的发明,这也是现代步进电机的先驱。在美国,这种电机常常被称为“可变磁阻电机(variable reluctance motor, VR电机)”一词, 但是VR电机也是步进电机的一种形式,容易引起混淆。有时人们也用“无刷磁阻电机(Brushless reluctance motor)”一词,以强调这种电机的无刷性。“电子换向磁阻电机(Electronically commutated reluctance motor)”一词也曾采用,从工作原理来看,甚至比“开关磁阻”的说法更准确—些,但也容易与电子换向的水磁直流电机相混淆。毫无疑问,正是由于英国 P.J.Lawrenson教授及其同事们的杰出贡献,赋予了现代SR电机新的意义,开关磁阻电机一词也因此逐渐为人们所接受和采用。 从电机结构和运行原理上看,SR电机与大步距角的反应式步进电机十分相似,因此有人将SR电机看成是一种高速大步距角的步进电机。但事实上,两者是有本质差别的,这种差别体现在电机设计、控制方法、性能特性和应用场合等方面,见表11-1。

开关磁阻电机驱动系统的运行原理及应用

开关磁阻电机驱动系统的运行原理及应用二 低轴阻发电机参考资料 1 引言 开关磁阻电机驱动系统SDR具有一些很有特色的优点:电机结构简单、坚固、维护方便甚至免维护,启动及低速时转矩大、电流小;高速恒功率区范围宽、性能好,在宽广转速和功率访问内都具有高输出和高效率而且有很好的容错能力;这使得SR电机系统在家用电器、通用工业、伺服与调速系统、牵引电机、高转速电机、航空航天等领域得到广泛应用; SR电机是一种机电能量转换装置;根据可逆原理,SR电机和传统电机一样,它既可将电能转换为机械能—电动运行,在这方面的理论趋于成熟;也可将机械能转换为电能—发电运行,其内部的能量转换关系不能简单看成是SR电动机的逆过程;本文将从SR电机电动和发电运行这两个角度阐述SR电机的运行原理; 2 电动运行原理 转矩产生原理控制器根据位置检测器检测到的定转子间相对位置信息,结合给定的运行命令正转或反转,导通相应的定子相绕组的主开关元件;对应相绕组中有电流流过,产 生磁场;磁场总是趋于“磁阻最小”而产生的磁阻性电磁转矩使转子转向“极对极”位置;当转子转到被吸引的转子磁极与定子激磁相相重合平衡位置时,电磁转矩消失;此时 控制器根据新的位置信息,在定转子即将达到平衡位置时,向功率变换器发出命令,关断 当前相的主开关元件,而导通下一相,则转子又会向下一个平衡位置转动;这样,控制器根据相应的位置信息按一定的控制逻辑连续地导通和关断相应的相绕组的主开关,就可产 生连续的同转向的电磁转矩,使转子在一定的转速下连续运行;再根据一定的控制策略控制各相绕组的通、断时刻以及绕组电流的大小,就可使系统在最隹状态下运行;

开关磁阻电机控制系统

开关磁阻电机控制系统 摘要:开关磁阻电机(SRM)是一种新型调速电机,是继变频调速系统、无刷直流电动机调速系统的最新一代调速系统。它的结构简单坚固,调速范围宽,系统可靠性高,可以进一步提升系统的安全稳定性。 关键词:驱动系统;电动机;开关磁阻电机 1引言 开关磁阻电机是SRD系统中实现能量转换的部件,也是SRD系统有别于其他电动机驱动系统的主要标志。与反应式步进电机相似,SR电机系双凸极源可变磁阻电动机,其定,转子的凸极均由普通硅钢片叠压而成,且定,转子极数不同。定子上装有简单的集中绕组,转子只由叠片构成,没有绕组和永磁体。功率变换器向SR 电机提供运转所需的能量,由蓄电池和交流电整流后得到知的直流电供电。控制器是系统的中枢。它综合处理速度指令,速度反馈信号及电流传感器,位置传感器的反馈信息,控制功率变换器中道主开关器件的工作状态。 2电动机的种类区分 如今最常使用的电动机分别有一下四类 (1)直流电动机 直流电动机的成本低廉、电路简单、易于实现平滑调速,同时有着良好的四象限运行能力,满足用于电动汽车的部分需求。

