2019-2020学年河北省唐山市迁安市八年级(上)期末数学试卷(解析版)
河北省2019-2020学年八年级第一学期期末考试数学试卷

河北省2019-2020学年八年级第一学期期末考试数学试卷 学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形都是由两个全等三角形组成的,其中是轴对称图形的是( )A. B. C. D.2.如图1,边长为2的正方形ABCD 与正方形A B C D ''''关于x 轴对称,若点A 的坐标为(1,1),则点D '的坐标为( )A.(-1,-3)B.(1,-3)C.(-1,3)D.(1,3)3.一个多边形的内角和等于它的外角和,则该多边形是( )A.三角形B.四边形C.五边形D.六边形4.下列计算结果不正确的是( )A.()3233()ab ab b ÷-=-B.2(2)2x x y x xy -+=-+C.40.0002085 2.08510-=⨯D.219300111444n ⎛⎫⎛⎫÷= ⎪ ⎪⎝⎭⎝⎭5.若等腰三角形的周长为16,一边长为4,则它的另两边长为( )A.6,6B.6,4C.4,8D.6,6或4,8 6.若关于x 的方程223ax a x =-的解为1x =,则a 的值为( ) A.12 B.12- C.2 D.-27.下列各式因式分解不正确的是( )A.2(1)a b ab ab a -=-B.22244(2)x xy y x y -+=-C.222()x a x a -=-D.23()2()()(322)x y y x x y x y ---=--+8.如图2,已知射线OM ,以点O 为圆心,任意长为半径画弧,交射线OM 于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,那么AOB ∠的度数是( )A.30°B.45°C.60°D.90°9.下列各式计算结果相同的是( )①2(21)a --;②(21)(21)a a ---+;③(21)(21)a a +-;④24(21)a -A.①②B.③④C.①④D.②③10.积极推行节能减排,倡导绿色出行,“共享单车”、“共享助力车”先后上市,为人们出行提供了方便王老师骑“共享助力车”去距离家8千米的单位上班时,比骑“共享单车”少用10分钟,已知他骑共享助力车”的速度是骑“共享单车”的15倍.若设王老师骑“共享助力车”上班需x 分钟,根据题意可列方程为( ) A.881.510x x ⨯=- B.88 1.510x x =⨯- C.88 1.510x x =⨯+ D.881.510x x⨯=+ 11.如图3,已知50ACB AC BC ∠=︒=,,则1∠的度数为( )A.105°B.115°C.120°D.130°12.老师在黑板上写了一个分式的正确计算结果,随后用手遮住了原分式的一部分,如图4所示则被遮住的部分是( )A.11a a -+B.11a a -+C.311a a ++D.311a a -++ 13.如图5,若x 为正整数,则表示22(21)144121x x x x +-++++的值的点落在( )A.段①B.段②C.段③D.段④414.如图6,在ABC 中,9015B C DE ∠=︒∠=︒,,垂直平分AC ,若4AB =,则CD 的长为( )A.3B.4C.6D.815.点A 在∠MON 的一边上,,P Q 分别是,OM ON 上的动点,当点,P Q 处于如图7所示的位置时,AP PQ +的值最小,此时点,A A 关于OM 对称,若PB PQ =,则下列结论中不正确的是( )A.AP A P '=B.A Q ON '⊥C.AOB AA Q '≅D.40A '∠=︒16.如图8,ABC 与ADE 都是等腰直角三角形,若,BC BD BE BD ==平分CBE ∠,则下列结论中正确的有( )①BA 垂直平分DE ;②ABD ACE ≌;③BCE 是等边三角形;④150CDE ∠=︒A.1个B.2个C.3个D.4个二、解答题17.按要求完成下列各小题.(1)因式分解:2123b -;(2)先化简,再求值:22951442m m m m -⎛⎫÷- ⎪+++⎝⎭,其中2m =.18.如图11,点,,,B C E F 在同一条直线上,,,B E ACDF AB DE ∠=∠=.