化工原理 第三章2
化工原理(第三章)

up=u-u0
u = 0,up = u0 流体静止,颗粒向下运动; up = 0,u = u0 ,颗粒静止地悬浮在流体中; u > u0 , up > 0, 颗粒向上运动; u < u0, up < 0,颗粒向下运动。
4、非球形颗粒的几何特征与阻力系数
一般采用与球形颗粒相对比的当量直径来表征非球形颗粒的 主要几何特征。 等体积当量直径 deV 等表面积当量直径 deA
非均相 混合物 2.悬浮液 3.乳浊液 4.含尘(或雾)气体
第一节 筛分
一、颗粒的特征 颗粒的基本特征是大小(粒径)、形状和表面积。 二、颗粒群的特征 颗粒群的基本特征有料径分布、平均直径 三、筛分 1.筛分原理 2.筛的有效性与生产能力
第二节 沉降分离
一、重力沉降原理 1、自由沉降的定义 单个颗粒在无限大流体(容器直径大于颗粒直径的 100倍以上)中的降落过程。它的特点是颗粒间没有干扰。 2、颗粒的流体中的受力分析 在重力场中,颗粒自由沉降时共 受三个力的作用,即重力(Fg)、浮力 (Fb)和阻力(Ff)。 Fg= π d 3 ρs g Fb= π d 3 ρ g 6 6 π d 2 ρu2 Ff= ζ 4 2
例3-2 尘料的直径为30μm,密度为2000kg/m3,求它在空 气中做自由沉降时的沉降速度。空气的密度为1.2kg/m3,粘 度为0.0185Pa.s。 解:先假设沉降在层流区,由斯托克斯公式有: d2 (ρs- ρ) g u0 = 18μ (30×10-6)2 (2000-1.2) ×9.81 = = 0.053(m/s) -3 18×0.0185×10 核验 30×10-6 ×0.053×1.2 du0ρ Re0 = = 0.103<2 = -3 μ 0.0185×10
化工原理第三章习题与答案

化⼯原理第三章习题与答案第三章机械分离⼀、名词解释(每题2分)1. ⾮均相混合物物系组成不同,分布不均匀,组分之间有相界⾯2. 斯托克斯式r u d u ts r 2218)(?-=µρρ3. 球形度s ?⾮球形粒⼦体积相同的球形颗粒的⾯积与球形颗粒总⾯积的⽐值4. 离⼼分离因数离⼼加速度与重⼒加速度的⽐值5. 临界直径dc离⼼分离器分离颗粒最⼩直径6.过滤利⽤多孔性介质使悬浮液中液固得到分离的操作7. 过滤速率单位时间所产⽣的滤液量8. 过滤周期间歇过滤中过滤、洗涤、拆装、清理完成⼀次过滤所⽤时间9. 过滤机⽣产能⼒过滤机单位时间产⽣滤液体积10. 浸没度转筒过滤机浸没⾓度与圆周⾓⽐值⼆、单选择题(每题2分)1、⾃由沉降的意思是_______。
A颗粒在沉降过程中受到的流体阻⼒可忽略不计B颗粒开始的降落速度为零,没有附加⼀个初始速度C颗粒在降落的⽅向上只受重⼒作⽤,没有离⼼⼒等的作⽤D颗粒间不发⽣碰撞或接触的情况下的沉降过程D 2、颗粒的沉降速度不是指_______。
A等速运动段的颗粒降落的速度B加速运动段任⼀时刻颗粒的降落速度C加速运动段结束时颗粒的降落速度D净重⼒(重⼒减去浮⼒)与流体阻⼒平衡时颗粒的降落速度B3、对于恒压过滤_______。
A 滤液体积增⼤⼀倍则过滤时间增⼤为原来的2倍B 滤液体积增⼤⼀倍则过滤时间增⼤⾄原来的2倍C 滤液体积增⼤⼀倍则过滤时间增⼤⾄原来的4倍D 当介质阻⼒不计时,滤液体积增⼤⼀倍,则过滤时间增⼤⾄原来的4倍D4、恒压过滤时,如介质阻⼒不计,滤饼不可压缩,过滤压差增⼤⼀倍时同⼀过滤时刻所得滤液量___ 。
A增⼤⾄原来的2倍B增⼤⾄原来的4倍C增⼤⾄原来的2倍D增⼤⾄原来的1.5倍C5、以下过滤机是连续式过滤机_______。
A箱式叶滤机B真空叶滤机C回转真空过滤机D板框压滤机 C6、过滤推动⼒⼀般是指______。
A过滤介质两边的压差B过滤介质与滤饼构成的过滤层两边的压差C滤饼两⾯的压差D液体进出过滤机的压差B7、回转真空过滤机中是以下部件使过滤室在不同部位时,能⾃动地进⾏相应的不同操作:______。
化工原理第三章 沉降