然而传统直流电机存在机械换向器和电刷,运行中会产生电火花和电磁辐射,从而干扰到车辆的电子控制系统,不利于车联网体系的建立。除此之外,机械换 向器有着极为复杂的结构,难以简单制造且使车速到达高速。 (2)交流感应电机 交流感应电机一般采用六用鼠笼型的结构,对比与其他电机,三相鼠笼型电 动机成本较低,运行效率高,拥有良好的可靠性的同时便于维修的优点,而且体 积小。通过一定的控制策略,,交流感应电机也可以实现类似于直流电机的良好 调速特性。但与此同时,交流感应电机用电量大,在使用过程中发热严重,调 速性能不佳,控制系统复杂且需要一定的成本。 (3)无刷永磁电机 永磁电机是一种高性能新兴电机。永磁无刷直流电机结构中不含换向器和电刷,这样一来永磁电机一方面继承了直流电机优秀的调速性能又避免了机械换向 器和电刷带来的负面影响。相较于此前介绍的几种电机,永磁电机有更高的功率 和转矩,极限转速高、制动性能好。散热性能更好。加之永磁电机也具有优异的 四象限运行能力,使得永磁电机作为较晚出现的电动车用电机却后来者居上,近 些年来表现出越来越迅猛的发展势头。然而,在应用反面永磁电机有几个不可回 避的缺点。其一,永磁材料受温度影响大,在大电流负载时,温度的上升会导致 永磁材料性能下降。其二、受限于转子磁轭与定子之间安装的机械强度,永磁电 机难以承受高速运行状态。其三、稀土永磁体的价格昂贵,导致永磁电机的制造 成本上升。其四、大型稀土永磁体会吸引周围飞散的金属碎屑,对电极稳定运行 不利。其五、受限于自身的结构及材料特点,永磁电机难以获得高于基速两倍及 以上的转速。这些问题在实际应用中限制了永磁电机的适用范围。 (4)开关磁阻电机 开关磁阻电机(SRM)是一种双凸极变磁阻电机,转子不含永磁体而是由硅 钢片叠压而成。从结构上来看对比与其他电机,开关磁阻电机相对较为稳定,并 且在转速、转矩方面的调速范围更广,并且在可靠性已经稳定方面,开关磁阻电

开题报告-开关磁阻电机数字控制系统设计

开题报告-开关磁阻电机数字控制系统设计 开题报告电气工程及自动化开关磁阻电机数字控制系统设计一、前言开关磁阻电机结构简单、成本低、容错性高、功率密度高能够高速运行,并且它能方便地实现起动和发电双功能,因此,目前越来越广泛的应用于航空和汽车上的起动/发电系统。开关磁阻电机具有很大的发展潜力。 二、主题(一)、开关磁阻电机的发展概述“开关磁阻电机”一词源于美国学者S.A.Nasar 1969年所撰论文,它描述了这种电机的两个基本特征:开关性和磁阻性。20世纪80年代以来,越来越多的学者开始关注开关磁阻电机,并对此进行了大量的研究。美国空军和GE公司联合开发了航空发动机用SRD电机系统,有30KW、270V、最大转速为52000r/min和250KW、270V最大转速为23000r/min两种规格。加拿大、前南斯拉夫在SR电机的运行理论电磁场分析上做了大量研究工作。一些学者还研究了盘式SRM/外转子式SRM、直线式SRM和无位置传感器SRM等新型结构的电机。 1984年开始,我国许多单位先后开展了SR 电机的研究工作且SRM被列入中小型电机“七五”科研规划项目。在借鉴国外经验技术的基础上,我国的SR电机研究技术进展很快。近

年来,中国在开关磁阻电机的研发方面取得了很大的进步例如南京航空航天大学开发了 3KW、6KW 及 7.5KW 三套原理样机,电机采用的是风冷形式。但在大功率方面的研究还很少,仅有原理样机方面的仿真。 (二)、开关磁阻电机的优缺点开关磁阻电机结构简单,性能优越,可靠性高,覆盖功率范围10W~5MW的各种高低速驱动调速系统。使得开关磁阻电机在各种需要调速和高效率的场合均能得到广泛使用(电动车驱动、通用工业、家用电器、纺织机械、电力传动系统等各个领域)。 其结构简单,价格便宜,电机的转子没有绕阻和磁铁。 (1)转矩方向与电流方向无关,只需单方相绕阻电流,每相一个功率开关,功率电路简单可靠,可降低系统成本。 (2)易于实现各种再生制动能力。 (3)定子线圈嵌装容易,热耗大部分在定子,易于冷却,效率高,损耗小,允许有较大的温升。 (4)转子上没有电刷,结构坚固,适用于危险环境,控制灵活。 (5)调速范围宽,控制灵活并且输出效率很高。 (6)电机的绕组电流方向为单方向,控制电路简单,具有较高的经济性和可靠性,转子的转动惯量小,有较高转矩惯量比。