(1)求证:AC DF =; (2)若,AM DN 分别是ABC 和DEF 的角平分线,求证:AM DN =.19.数学课上老师出了一题:用简便方法计算972的值,喜欢数学的王涵做出了这道题他的解题过程如图12所示,老师表扬王涵积极发言的同时,也指出了解题中的错误.(1)你认为王涵的解题过程中,从第___________步开始出错;(2)请你写出正确的解题过程;(3)用简便方法计算:222019201940402020-⨯+.20.如图13-1,已知BD 是ABC 的角平分线,AE BD ⊥,交BD 的延长线于点E.(1)若722:3ABC C ADB ∠=︒∠∠=,:.①求C ∠和DAE ∠的度数②求证:BD AD =;(2)如图13-2,AO 平分BAC ∠,请直接写出OAE ∠与C ∠之间的数量关系.21.某城镇在对一项工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲队工程款2万元,付乙队工程款1.5万元,现有以下三种施工方案.A :由甲队单独完成这项工程,恰好如期完工;B :由乙队单独完成这项工程,比规定工期多6天;C :由甲、乙两队,剩下的由乙队单独做,恰好如期完工小聪同学设规定工期为x 天,依题意列出方程:1155166x x x x -⎛⎫⨯++= ⎪++⎝⎭(1)请将C 中被墨水污染的部分补充出来;(2)求甲、乙两队单独完成这项工程各需多少天?(3)在不耽误工期的情况下,你认为哪种施工方案较节省工程款,说明你的理由.22.如图14,在四边形ABCD 中,90ABC C ∠=∠=︒,点E 在边BC 上,且BD 垂直平分AE ,交AE 于点O.(1)求证:ABO EBO ≌;(2)求证:CD AB CE =+;(3)若28,7ABED S CD ==四边形,求线段CE 的长度.23.在ABC 中,120AB AC BAC AD BC =∠=︒⊥,,,点,E F 分别在,AB AC 上(1)如图15-1,若90AED AFD ∠=∠=︒,则EDF ∠=____度,DEF 是_____三角形;(2)如图15-2,若180AED AFD ∠+∠=︒,试判断DEF 的形状,并证明你的结论;(3)如图15-3,已知120MON OP ∠=︒,平分MON ∠,且1OP =,若点G,H 分别在射线,OM ON 上,且PHG 为等边三角形,则满足上述条件的PHG 有__________个.三、填空题24.如果分式22x x +-有意义,那么x 的取值范围是__________. 25.如图9,在等边三角形ABC 中,6,AC AEB ADC =∠=∠.(1)若2AD =,则CE 的长度为_________.(2)CPE ∠的度数为___________.26.如图10,点,,D E F 在ABC 的边BC 上,且22ADC AEB B C ∠=∠=∠=∠.(1)图中有_________个等腰三角形;(2)若AF 是ABC 的高线,且6DF BC =,则BAE ∠的度数为__________.参考答案1.答案:C解析:2.答案:B解析:3.答案:B解析:4.答案:B解析:5.答案:A解析:6.答案:B解析:7.答案:C解析:8.答案:C解析:9.答案:D解析:10.答案:D解析:11.答案:B解析:12.答案:A解析:13.答案:C解析:14.答案:D解析:15.答案:D解析:16.答案:D解析:17.答案:(1)()()32121b b +-(2)32m m ++;54解析:18.答案:(1)AC DFACB DFE ∴∠=∠在ABC 和DEF 中,B E ACB DFE AB DE ∠=∠∠=∠=⎧⎪⎨⎪⎩,,,ABC DEF ∴≌AC DF ∴=(2)由(1)可知ABC DEF ≌CAB FDE ∴∠=∠又AM DN ,分别是ABC 和DEF 的角平分线,1122.CAM CAB FDE FDN ∴∠=∠=∠=∠又ACB DFE AC DF ∠=∠=,AMC DNF ∴≌AM DN ∴=解析:19.答案:(1)二;(2)22229710031002100339409=-=-⨯⨯+=()(3)1解析:20.答案:(1)①C ∠的度数为72°,DAE ∠的度数为18°; ②7236ABC C BAD ∠=∠=︒∴∠=︒,由①可知36ABD ∠=︒BAD ABD BD AD ∴∠=∠∴=,;(2)2OAE C ∠=∠解析:21.