2 d p ( p ) g
1.86 10 Pa s
5
18
(40 106 )2 9.81 ( 2600 1.165) 18 1.86 10 5
0.12m s
校核:
Re dut 0.3 2
(正确)
6.非球形颗粒的沉降速度
同样条件下 因此
1 3
1 则:Re k 18
令
Rep 1
则
k 2.62
层流区:
k 2.6 2 采用斯托克斯公式
过渡区:
湍流区:
2.62 k 60.1
60.1 k 2364
采用阿伦公式
采用牛顿公式
试差法: 假设 流型 选择 公式
验算
计算
ut
计算
Re t
例:求直径40μm球形颗粒在30℃大气中的自由沉降 速度。已知ρ颗粒为2600kg/m3,大气压为0.1MPa。 解: 查30℃、0.1MPa空气: 1.165kg m3 设为层流,则:
ζ是流体相对于颗粒运动时的雷诺数的函数,
(Re) (d pu / )
层流区 过渡区 湍流区
10 4 Re 2
24 Re
2 Re 500
500 Re 2 10
5
10 0.5 Re 0.44
第二节 重力沉降
目的:流体与固体颗粒分离
上部易形成涡流 ——倾斜式、 旁路 尘粒易带走 ——扩散式
螺旋面进口:结构复杂,设计制造不方便。
蜗壳形进口:结构简单,减小阻力。
轴向进口:常用于多管式旋风分离器。
常用型式
标准型、CLT/A型、CLP型、扩散式等。
新版化工原理习题答案第三章-非均相混合物分离及固体流态化-题解

第三章非均相混合物分离及固体流态化1.颗粒在流体中做自由沉降,试计算(1)密度为2 650 kg/m\直径为0.04 mm的球形石英顆粒在20 °C空气中自由沉降,沉降速度是多少?(2)密度为2 650 kg/m;,,球形度 0 = 0.6的非球形颗粒在20 £清水中的沉降速度为0. 1 m/ s,颗粒的等体积当量直径是多少?(3)密度为7 900 kg/m\克径为6.35 mm的钢球在密度为1 600 kg/n?的液体中沉降150 mm所需的时间为7.32 s,液体的黏度是多少?解:(1)假设为滞流沉降,则:18“查附录 20 °C 空气 p = 1.2O5kg/m\ //= 1.81 x IO'5Pa • s ,所以,“,=¥的吧:鵲眷吟9%沖276m方核算流型:=1.205X0.1276X004X10-=034<11.81X10'5所以,原假设正确,沉降速度为0. 1276 m/so(2)采用摩擦数群法4xl.81xl0-5 (2650-1.205)x9.81 $3x1.20 宁 xOf依0 = 0.6, ^Re"1 =431.9,查出:Re x =^A = o.3,所以:」O.3xl.81xlO-5in5 *d、= ------------- = 4.506 x 10 m = 45屮nc 1.205x0」(3)假设为滞流沉降,得:1/ = --------⑻,其中u{ = h/0 =0.15/7.32 m/s = 0.02(M9 m/s将已知数据代入上式得:J).00635'(7900J 600)5lp a s = 6.757Pa.s 18x0.02049核算流型n odu. 0.00635 x 0.02049 x 1600 n AOAO t -Re =匕_- = ----------------------- = 0.03081 < 1// 6.7572.用降尘室除去气体中的固体杂质,降尘室长5 m,宽5 m,高4.2 m,固体杂质为球形颗粒,密度为3000 kg/m\气体的处理量为3000 (标准)m7h o试求理论上能完全除去的最小颗粒直径。
化工原理下册 第三章塔设备-2

xn1 yn (利用操作线方程)
(2)塔顶冷凝器的类型 (i)当塔顶为全凝器时,
y1 xd
则自第一块塔板下降的液相组成 x1 与 y1 成相平衡, 故可应用相平衡 方程由 y1 计算出 x1,自第二块塔板上升蒸汽组成 y2 与 x1 满足操作线方 程,由操作线方程以小 x1 计算得出 y2.