基于单片机的开关磁阻电机驱动系统设计

基于单片机的开关磁阻电机驱动系统设计 摘要:该文介绍了开关磁阻电机的基本原理,设计了一种用80C196单片机实现的开关磁阻电机驱动系统,并对该开关磁阻电机调速系统的性能进行了实验与测试,实验证明该系统运行可靠。 1 引言 开关磁阻电动机是磁阻电动机与电子开关驱动控制器组成的控制装置,又称开关磁阻电机驱动系统(Switched Reluctance Motor drive,简称SRD)。电机结构简单坚固,运行可靠,系统具有启动转矩高、启动电流低、调速范围宽、运行效率高,特别适用于频繁启停及正反转运行,使得SRD成为交,直流电机驱动系统以及无刷直流电机驱动系统的强有力竞争者。目前,SRD已用于多个领域,如:电动车驱动、家用电器、伺服与调速系统等许多领域。 本文设计了一个以80C196单片机为控制核心的SRD的控制系统,充分利用了SRD电机控制方式灵活的特点,采用数字化控制系统对SR电机进行控制,简化了硬件电路,提高了系统的可靠性。 2 SR电机工作原理 SR电机运行原理遵循磁阻最小原理——磁通总要沿着磁阻最小的路径闭合,因磁场扭曲而产生切向的磁拉力,当具有一定形状的铁心在移动到最小磁阻位置时,必使自己的主轴线与磁场的轴线重合。典型的SR电机结构原理如图1所示。 具体过程如下:当A相绕组电流控制开关S1,S2闭合时,A相励磁,所产生的磁场力使转子旋转到转子轴线与定子轴线重合的位置,从而产生磁阻性质的电磁转矩。顺序给A-B-C-D 相绕组通电(B、C、D各相绕组在图中未画出),则转子便按逆时针方向连续转动起来。反之,依次给B-A-D-C相绕组通电,则转子会按顺时针方向转动。 图1 SR电机结构原理图 由于是磁阻性质的电磁转矩,SR电机的转向与相绕组的电流方向无关,仅取决于相绕组的通电顺序,这使得能够简化功率变化器电路,当S1或S2闭合时,A相绕组从电源上吸收电能,而S1或S2断开时,绕组电流通过二极管VD1、VD2将剩余能量回馈给电源,因此SR 电机具有能量回馈的特点,系统效率高。 2 SRD系统硬件设计 2.1系统基本组成 SRD系统主要由四部分组成:开关磁阻电机、功率变换器、控制器及传感器。它们之间的关系如图2所示。 图2 SRD基本组成结构图 SR电动机是整个系统的执行部件,采用双凸极结构的磁阻的电机、功率变换器向SR电

小功率高速开关磁阻电机驱动系统的设计与应用

小功率高速开关磁阻电机驱动系统的设计与应用 小功率高速开关磁阻电机驱动系统的设计与应用 1. 引言 1.1 主题介绍 在现代工业应用中,电机作为关键的能源转换装置,其驱动系统 的设计和应用一直是一个重要的研究领域。本文将深入探讨小功率高 速开关磁阻电机驱动系统的设计与应用,以介绍其原理、特点及在工 业领域中的重要性。 1.2 文章目的 本文的目的是通过深入剖析小功率高速开关磁阻电机驱动系统的 设计与应用,帮助读者深入理解其原理及其在不同领域中的广泛应用。 2. 小功率高速开关磁阻电机的概述 2.1 定义 小功率高速开关磁阻电机是一种采用电磁铁吸力控制转子运动的 电动机。它具有结构简单、高效能、高稳定性等特点,因此在很多应 用场景中取得了成功。 2.2 工作原理 小功率高速开关磁阻电机驱动系统的工作原理主要包括电磁铁的 磁性吸引力、开关磁阻控制、电流调节等。其关键是通过电流变化来

控制电磁铁的磁性吸引力,从而使转子运动。 2.3 特点和优势 小功率高速开关磁阻电机驱动系统具有领先的转矩密度、高响应 速度、宽速度范围、低惯性等特点。这些特点使其在精密仪器、自动 化设备等领域得到广泛应用。 3. 小功率高速开关磁阻电机驱动系统的设计与应用 3.1 系统设计 小功率高速开关磁阻电机驱动系统的设计主要包括电源设计、控 制器设计、传感器设计、保护设计等方面。其中,控制器设计是一个 核心环节,需要考虑实时性、稳定性、可靠性等因素。 3.2 电机参数选择 在小功率高速开关磁阻电机驱动系统的应用中,合理选择电机参 数至关重要。其中包括电机功率、电机转速、电机电流等参数的选取。这些参数将直接影响驱动系统的性能和使用效果。 3.3 驱动系统的应用 小功率高速开关磁阻电机驱动系统在工业领域中有着广泛的应用。它可以应用于机械加工设备、医疗设备、机器人等领域。它还可以用 于一些特殊环境,例如高温环境、高湿度环境等。 4. 小功率高速开关磁阻电机驱动系统的优势与挑战 4.1 优势 小功率高速开关磁阻电机驱动系统相对于传统的电机驱动系统具