答案:(1)合作5天;(2)甲、乙两队单独完成这项工程分别需30天和36天;(3)方案23060A ⨯=:(万元);方案25 1.53055C ⨯+⨯=:(万元),施工方案C 较节省工程款. 解析:22.答案:(1)∵BD 垂直平分AE ,AO EO ∴=90BOA BOE ∠=∠=︒ AB BE =Rt Rt ABO EBO ∴≌(2)由(1)可得AB BE ABO EBO =∠=∠, 90ABC ∠=︒45EBO ∴∠=︒又90C ∠=︒45BDC EBO ∴∠=∠=︒ BC CD ∴=CD BE CE AB CE ∴=+=+(3)线段CE 的长度为3 解析:23.答案:(1)60;等边;(2)DEF 是等边三角形; 过点D 分别作DM AB ⊥于点M DN AC ⊥,于点N . ∵在四边形AEDF 中, 120BAC ∠=︒180AED AFD ∠+∠=︒ 60EDF ∴∠=︒AB AC AD BC =⊥, ∴AD 平分BAC ∠DM AB DN AC ⊥⊥, DM DN ∴=180AED AFD ∠+∠=︒ 180AED MED ∠+∠=︒ MED AFD ∴∠=∠ 又90DME DNF ∠=∠=︒ DME DNF ∴≌ DE DF ∴=60EDF ∠=︒∴DEF 是等边三角形;(3)无数.解析:24.答案:2x ≠. 解析:25.答案:(1)4;(2)60°解析:26.答案:(1)4;(2)90°解析:。
2019-2020学年河北省唐山市八年级(上)期末数学模拟试卷

2019-2020学年河北省唐山市八年级(上)期末数学模拟试卷姓名___________班级__________学号__________分数___________一、选择题(每题2分) 1.若分式32-x 有意义,则x 应满足的条件是( ) A .x ≠0;B .x ≠3;C .x ≥3;D .x ≤3; 2.已知 ma =3,na =4,则nm a+的值为( )A .12;B .7;C .43;D .34;3.已知点M (a ,1)和点N (-2,b )关于y 轴对称,则点N 在( )A .第一象限;B .第二象限;C .第三象限;D .第四象限;4.某种流感病毒的直径约为0.000000308米,该直径用科学记数法表示为( )A .0.308610-⨯米;B .3.08810-⨯米;C .3.08710-⨯米;D .3.1610-⨯米; 5.下列多项式中,能分解因式的是( ) A .a 2+b 2;B .-a 2-b 2;C .a 2-4a +4;D .a 2+ab +b 2;6.多边形每个外角为45°,则多边形的边数是( ) A .8;B .7;C .6;D .5;7. 下列四个分式中,是最简分式的是( )A .ayax2;B .b a b a ++22;C .b a b a +22-;D .1122+++a a a ;8.如图,将一块直角三角板DEF 放置在锐角△ABC 上,使得该三角板的两条直角边DE 、DF 恰好分别经过点B 、C ,若∠A =50°,则∠ABD +∠ACD 的值为( )A .60°;B .50°;C .40°;D .30°;9.下列各式从左到右的变形中,属于因式分解的是( )A .m (a +b )=ma +mb ;B .a 2+4a -21=a (a +4)-21;C .x 2-1=(x +1)(x -1);D .x 2+16-y 2=(x +y )(x -y )+16;10.一个三角形三边长分别为1、3、x ,且x 为整数,则此三角形的周长是( ) A .9;B .8;C .7;D .6;11.如图,在△ABC 中,∠B =30°,BC 的垂直平分线交AB 于E ,垂足为D .如果CE =12,则ED 的长为( )A .3;B .4;C .5;D .6;BCAED12.若关于x 的方程0414=----xxx m 无解,则m 的值是( )A .-2;B .2;C .-3;D .3;13.某工厂现在平均每天比原计划多生产 50 台机器,现在生产 600 台机器所需时间与原计划生产 450 台机器所时间相同,设原计划平均每天生产 x 机器,根据题意,下面所列方程正确的是( )A .45060050x x =+;B .xx 45050600=+; C .50450600+=x x ;D .50-450600x x =; 14.