停留时间,即
A H
f T
LS
—液体在降液管中的停留时间,s
Af
(2).降液管底隙高度 为保证良好的液封,又不致使液流阻力太大,一般取为
hO
m3 —降液管截面积,
hO hW 0.006 ~ 0.012 , hO
m
也不易小于 0.02~0.025m,以免引起堵塞,产生液泛。
孔,以供停工时排液。
18
19
3.溢流堰
根据溢流堰在塔盘上的位置
可分为进口堰和出口堰。
当塔盘采用平形受液盘时, 为保证降液管的液封,使液体 均匀流入下层塔盘,并减少液 流沿水平方向的冲击,应在液
体进口处设置进口堰。
20
21
4、溢流堰(出口堰)的设计
(1).堰长 lW : 依据溢流型式及液体负荷决定堰长,单溢流型塔板堰 长 lW 一般取 为 (0.6 ~ 0.8)D ;双溢 流型塔 板,两 侧堰长 取为 (0.5 ~ 0.7)D,其中 D 为塔径 (2).堰上液层高度 OW : 堰上液层高度应适宜,太小则堰上的液体均布差,太大则塔板压 强增大,物沫夹带增加。对平直堰,设计时 hOW 一般应大于 0.006m, 若低于此值应改用齿形堰。 hOW 也不宜超过 0.06 ~ 0.07m ,否则可改 用双溢流型塔板。 平直堰的 hOW 按下式计算 式中
化工原理离心分离设备第三章第二节讲

分离效率和气体通过旋风分离器的压强降。
气体处理量
旋风分离器的处理量由入口的气速决定,入口气体流量是旋风分离器最主要的操作参数。一般入口气速ui在15~25m/s。
旋风分离器的处理量
*
2、临界粒径 判断旋风分离器分离效率高低的重要依据是临界粒径。 临界粒径 :
理论上在旋风分离器中能完全分离下来的最小颗粒直径。 1) 临界粒径的计算式 a) 进入旋风分离器的气流严格按照螺旋形路线作等速运动,且切线速度恒定,等于进口气速ut=ui; b) 颗粒沉降过程中所穿过的气流厚度为进气口宽度B
*
校核ΔP 或者从维持指定的最大允许压降数值为前提,求得每台旋风分离器的最小直径。
ΔP=700Pa ui=20.2m/s
校核临界粒径 根据以上计算可知,当采用四个尺寸相同的标准型旋风分离器并联操作来处理本题中的含尘气体时,只要分离器在
*
1
倘若直径D<0.654m,则在规定的气量下,压降将超出允许的范围。
重力场
离心力场
力场强度
重力加速度g
ut2/R
方向
指向地心
沿旋转半径从中心指向外周
Fg=mg
作用力
一、离心沉降速度
离心沉降速度ur 惯性离心力= 向心力= 阻力= 三力达到平衡,则:
*
平衡时颗粒在径向上相对于流体的运动速度ur便是此位置上的离心沉降速度。
离心沉降速度与重力沉降速度的比较 表达式:重力沉降速度公式中的重力加速度改为离心加速度 数值:重力沉降速度基本上为定值 离心沉降速度为绝对速度在径向上的分量,随颗粒在 离心力场中的位置而变。
步骤:
根据ui和dc计算旋风分离器的直径D
根据具体情况选择合适的型式,选型时应在高效率与地阻力者之间作权衡,一般长、径比大且出入口截面小的设备效率高且阻力大,反之,阻力小效率低。
考研必备《化工原理》第三章:非均相混合物

(五) 助滤剂
当悬浮液中的颗粒很细时,过滤时 很容易堵死过滤介质的孔隙,或所形成 的滤饼在过滤的压力差作用下,孔隙很 小,阻力很大,使过滤困难。一般加入 助滤剂解决。 常用的助滤剂:硅藻土、珍珠岩、 石棉、炭粉、纸浆粉
34
二、过滤设备
( 一 ) 板框压滤机
35