第二章开关磁阻电机及其调速系统

第二章开关磁阻电机及其调速系统 2.1 开关磁阻电机的发展概况 磁阻式电机诞生于160年前,一直被认为是一种性能不高的电机。然而通过近20年的研究与改进,使磁阻式电机的性能不断提高,目前已能在较大功率范围内不低于其它型式的电机[9]。 70年代初,美国福特电动机(Ford Motor)公司研制出最早的开关磁阻电机调速系统。其结构为轴向气隙电动机、晶闸管功率电路,具有电动机和发电机运行状态和较宽范围调速的能力,特别适用于蓄电池供电的电动车辆的传动。 70年代中期,英国里兹(Leeds)大学和诺丁汉(Nottingham)大学,共同研制以电动车辆为目标的开关磁阻电机调速系统。样机容量从10W至50KW,转速从750 r/min至10000 r/min,其系统效率和电机利用系数等主要指标达到或超过了传统传动系统。该产品的出现,在电气传动界引起了不小的反响。在很多性能指标上达到了出人意料的高水平,整个系统的综合性能价格指标达到或超过了工业中长期广泛使用的一些变速传动系统。 近年来,国内外已有众多高校、研究所和企业投入了开关磁阻电机调速系统的研究、开发和制造工作。至今已推出了不同性能、不同用途的几十个系列的产品,应用于纺织、冶金、机械、汽车等行业中。 目前,在汽车行业意大利FIAT公司研制的电动车和中国第二汽车制造厂研制的电动客车都采用了开关磁阻电机。SRM是没有任何形式的转子线圈和永久磁铁的无刷电动机,它的定子磁极和转子磁极都是凸的。由于SRM具有集中的定子绕组和脉冲电流,其功率变换器可以采用更可靠的电路拓扑形式。SRM具有简单可靠、在较宽转速和转矩范围内高效运行、控制灵活、可四象限运行、响应速度快、成本较低等优点,这是其它调速系统难以比拟的,作为具有潜力的电动车电气驱动系统日益受到重视。然而目前SRM还存在转矩波动大、噪声大、需要位置检测器、系统非线性等缺点,所以,它的广泛应用还受到限制。 2.2 开关磁阻电机的基本结构与特点 开关磁阻电机为定、转子双凸极可变磁阻电机。其定、转子铁心均由硅钢片

开关磁阻电机的原理及其控制系统

开关磁阻电机的原理及其控制系统 1.工作原理: 开关磁阻电机是一种以磁阻为主要工作原理的电机。它利用电流在磁阻元件中产生的磁阻变化,从而实现驱动电机转动。该电机主要由定子和转子两部分组成。定子中心构造有磁阻元件(如磁阻电阻块或磁阻隐藏产生器),制造磁场,而转子是磁场作用下的动力元件。电机通过改变定子和转子之间的磁阻关系来实现转矩调速。 工作过程如下: (1)当电机通电时,定子中的磁场会激励转子周围的物质,并产生磁阻。 (2)通过改变通电线圈的电流方向,可以改变磁场中的磁阻分布和大小。 (3)转子在磁场影响下,会发生转动,转动角度和方向与磁阻的变化有关。 (4)控制系统通过改变电流的大小和方向,以调节磁场中的磁阻,从而控制电机的转速和转矩。 2.控制系统: (1)电源供应:控制系统需要提供稳定的电源供应,以保证电机正常工作。可以采用直流电源或交流电源供电,根据实际要求进行选择。 (2)电流控制:电流控制是开关磁阻电机的关键。通过改变电流的大小和方向,可以实现对电机的转速和转矩的调节。可以采用PID控制算法等来实现电流的闭环控制。

(3)角度控制:角度控制是实现电机转动角度的控制手段。可以通过位置传感器等装置来检测电机转子的位置,然后通过控制系统来调整电流方向和大小,从而实现电机转子在指定角度上停留或转动。 (4)速度控制:速度控制是根据实际需求来调节电机转速的手段。可以通过改变电流的大小和方向,或者改变供电频率等方式来实现速度的调节。 总结: 开关磁阻电机是一种利用磁阻变化实现驱动的电机,通过改变电流的大小和方向,可以实现对电机的转速和转矩的调节。其控制系统主要包括电源供应、电流控制、角度控制和速度控制等部分。利用这些控制手段,可以实现对开关磁阻电机的精确控制,满足各种实际应用需求。