如图,在等腰△ABC 中,∠ABC =90°,D 为AC 边上中点,过D 点作DE ⊥DF ,交AB 于E ,交BC 于F ,若S 四边形DEBF =9,则AB 的长为( ) A .3;B .6;C .9;D .18;ABC E DF二、填空题(本大题共4个小题;每小题3分,共12分.把正确答案填在横线上) 15.分式xx 1-的值为 0,则 x 的值是____________. 16.38x x x n=÷,则n =____________. 17.△ABC 中,点D 、E 分别是BC ,AD 的中点,且△ABC 的面积为8,则阴影部分的面积是_______.18.如图,在等边△ABC 中.AC =10,点O 在AC 上,且AO =3,点P 是AB 上一动点,连接OP ,以O 为圆心,OP 长为半径画弧交BC 于一个点D ,连接PD ,如果PO =PD ,那么AP 的长是 ________ .APBDO C三、解答题(本题共7道题,满分60分) 19.计算:(满分8分) (1)235)2(a a a -⋅;(2)2)1()1)(1(++-+a a a ;20.解方程(满分10分) (1)11212=-+--x x x ;(2)313392-=++-x x x x .21.(满分7分)化简求值:2144244322---+÷+-x x x x x ,其中x =3.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC关于x轴成轴对称的图形△A1B1C1,并写出A1、B1、C1的坐标;(2)在y轴上找一点P,使PA+PB的值最小,请画出点P的位置.某市文化宫首次用2000元在商店购进一批学生书包,活动进行后发现书包数量不够,又购进第二批同样的书包,所购数量是第一批数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求文化宫第一批购进书包的单价是多少?(2)商店两批书包每个的进价分别是68元和70元,这两批书包全部售给文化宫后,商店共盈利多少元?2如图,在△ABC 中,AB =AC ,点 D 、E 、F 分别在 AB 、BC 、AC 边上,且BE =CF ,BD =CE . (1)求证:△DEF 是等腰三角形; (2)当∠A =40°时,求∠DEF 的度数.BCADEF如图,已知点A 、C 分别在∠GBE 的边BG 、BE 上,且AB =AC ,AD ∥BE ,∠GBE 的平分线与AD 交于点D ,连接C D .(1)求证:①AB =AD ;②CD 平分∠ACE . (2)猜想∠BDC 与∠BAC 之间有何数量关系?并对你的猜想加以证明.A DB C G F E2019-2020学年河北省唐山市八年级(上)期末数学模拟试卷答案一、选择题 1.B .;2.A .;3.B .;4.C .;5.C .; 6.A .;7.B .;8.C .;9.C .;10.C .; 11.D .;12.D .;13.B .;14.B .;解析:连BD ,证明△BDE ≌△CDF ,转化后,四边形面积为等腰△ABC 面积的一半,而△ABC 的面积等于212AB ,即21292AB =⨯,AB =6; 二、填空题 15.1; 16.5; 17.2; 18.7; 三、计算题19.解:(1)原式=a 6-4a 6=-3a 6; 20.原式=1-a 2+a 2+2a +1=2a +2;21.方程两边同乘以(x -1),得2-(x +2)=x -1,解得:x =12,………………………………3分经检验x =12是分式方程的解;……………………………4分 ∴原方程的解为x =12; 22.去分母得:x +3x -9=x +3, 移项合并得:3x =12, 解得:x =4,经检验x =4是分式方程的解. ∴原方程的解为x =4. 23.解:原式=()()()()222312222x x x x x +-⨯-+--=()31222x x ---=124x -;当x =3时,原式=12. 四、解答题24.解:(1)如图所示,△A 1B 1C 1即为所求,A 1(1,-1)、B 1(4,-2)、C 1(3,-4);(2)如图所示点P 即为所求,点P 即为所求.(注意:AB ′为自已添加的辅助,用虚线!)25.