板框压滤机是间歇式压滤机中应 用最广泛的一种。 此机是由多块滤板和滤框交替排 列而组成。板和框都用一对支耳 架在一对横梁上,可用压紧装置 压紧或拉开。 为了组装时便于区分,在板和框 的边上作不同的标记,非洗涤板 以一钮记,框以两钮记,洗涤板 以三钮记。
15
3. 过滤时当颗粒尺寸比 过滤介质孔径小时, 过滤开始会有部分颗 粒进入过滤介质孔道 里,迅速发生“架桥” 现象 4. 典型设备:板框压滤机 叶滤机 真空转筒过滤机 密闭加耙过滤机
16
五、筛分
1.筛分分析:用一组泰勒制标准筛 分析出混合颗粒的粒径分布。 每英寸长度上的孔数为筛子的目数 相临筛号的筛孔的直径比 2
rm 称为过滤介质的比阻,是单位厚度过滤介 质的阻力,其数值等于粘度为1Pa· s的滤液以 1m/s的平均速度穿过厚度为1m的过滤介质所 需的压力降。 52
p 为滤液通过滤饼层的压力降 为滤液的粘度
Lm 过滤介质的厚度
为单位体积滤液可得滤饼体积
de 为毛细孔道的平均直径 Rm 为过滤介质阻力,是过滤介质比
可测得混合颗粒大小的粒度分布 进行筛分时,将若干个一系列的筛按筛孔大 小的次序从上到下叠起来,筛孔尺寸最大的 放在最上面,筛孔最小的筛放在最下面,它 的底下放一无孔的底盘。 把要进行筛分的混合颗粒放在最上面的一个筛 中,将整叠筛均衡地摇动,较小的颗粒通过各 17 个筛的筛孔依次往下落。
化工原理第三章沉降和过滤课后习题和答案解析

第三章 沉降与过滤沉 降【3-1】 密度为1030kg/m 3、直径为400m μ的球形颗粒在150℃的热空气中降落,求其沉降速度。
解 150℃时,空气密度./30835kg m ρ=,黏度.524110Pa s μ-=⨯⋅颗粒密度/31030p kg m ρ=,直径4410p d m -=⨯ 假设为过渡区,沉降速度为()(.)()./..1122223345449811030410179225225241100835p t p g u d m s ρρμρ--⎡⎤-⎡⎤⨯==⨯⨯=⎢⎥⎢⎥⨯⨯⨯⎢⎥⎣⎦⎣⎦验算 .Re ..454101790.835=24824110p t d u ρμ--⨯⨯⨯==⨯ 为过渡区【3-2】密度为2500kg/m 3的玻璃球在20℃的水中和空气中以相同的速度沉降。
试求在这两种介质中沉降的颗粒直径的比值,假设沉降处于斯托克斯定律区。
解 在斯托克斯区,沉降速度计算式为()/218t p p u d g ρρμ=- 由此式得(下标w 表示水,a 表示空气)()()2218= p w pw p a pat w ad d u g ρρρρμμ--=pw pad d =查得20℃时水与空气的密度及黏度分别为./,.339982 100410w w kg m Pa s ρμ-==⨯⋅ ./,.35120518110a a kg m Pa s ρμ-==⨯⋅已知玻璃球的密度为/32500p kg m ρ=,代入上式得.961pw pad d ==【3-3】降尘室的长度为10m ,宽为5m ,其中用隔板分为20层,间距为100mm ,气体中悬浮的最小颗粒直径为10m μ,气体密度为./311kg m ,黏度为.621810Pa s -⨯⋅,颗粒密度为4000kg/m 3。