开关磁阻电机的电磁设计

开关磁阻电机的电磁设计 开关磁阻电机(Switched Reluctance Motor,简称SRM)是一种利用磁阻力产生转矩的电机。在SRM电机中,转动部件是一个由一系列磁场互相耦合的铁磁材料构成的转子,它和定子之间没有任何电磁感应元件。因此,SRM电机具有许多优点,例如结构简单、容量小、重量轻、高效率以及低成本等。 SRM电机的电磁设计是SRM电机设计中的一个重要环节。其设计目标是使电机的转矩和功率因数优化,并使其达到高效率运行。为了实现这个目标,需要进行以下几个方面的电磁设计。 首先,需要确定电机的工作原理和各种性能指标。在SRM电机的设计中,常用的工作原理是磁阻推力原理。在该原理下,通过改变定子上电流的大小和方向,可以产生一个斥力,进而驱动转子转动。因此,需要确定电机的定子电流和栅极火花的位置和数量等参数。 其次,需要进行电机的磁路设计。磁路设计主要包括定子和转子的磁路结构设计。在定子的磁路设计中,需要确定定子的槽形和定子线圈的绕组方式。在转子的磁路设计中,需要确定转子的磁阻分布和转子磁通闭合的路径。通过对定子和转子的磁路设计,可以优化电机的磁通分布,提高电机的磁阻和转矩。 然后,需要进行电机的线圈设计。线圈设计主要包括定子线圈和转子线圈设计。定子线圈设计中,要考虑线圈元件的形状和尺寸,以及线圈的绕组结构和电流密度。转子线圈设计中,要考虑转子线圈的尺寸和形状,以及线圈的绕组方式和电流密度。通过优化线圈的设计,可以提高电机的工作效率和功率因数。

最后,需要进行电机的性能评估和优化设计。性能评估主要包括电机 的转矩、功率因数、效率等。通过对电机的性能进行评估,可以找出电机 的不足之处,进行相应的优化设计,以提高电机的性能。 总之,SRM电机的电磁设计是SRM电机设计中的一个重要环节。通过 合理的电磁设计,可以提高电机的转矩和效率,实现电机的高效运行。但是,电磁设计还需要考虑其他因素,如电机的机械设计、控制系统设计等。只有将这些环节都考虑进去,才能设计出性能优良的SRM电机。

开关磁阻电机的设计与应用

开关磁阻电机的设计与应用 引言 开关磁阻电机是一种新型的电机,具有结构简单、体积小、响应快、效率高等优点,在工业生产和家用电器等领域得到广泛应用。本文将介绍开关磁阻电机的设计原理、构造和工作方式,并探讨其在不同领域的应用。 1. 开关磁阻电机的设计原理 开关磁阻电机是通过控制磁场的方向和大小来实现转动,其设计原理基于磁阻效应和磁场的反转。当电流通过绕组时,会产生一个磁场,根据右手定则,当磁阻材料中的磁场方向与绕组的磁场方向相反时,就会出现瞬时的磁流偏移,导致磁场的反转。通过不断地反转磁场的方向,可以产生连续的转动力。 2. 开关磁阻电机的构造 开关磁阻电机主要由转子、定子和驱动电路组成。 2.1 转子 转子是开关磁阻电机的核心部件,由磁阻材料制成。磁阻材料通常采用铁短路片或磁铁片,具有高导磁性和低磁饱和性。转子上绕有线圈,通过控制线圈通电情况,可以控制转子的磁场方向和大小。 2.2 定子 定子是开关磁阻电机中固定的部件,用于产生或感应磁场。定子一般由永磁体或电磁体构成,永磁体具有固定的磁场,电磁体则通过外部电源提供磁场。定子的磁场与转子的磁场交互作用,产生转动力。 2.3 驱动电路 驱动电路是控制开关磁阻电机正常工作的关键部分,它负责提供正确的电流和电压信号,并控制磁场的反转。驱动电路一般由电能转换器、控制芯片和传感器组成。 3. 开关磁阻电机的工作方式 开关磁阻电机主要有两种工作方式:单相工作和多相工作。

3.1 单相工作 单相工作是指开关磁阻电机通过单个绕组进行驱动,具有结构简单、成本低的优点。但由于只有一个驱动绕组,单相工作的开关磁阻电机转速较低,扭矩较小,适用于一些低负载和速度要求不高的应用。 3.2 多相工作 多相工作是指开关磁阻电机通过多个绕组进行驱动,具有转速高、扭矩大的优点。多相工作的开关磁阻电机可以灵活控制磁场的变化,达到更高的效率和更精确的转动性能。但多相工作的开关磁阻电机相对于单相工作来说,结构复杂,成本较高。 4. 开关磁阻电机的应用领域 开关磁阻电机在工业生产和家用电器领域有广泛的应用。 4.1 工业生产 在工业生产中,开关磁阻电机可用于控制机械臂、输送带、自动门等装置的转动。其结构简单、响应快的特点使其在自动化生产线上具有重要作用。 4.2 家用电器 开关磁阻电机广泛应用于家用电器,如洗衣机、电风扇、空调等。开关磁阻电机具有体积小、噪音低、启动快的特点,适合家庭环境使用。 4.3 交通工具 开关磁阻电机还可应用于交通工具,如电动自行车、电动汽车等。开关磁阻电机可以根据不同的驱动需求进行优化设计,以实现高效能、节能的动力输出。 结论 开关磁阻电机凭借其结构简单、体积小、响应快、效率高等特点,具有广泛的应用前景。在不断的技术创新下,开关磁阻电机将进一步改进和发展,为工业生产和生活带来更多便利和效益。