解:设第一批购进书包的单价为x 元. 依题意,得2000630034x x ⨯=+, 解得x =80.检验:当x =80时,x (x +4)≠0,∴x =80是原分式方程的解.答:第一批购进书包的单价为80元. (2)200063008068)(8470)8084⨯-+⨯-(=300+1050=1350(元)答:商店共盈利1350元.26.证明:(1)∵AB =AC ,∴∠ABC =∠ACB , 在△DBE 和△CEF 中,BE CFABC ACB BD CE =⎧⎪∠=∠⎨⎪=⎩∴△DBE ≌△CEF , ∴DE =EF ,∴△DEF 是等腰三角形;(2)∵△DBE ≌△CEF , ∴∠1=∠3,∠2=∠4,BC AD EF 1 2 3 4∵∠A +∠B +∠C =180°, ∴∠B =12(180°-40°)=70° ∴∠1+∠2=110°; ∴∠3+∠2=110° ∴∠DEF =70°;27.解:(1)①∵AD ∥BE ,∴∠ADB =∠DBC , ∵BD 平分∠ABC ,∴∠ABD =∠DBC , ∴∠ABD =∠ADB ,………………………………………………2分∴AB =AD ;………………………………3分 ②∵AD ∥BE , ∴∠ADC =∠DCE , 由①知AB =AD ,又∵AB =AC ,∴AC =AD , ∴∠ACD =∠ADC , ∴∠ACD =∠DCE , ∴CD 平分∠ACE ; (2)猜想∠BDC =12∠BAC ,理由如下: ∵BD 、CD 分别平分∠ABE ,∠ACE ,∴∠DBC =12∠ABC ,∠DCE =12∠ACE , ∵∠BDC +∠DBC =∠DCE , ∴∠BDC +12∠ABC =∠ACE ,∵∠BAC +∠ABC =∠ACE , ∴∠BDC +12∠ABC =12∠ABC +12∠BAC , ∴∠BDC =12∠BAC ;。
2019-2020学年八年级上期末考试数学试卷及答案解析

2019-2020学年八年级上期末考试数学试卷一.选择题(共6小题,满分12分,每小题2分)1.(2分)化简(﹣a2)•a5所得的结果是()A.a7B.﹣a7C.a10D.﹣a102.(2分)下列航空公司的标志中,是轴对称图形的是()A.B.C.D.3.(2分)无论a取何值时,下列分式一定有意义的是()A.B.C.D.4.(2分)下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形5.(2分)下列计算正确的是()A.5a4•2a=7a5B.(﹣2a2b)2=4a2b2C.2x(x﹣3)=2x2﹣6x D.(a﹣2)(a+3)=a2﹣66.(2分)在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF二.填空题(共8小题,满分24分,每小题3分)7.(3分)用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC=度.8.(3分)因式分解:4a3b3﹣ab=.9.(3分)请用代数式表示:一个长方形的长为a,宽是长的,则这个长方形的周长是.10.(3分)如图,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C=度.11.(3分)如果x2﹣mx+81是一个完全平方式,那么m的值为.12.(3分)如果分式的值为9,把式中的x,y同时扩大为原来的3倍,则分式的值是.13.(3分)如图,△ABC中,AB=AC,∠A=36°,AB的中垂线DE交AC于D,交AB 于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D是AC中点.其中正确的命题序号是.14.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC 于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为。
河北省迁安市2019-2020学年八年级上学期期末数学试题(word无答案)