试求:(1)最小颗粒的沉降速度;(2)若需要最小颗粒沉降,气体的最大流速不能超过多少m/s? (3)此降尘室每小时能处理多少m 3的气体?解 已知,/./.6336101040001121810pc p d m kg m kg m Pa s ρρμ--=⨯===⨯⋅,, (1) 沉降速度计算 假设为层流区().()(.)./.26269811010400011001181821810pc p t gd u m s ρρμ---⨯⨯-===⨯⨯验算..Re .66101000111000505221810pc t d u ρμ--⨯⨯⨯===<⨯. 为层流(2) 气体的最大流速max u 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3/20
§1 概 述
当流体的密度为 ,粘度为 ,颗粒直径为dp,
在运动方向上颗粒的投影面积为A,相对速度为u ,
曳力 Fd
则颗粒所受的曳力为:
Fd
A
u 2
2
式中为无因次阻力系数, f Re f d pu
相对速度 u
的计算
层流区104 Re 2 : 24 Re
过渡区2 Re 500: 10 Re
浙江大学本科生课程化工原理
净化气体 D
尘粒 16/20
§2 沉 降
❖ 临界粒径:
含尘
能够从分离器内100%分离出来的最小
气体
颗粒的直径,用dc表示。其满足:
A
停留时间 = 沉降时间 r
几点假设:
a.假设气体速度恒定,且等于进口气速ui; b.假设颗粒沉降过程中所穿过的气流的最大 厚度等于进气口宽度B;
注意:降尘室内气体流速不应过高,以免将已沉降下来的颗粒重新扬起。根 据经验,多数灰尘的分离,可取 u<3m/s,较易扬起灰尘的,L可取 u<1.5m/s。
u
B
气体
ut
H
多层降尘室
颗粒在降尘室中的运动
浙江大学本科生课程化工原理
13/20
降尘室
§2 沉 降
结构简单, 但设备庞大、效率低, 只适用于分离粗颗粒------直径 75m 以上的颗粒, 或作为预分离设备。
第三章 沉降与过滤
§2 沉 降 一、自由沉降 二、影响沉降的因素 三、沉降设备
浙江大学本科生课程化工原理
1/20
§1 概 述
§1 概 述 一、非均相物系的分离
1.非均相的含义 指体系包含互不相溶的两相或多相,通常可分为:
气液相:如雾、泡沫液 气固相:如烟、含尘气体 液液相:如油水混合物、乳浊液 液固相:如泥浆、悬浮液 固固相:如矿石、泥砂
湍流区 500 Re 2105 : 0.44
颗粒在流体中流动时所受阻力
浙江大学本科生课程化工原理
4/20
§2 沉 降
§2 沉 降 一、自由沉降
加速段极短,通常可以忽略
浮力 Fb mg p
等速段的颗粒运动速度称为沉降速度, 用ut表示。
合外力 Fc Fb FD 0
曳力 FD ut2 A
4.常用的分离手段
(1)筛分:分离固固混合物。 (2)沉降:分离气液、气固混合物。 (3)过滤:分离液固混合物。 (4)离心分离:分离液液、液固混合物。
二、颗粒与流体相对运动时所受的阻力
当处于流体中的颗粒与流体有相对运动时,由于流体具有粘性,会对 颗粒有作用力,通常称为曳力或阻力
浙江大学本科生课程化工原理
2
mg 1
p
ut2
2
4
d
2 p
0
质量力 Fc mg或ma c
颗粒在流体中沉降时受力
浙江大学本科生课程化工原理
5/20
§2 沉 降
mg 1
p
ut2
4
d
2 p
0
6
d
3 p
p
g
1
p
8
d p2ut2
0
ut
4d p p g 3
Rep=dput/ 2 层流区
24
Re
ut
浙江大学本科生课程化工原理
19/20
§2 沉 降
旋液分离器:
特点: 与旋风分离器相比, 直径小、锥形部分长。 Why?