开关磁阻电机驱动系统的运行原理及应用

开关磁阻电机驱动系统的运行原理及应用(二) ?(低轴阻发电机参考资料) ??????1 引言 开关磁阻电机驱动系统(SDR)具有一些很有特色的优点:电机结构简单、坚固、维护方便甚至免维护,启动及低速时转矩大、电流小;高速恒功率区范围宽、性能好,在宽广转速和功率访问内都具有高输出和高效率而且有很好的容错能力。这使得SR电机系统在家用电器、通用工业、伺服与调速系统、牵引电机、高转速电机、航空航天等领域得到广泛应用。 SR电机是一种机电能量转换装置。根据可逆原理,SR电机和传统电机一样,它既可将电能转换为机械能—电动运行,在这方面的理论趋于成熟;也可将机械能转换为电能—发电运行,其内部的能量转换关系不能简单看成是SR电动机的逆过程。本文将从SR电机电动和发电运行这两个角度阐述SR电机的运行原理。 2 电动运行原理 2.1 转矩产生原理 控制器根据位置检测器检测到的定转子间相对位置信息,结合给定的运行命令(正转或反转),导通相应的定子相绕组的主开关元件。对应相绕组中有电流流过,产生磁场;磁场总是趋于“磁阻最小”而产生的磁阻性电磁转矩使转子转向“极对极”位置。当转子转到被吸引的转子磁极与定子激磁相相重合(平衡位置)时,电磁转矩消失。此时控制器根

据新的位置信息,在定转子即将达到平衡位置时,向功率变换器发出命令,关断当前相的主开关元件,而导通下一相,则转子又会向下一个平衡位置转动;这样,控制器根据相应的位置信息按一定的控制逻辑连续地导通和关断相应的相绕组的主开关,就可产生连续的同转向的电磁转矩,使转子在一定的转速下连续运行;再根据一定的控制策略控制各相绕组的通、断时刻以及绕组电流的大小,就可使系统在最隹状态下运行。 图1 三相sr电动机剖面图 从上面的分析可见,电流的方向对转矩没有任何影响,电动机的转向与电流方向无关,而仅取决于相绕组的通电顺序。若通电顺序改变,则电机的转向也发生改变。为保证电机能连续地旋转,位置检测器要能及时给出定转子极间相对位置,使控制器能及时和准确地控制定子各相绕组的通断,使srm能产生所要求的转矩和转速,达到预计的性能要求。 2.2 电路分析

开关磁阻电机系统设计

开关磁阻电机系统设计 1.1 关磁阻电机的优点与缺点 (2) 1.1.1 开关磁阻电机的优点: ............................ 2 1.1.2 开关磁阻电机的缺点.............................. 2 1.2 开关磁阻电动机应用和发展.............................. 2 第2章开关磁阻电动机工作原理与结构 . (4) 2.1 开关磁阻电动机的工作原理 (5) 2.1.1 基本结构........................................ 5 2.1.2 SRD的工作原理 ................................. 5 2.1.3 SRD的特点 ..................................... 5 2.2 开关磁阻电动机的结构 .................................. 5 第3 章开关磁阻电动机电磁设计 .. (9) 3.1设计特点 .............................................. 9 3.2 确定SR电动机额定数据................................ 9 3.3 计算SR电动机的主要尺寸 ............................... 9 3.4 计算机辅助设计程序 . (13) 第4章SRD系统控制原理设计 .............................. - 19 - 4.1 控制系统的总体设计 ................................... 14 4.2 控制器的设计 .. (14) 4.2.1译码电路:..................................... 16 4.2.2晶振及复位电路 ................................. 16 4.2.3斩波电流水平给定电路 ........................... 17 4.2.4斩波控制电路................................... 17 4.2.5转速给定电路 ................................... 17 4.2.6键盘给定与显示电路 ............................. 18 4.3 电流检测器的设计 .................................... 18 4.4 位置检测器的设计 .................................... 19 4.5 功率变换器的设计 ..................................... 20 4.5.1 功率变换器的主电路形式 ......................... 20 4.5.2 开关元件的选择 (21) 第5章开关磁阻电动机调速系统 (22)