河北省迁安市2019-2020学年八年级上学期期末数学试题(word无答案)一、单选题(★) 1 . 下列各数,准确数是( )A.小亮同学的身高是B.小明同学买了6支铅笔C.教室的面积是D.小兰在菜市场买了3斤西红柿(★) 2 . 下列四位同学的说法正确的是( )A.小明B.小红C.小英D.小聪(★) 3 . 小明学习了全等三角形后总结了以下结论:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形是全等图形;④全等三角形的周长相等其中正确的结论个数是 ( )A.1B.2C.3D.4(★) 4 . 下列计算正确的是( )A.B.C.D.(★★) 5 . 如图, AB// DE, AC// DF, AC= DF,下列条件中,不能判定△ ABC≌△ DEF的是A.AB=DE B.∠B=∠E C.EF=BC D.EF//BC(★) 6 . 式子有意义,则实数 a的取值范围是()A.a≥-1B.a≠2C.a≥-1且a≠2D.a>2(★) 7 . 等腰三角形的一外角是130°,则其底角是 ( )A.65°B.50°C.80°D.50°或65°(★) 8 . 如果把分式中和都扩大10倍,那么分式的值 ( )A.扩大2倍B.扩大10倍C.不变D.缩小10倍(★) 9 . 如图,在小正三角形组成的网格中,已有7个小正三角形涂黑,还需要涂黑个小正三角形,使它们和原来涂黑的小正三角形组成新的图案既是轴对称图形又是中心对称图形,则的最小值为( )A.3B.4C.5D.6(★) 10 . 如图,数轴上的点分别表示数-1,1,2,3,则表示的点应在()A.线段上B.线段上C.线段上D.线段上(★) 11 . 下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容:如图,已知,求的度数.解:在和中,,∴ ,∴ (全等三角形的相等)∵ ,∴ ,∴则回答正确的是 ( )A.代表对应边B.*代表110°C.代表D.代表(★) 12 . 下面的计算过程中,从哪一步开始出现错误( ).A.①B.②C.③D.④(★) 13 . 计算()A.7B.-5C.5D.-7(★) 14 . 已知是三角形的三边长,如果满足,则三角形的形状是( )A.等腰三角形B.等边三角形C.直角三角形D.钝角三角形(★★) 15 . 关于 x的方程无解,则 m的值为()A.﹣5B.﹣8C.﹣2D.5(★★) 16 . 如图,在中,,是的两条中线,是上一个动点,则下列线段的长度等于最小值的是( )A.2B.C.1D.二、填空题(★) 17 . 的相反数是______.(★★) 18 . 如图,在中,按以下步骤作图:第一步:分别以点为圆心,以大于的长为半径画弧,两弧相交于两点;第二步:作直线交于点,连接.(1)是______三角形;(填“等边”、“直角”、“等腰”)(2)若,则的度数为___________.三、解答题(★★) 19 . 观察下列等式:第1个等式:a 1= -1,第2个等式:a 2= ,第3个等式:a 3= =2- ,第4个等式:a 4= -2,…按上述规律,回答以下问题:(1)请写出第n个等式:a n=__________.(2)a 1+a 2+a 3+…+a n=_________.(★) 20 . 计算:(1)(2)(★★) 21 . 如图,已知点 B、 E、 C、 F在同一条直线上, AB= DE,∠ A=∠ D,AC∥ DF.求证:B E= CF.(★★) 22 . 老师在黑板上写出了一个分式的计算题,随后用手捂住了一部分,如下图所示:(1)求所捂部分表示的代数式;(2)所捂部分代数式的值能等于-1吗?为什么?(★★) 23 . 如图,平分,且,垂足分别是,连结与交于点.(1)求证:是线段的垂直平分线;(2)若,求的周长和四边形的面积.(★★) 24 . 列方程解应用题:亮亮服装店销售一种服装,若按原价销售,则每月销售额为10000元;若按八五折销售,则每月多卖出20件,且月销售额还增加1900元.(1)求每件服装的原价是多少元?(2)若这种服装的进价每件150元,求按八五折销售的总利润是多少元?(★★) 25 . 如图1,张老师在黑板上画出了一个,其中,让同学们进行探究.(1)探究一:如图2,小明以为边在内部作等边,连接,请直接写出的度数_____________;(2)探究二:如图3,小彬在(1)的条件下,又以为边作等边,连接.判断与的数量关系;并说明理由;(3)探究三:如图3,小聪在(2)的条件下,连接,若,求的长.。