离心机:
B
含尘 气体
A
净化气体 D
袋式过滤器:
浙江大学本科生课程化工原理
尘粒
标准型旋风分离器
20/20
ur2
2
A
A
r1 O
r2
r
B ur C
u u
对照重力场 ut
4d p p g 3
颗粒在旋转流场中的运动
浙江大学本科生课程化工原理
7/20
§2 沉 降
Rep=dp ut / 2 层流区
24
Re
ur
d
2 p
p 18
ac
d
2 p
p 18
2r
d
2 p
p 18r
u2
ac
2r
浙江大学本科生课程化工原理
14/20
§2 沉 降
2. 增稠器(沉降槽)
加料
清液溢流
水平
清液
挡板
耙
稠浆 连续式沉降槽
浙江大学本科生课程化工原理
15/20
§2 沉 降
含尘
3.离心沉降设备
气体
离心分离因数 ar
A
g
离心沉降速度 ur
d
2 p
p 18r
u2
旋风分离器:
B
❖ 构造 ❖ 操作原理
标准型旋风分离器
净化气体 D
尘粒 18/20
§2 沉 降
评价旋风分离器性能的两个主要指标:
分离性能:用临界粒径和分离效率来表示
总效率:被分离出来的颗粒占全部颗粒的质量分率
粒级效率:每一种颗粒 被分离出来的百分率。
dp
d
的颗粒,粒级效率均为
c
100
%;
dp
d
的颗粒,粒级效率均
c
100 %
压降:小好,一般在 5002000Pa 左右
p 18
g
思考 3:要想使某一粒度的颗粒在降尘室中被 100%除去,必须满足
什么条件?
t
H ut
思考 4:能够被 100%除去的最小颗粒,必须满足什么条件?
L
t
即L H u ut
气体
u
B
ut
H
d pmin
18Hu g p L
18VS g p A底
颗粒在降尘室中的运动
思考 5:粒径比 dpmin 小的颗粒,被除去的百分数为多少?
气体
进口
思考1: 为什么气体进入降尘室后,流
通截面积要扩大?
出口
思考2:为什么降尘室要做成扁平的?
停留时间 L u
集灰斗 降尘室
L B
沉降时间 t 高度
气体
u
ut
若 t
则表明,该颗粒能在降尘室 中除去。
ut
H
颗粒在降尘室中的运动
浙江大学本科生课程化工原理
11/20
§2 沉 降
ut
d
2 p
-------离心分离因数
gg
ur ac
ut g
A
r1 O
r2
r
B ur C
u u
颗粒在旋转流场中的运动
浙江大学本科生课程化工原理
8/20
§2 沉 降 二、影响沉降的因素
❖ 干扰沉降
由于干扰作用,实际沉降速度 小于自由沉降速度。
❖ 非球形颗粒的沉降
球形度越小,沉降速度越小; 颗粒的位向对沉降速度也有影响。
d
2 p
p 18
g
浙江大学本科生课程化工原理
6/20
§2 沉 降
2.离心沉降速度
❖ 离心加速度ac= 2r =u2/r不是常量
❖ 沉降过程没有匀速段,但在小颗粒 沉降时,加速度很小,可近似作为匀速 沉降处理
ur
4d p p ac 3
离心力Fc ma c
浮力Fb mac p
曳力FD
2.分散相与连续相
分散相:处于分散状态的物质,也称分散物质。 连续相:处于连续状态的物质,也称分散介质。
浙江大学本科生课程化工原理
2/20
§1 概 述
3.非均相分离的目的
(1)回收分散物质:如海盐结晶后从母液中分离结晶盐。 (2)净化分散介质:如江水处理制备自来水。 (3)环保:如化工厂污水处理。
❖ 壁面效应
由于壁面效应,实际沉降速度小于自由沉降速度。
浙江大学本科生课程化工原理
9/20
三.沉降设备
§2 沉 降
降 尘 室气 固 体 系
重
力
沉
降
设
备
沉
降 槽液
固体系
离
心
沉
降
设
备
旋 旋
风 液
分 分
离 离
器 气 器液
固 固
体系 体系
浙江大学本科生课程化工原理
10/20
§2 沉 降
1. 降尘室
气体
浙江大学本科生课程化工原理
12/20
LH
§2 沉 降
u ut
思考能够2:满为足什10么0%降除尘去室 某粒 要度做颗成粒扁时平的的气?体处理量------u--t生产d 能 2p 力 1p8 g
生产能力Vs BHu BLut A底ut
可见:降尘室生产能力与底面积、沉降速度有关,而与降尘室高度无关
c.假设颗粒沉降服从斯托克斯公式。 B
停留时间 2rm N
ui
浙江大学本科生课程化工原理
净化气体 D
尘粒 17/20
§2 沉 降
沉降时间
r
B ur
含尘 气体
而
ur
d
2 c
(
p
)u2
18rm
d
2 c
p
ui2
18rm
A
2rm N
ui
18rm B
d
2 c
p
ui2
9B
dc Nui p
B
浙江大学本科生课程化工原理