基于单片机的开关磁阻电机调速系统的研究优秀doc资料

基于单片机的开关磁阻电机调速系统的研究优秀doc资料

摘要 :介绍了开关磁阻电机调速系统的组成,以 MC 9S12DG128BV 单片机为控制器核心,设计并搭建了开关磁阻电机调速系统实验平台,利用改进的模糊 PI 控制策略实现转速闭环控制,以使不同负载情况下电机具有良好的调速功能。实验结果显示, 该系统具有良好的动态和静态特性, 满足设计要求。 关键词 :开关磁阻电机 ; 模糊 PI 控制 ; 调速中图分类号 :TM33 文献标识码 :A 文章编号 :1007-3175(202103-0012-05 朱莉莉,谢方南,刘俊纯 (中国矿业大学信息与电气工程学院,江苏徐州 221008 Abstract: Introduction was made to the composition of a switched reluctance motor (SRM speed regulation system with MC9S12DG128BV microcontroller unit as its control core. The experimental platform of the SRM speed regulation system was designed and built. The im-proved fuzzy PI control strategy was used to achieve rotation speed closed loop control so as to make the motor keep good speed regula-tion functions under different load conditions. Experimental results show that the system meets design requirements with good dynamic and static characteristics. Key words: switched reluctance motor; fuzzy PI control; speed regulation ZHU Li-li, XIE Fang-nan, LIU Jun-chun (School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou 221008, China

电气毕业设计-开关磁阻电机驱动控制系统设计

目录 1 绪论 (1) 1.1 课题的选题意义 (1) 1.2 国内外发展状况及其前景 (1) 1.3 SR驱动控制系统的特点和优点 (2) 1.4 SR电机驱动控制系统的研究和发展方向 (4) 1.5 本设计所进行的工作 (5) 2 SR电机控制系统的原理及控制策略 (6) 2.1 SR电机控制系统的结构和原理 (6) 2.1.1 SR电机驱动控制系统结构 (6) 2.1.2 SR电机的工作原理 (7) 2.2 SR电机的基本方程及控制方式 (9) 2.2.1 SR电机的基本方程 (9) 2.2.2 SR电机的控制方式 (11) 2.2.3 系统控制策略的确定 (17) 3 SRD数学模型与SIMULINK仿真模型的建立 (19) 3.1 SR电机的线性模型分析 (20) 3.1.1 SR电机的绕组电感分析 (20) 3.1.2 SR电机的绕组磁链分析 (22) 3.1.3 SR电机的绕组电流分析 (23)

3.1.4 SR电机的电磁转矩分析 (28) 3.1.5 SR电机的准线性分析 (29) 3.2 SR电机控制系统SIMULINK仿真模型 (32) 3.2.1 SR电机本体模型 (33) 3.2.2 速度控制模型 (34) 3.2.3 电流控制模型 (35) 3.2.4 电压逆变模型 (37) 3.2.5 转角选择模型 (37) 3.2.6 参数计算模型 (38) 3.2.7 转矩计算模型 (41) 4 SR电机控制系统MATLAB/SIMULINK仿真分析 (42) 4.1 CCC方案下SRD系统的仿真分析 (42) 4.1.1 转速300r/min、负载15N.m的系统启动仿真 (42) 4.1.1 转速500r/min、负载10N.m的系统启动仿真 (44) 5 总结 (47) 致谢 (48) 参考文献 (49) 附录A 译文 (50) 附录B 原文 (58)

开关磁阻电机的原理和控制系统方案

开关磁阻电机的原理与其控制系统 开关磁阻电机80年代初随着电力电子、微电脑和控制理论的迅速发展而发展起来的一种新型调速驱动系统。具有结构简单、运行可靠、成本低、效率高等突出优点,目前已成为交流电机调速系统、直流电机调速系统、无刷直流电机调速系统的强有力的竞争者。 一、开关磁阻电机的工作原理 开关磁阻电机的工作原理遵循磁磁阻最小原理,即磁通总是要沿着磁阻最小路径闭合。因此,它的结构原则是转子旋转时磁路的磁阻要有尽可能大的变化。所以开关磁阻电动机采用凸极定子和凸极转子的双凸极结构,并且定转子极数不同。 开关磁阻电机的定子和转子都是凸极式齿槽结构。定、转子铁芯均由硅钢片冲成一定形状的齿槽,然后叠压而成,其定、转子冲片的结构如图1所示。