河北省唐山市2020版八年级上学期数学期末考试试卷A卷

河北省唐山市2020版八年级上学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2019八上·余姚期中) 如图所示,下列图形中不是轴对称图形的是()A .B .C .D .2. (2分) (2019八上·长兴期末) 在平面直角坐标系中,点M(-3,-2)到x轴的距离是()A . 3B . 2C . -3D . -23. (2分) (2016七上·萧山期中) 下列各数中,属于无理数的是()A . 0B . -1C .D .4. (2分)下列各组数中,是勾股数的为()A . 1.5,2,2.5B . 7,24,25C . 0.3,0.4,0.5D . n,, n+15. (2分) (2017八下·西城期末) 一次函数的图象不经过的象限是().A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分)下列说法:①一条直角边和斜边上的高对应相等的两个直角三角形全等②有两条边相等的两个直角三角形全等③若两个直角三角形面积相等,则它们全等④两边和其中一边的对角对应相等的两个三角形全等。
其中错误的个数是:()A . 4B . 3C . 2D . 17. (2分)正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于()A . 60°B . 90°C . 120°D . 150°8. (2分)如果三角形的两边长分别是方程x2-8x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是()A . 5.5B . 5C . 4.5D . 4二、填空题 (共10题;共11分)9. (1分)(2018·新疆) 如果代数式有意义,那么实数x的取值范围是________.10. (2分) (2018九上·湖州期中) 如图,已知在△ABC中,AB=AC.以AB为直径作半圆O,交BC于点D.若∠BAC=40°,则弧AD的度数是________度11. (1分) (2018八上·孝感月考) 点M(-5,3)关于x轴对称的点N的坐标是________.12. (1分)(2017·常德) 如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为________.13. (1分) (2015九下·郴州期中) 根据相关部门统计,2014年我国共有9390000名学生参加高考,9390000用科学记数法表示为________.14. (1分) (2018八上·松原月考) 如图,△ABC≌△DEF,A与D,B与E分别是对应顶点,∠B=32°,∠A=68°,AB=13cm,则∠F=________度,DE=________cm.15. (1分) (2016八上·肇庆期末) 如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为________。
2019-2020冀教版八年级数学上册期末考试测试卷附答案

(2) 求出铺设水管最少的总费用是多少?
参考答案
一、选择题:(每小题2分,共24分)
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
C
D
C
B
D
B
C
C
A
D
C
二、填空题:(每小题3分,共18分)
13
14
15
16
17
18
(1,-2)
7
( +1)
三、解答题:(本大题共58分)
(注:预估利润P=预售总额-购机款-各种费用)
②求出预估利润的最大值,并写出此时购进三款手机各多少部.
得分
评卷人
26.(本小题满分10分)【根据八年级数学学习点津上册第64页能力测评第1题改编】
如图13,两个村庄在河的同侧,两村到河的的距离分别是AB=1千米,BD=3千米,CD=3千米。现要在河边CD建一水厂,向A,B两村输送自来水,铺设水管的工程费为每千米2万元。请你CD在上选择水厂的位置,使铺设水管的总费用最省。
A.30°B.30°或150°C.60°或120°D.150°
8.已知直角三角形的两边长为3、4则第三边长为()【根据八年级数学学习点津上册第63页选择题第4题改编】
A.5B. C.5或 D.