图1:开关磁阻电机定、转子结构图 图1所示为12/8极三相开关磁阻电动机,S1. S2是电子开关,VD1, VD2 是二极管,是直流电源。 电机定子和转子呈凸极形状,极数互不相等,转子由叠片构成,定子绕组可根据需要采用串联、并联或串并联结合的形式在相应的极上得到径向磁场,转子带有位置检测器以提供转子位置信号,使定子绕组按一定的顺序通断,保持电机的连续运行。电机磁阻随着转子磁极与定子磁极的中心线对准或错开而变化,因为电感与磁阻成反比,当转子磁极在定子磁极中心线位置时,相绕组电感最大,当转子极间中心线对准定子磁极中心线时,相绕组电感最小。 当定子A相磁极轴线OA与转子磁极轴线O1不重合时,开关S1, S2合上,A 相绕组通电,电动机建立起以OA为轴线的径向磁场,磁通通过定子扼、定子极、气隙、转子极、转子扼等处闭合。通过气隙的磁力线是弯曲的,此时磁路的磁导小于定、转子磁极轴线重合时的磁导,因此,转子将受到气隙中弯曲磁力线的切向磁拉力产生的转矩的作用,使转子逆时针方向转动,转子磁极的轴线O1向定子A相磁极轴线OA趋近。当OA和O1轴线重合时,转子己达到平衡位置,即当A相定、转子极对极时,切向磁拉力消失。此时打开A相开关S1, S2,合上B 相开关,即在A相断电的同时B相通电,建立以B相定子磁极为轴线的磁场,电动机磁场沿顺时针方向转过300,转子在磁场磁拉力的作用下继续沿着逆时针方向转过15,。依此类推,定子绕组A-B-C三相轮流通电一次,转子逆时针转动了一个转子极距Tr(T.=2π/N,),对于三相12/8极开关磁阻电机,T=3600/8=o 45,定子磁极产生的磁场轴线则顺时针移动了3×30'=90'空间角。可见,连续不断地按A-B-C-A的顺序分别给定子各相绕组通电,电动机磁场轴线沿A-B-C-A的方向不断移动,转子沿A-C-B-A的方向逆时针旋转。如果按A-C-B-A的顺序给定子各相绕组轮流通电,则磁场沿着A-C-B-A的方向转动,转子则沿着与之相反的 A-B-C-A方向顺时针旋转。 二、开关磁阻电机的控制原理 传统的PID控制一方面参数的整定没有实现自动化,另一方面这种控制必须精确地确定对象模型。而开关磁阻电动机( SRM) 得不到精确的数学模型, 控制参数变化和非线性, 使得固定参数的 PID 控制不能使开关磁阻电动机控制系统在各种工况下保持设计时的性能指标。 模糊控制器是一种近年来发展起来的新型控制器,其优点是不需要掌握受控对象的精确数学模型,而根据人工控制规则组织控制决策表,然后由该表决定控制量的大小。因此采用模糊控制, 对开关磁阻电动机(SRM)进行控制是改善系统性能的一种途径。但在实践中发现, 常规模糊控制器的设计存在一些不足, 如控制表中数据有跳跃, 平滑性较差, 这对控制效果有影响。

基于单片机的电子毕业设计题目

基于单片机的电子毕业设计题目 篇一:最新单片机毕业设计,电子毕业设计题目大全一单片机毕业设计题目,电子毕业设计题目 1. 单片机接入Internet技术在智能小区中的应用与研究 2. 基于PIC单 片机的高压智能同步开关控制系统设计 3. 基于单片机的刚性转子现场动平衡测试系统的研制 4. 基于单片机的现场多道核能谱数据收集系统研究 5. 单片机模糊控制晶闸管直流调压系统的研究 6. 单片机嵌入式TCP/IP协议的研究与实现 7. 基于单片机的几何参数主动量仪和通用测控仪的研制 8. 基于C8051单片机的足球机械人小车控制系统设计 9. 利用FPGA模拟实现8051单片机及其外设的功能 10. 用于TDMoIP实现的E〈,1〉功能卡单片机控制研究 11. 基于MSP430单片机的数字式压力表的设计与实现 12. 基于CAN总线的单片机流量控制系统的研究 13. 单片机和嵌入式系统开发平台化的研究 14. 基于单片机语音识别系统设计

15. 基于80C196KC单片机的舞蹈机械人控制系统 16. 基于单片机的工业缝纫机控制系统研制 17. 基于单片机的智能稳压电源 18. PIC单片机中国市场拓展战略 19. 基于FPGA与单片机的高精度电子经纬仪光电信号处置系统研制 20. 基于网络单片机 21. 基于“单片机+CPLD/FPGA机系统集成化设计 22. ——单片机信号收集及其通信 控制系统研究部份 23. 弧焊逆变电源 24. 单片机 25. 单片机 26. 单片机的研究与实现 27. 单片机应用 28. 基于机自动调平控制器的研究 机系统设计 单片机的web服务器的设计与实现 语言的单片机设计 实现的仿人智能PID控制器 基于单片机的船舶柴油机冷却水温度控制系统 34. 基于单片机的活性炭测氡仪的研制

相关文档
最新文档