9.如图1,已知AB=AC,AB的垂直平分线MN交AC于点D,并且△BCD的周长为5,BC=2。则AB=()【根据八年级数学上册第74页第7题改编】
(x,y)
(2x,y)
A()
A′()
B(0,0)
B′()
河北省迁安市八年级上学期期末考试数学试题(解析版)

河北省迁安市八年级上学期期末考试数学试题一、选择题(本大题共16小题,共32.0分)1.25的算术平方根是A. 5B.C.D. 25【答案】A【解析】解:,的算术平方根是5.故选:A.依据算术平方根的定义求解即可.本题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键.2.如图图案中既是轴对称图形又是中心对称图形的是A. B. C. D.【答案】D【解析】解:A、是轴对称图形,不是中心对称图形故错误;B、不是轴对称图形,是中心对称图形故错误;C、不是轴对称图形,也不是中心对称图形故错误;D、是轴对称图形,也是中心对称图形故正确.故选:D.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.若把变形为,则下列方法正确的是A. 分子与分母同时乘B. 分子与分母同时除以C. 分子与分母同时乘D. 分子与分母同时除以【答案】B【解析】解:,分子与分母同时除以,可得,故选:B.分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变.本题主要考查了分式的基本性质,处理分式中的恒等变形问题:分式的约分、通分都是利用分式的基本性质变形的.4.下列四组线段中,可以构成直角三角形的是A. 4,5,6B. 1,1,C. 2,3,4D. 1,,3【答案】B【解析】解:A、,不能构成直角三角形,故不符合题意;B、,能构成直角三角形,故符合题意;C、,不能构成直角三角形,故不符合题意;D、,不能构成直角三角形,故不符合题意故选:B.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足,那么这个三角形就是直角三角形,熟记定理是解决问题的关键.5.近似数是由a四舍五入得到的,那么a的取值范围是A. B. C.D.【答案】C【解析】解:近似数是由a四舍五入得到的,那么a的取值范围是.故选:C.利用近似数的精确度得到a的范围即可判断.本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.6.用反证法证明“中,若 ,则 ”,第一步应假设A. B. C. D.【答案】D【解析】解: 与的大小关系有 , , 三种情况,因而 的反面是 因此用反证法证明“ ”时,应先假设.故选:D.反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断;需注意的是的反面有多种情况,应一一否定.本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.7.下列计算正确的是A. B.C.【答案】A【解析】解:,故选项A正确,不能合并,故选项B错误,,故选项C错误,,故选项D错误,故选:A.根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.8.如图,A,B,C表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在A. AC,BC两边高线的交点处B. AC,BC两边中线的交点处C. AC,BC两边垂直平分线的交点处D. , 两内角平分线的交点处【答案】C【解析】解:A,B,C表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在AC,BC两边垂直平分线的交点处.故选:C.要求到三个小区的距离相等,首先思考到A小区、C小区距离相等,根据线段垂直平分线定理的逆定理知满足条件的点在线段AC的垂直平分线上,同理到B小区、C小区的距离相等的点在线段BC的垂直平分线上,于是到三个小区的距离相等的点应是其交点,答案可得.本题主要考查线段的垂直平分线定理的逆定理:到一条线段的两端距离相等的点在这条线段的垂直平分线上;此题是一道实际应用题,做题时,可分别考虑,先满足到两个小区的距离相等,再满足到另两个小区的距离相等,交点即可得到.9.下列整数中,与最接近的是A. 2B. 3C. 4D. 5【答案】B【解析】解:,,与最接近的整数是3.故选:B.由于,则,于是可判断与最接近的整数为3.此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.10.下列命题中的逆命题一定成立的有对顶角相等;同位角相等,两直线平行;若,则;若,则.A. B. C. D.【答案】D【解析】解: 对顶角相等,逆命题为:相等的角为对顶角,不成立;同位角相等,两直线平行,逆命题为:两直线平行,同位角相等,成立;若,则,逆命题为:若,则,不成立;若,则,逆命题为:若,则,不成立.下列命题中的逆命题一定成立的有:故选:D.求出各命题的逆命题,判断真假即可.此题考查了命题与定理,熟练掌握逆命题的求法是解本题的关键.11.式子有意义,则实数a的取值范围是A. B. C. 且 D.【答案】C【解析】解:式子有意义,则,且,解得:且.故选:C.直接利用二次根式的定义结合分式有意义的条件分析得出答案.此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.12.如图,中,DE是AC的垂直平分线,,的周长为14cm,则的周长为A. 18cmB. 22cmC. 24cmD. 26cm【答案】B【解析】解:是AC的垂直平分线,,的周长,,,的周长.故选:B.根据线段垂直平分线上的点到线段两端点的距离相等可得,然后求出的周长,再求出AC的长,然后根据三角形的周长公式列式计算即可得解.本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,求出的周长是解题的关键.13.如果,那么代数式的值是A. B. C. 1 D. 3【答案】C【解析】解:,,,原式,故选:C.根据分式的减法和乘法可以化简题目中的式子,然后对变形即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.14.如图,在和中,已知,,,则下列结论不正确的是A. 与 互为余角B.C. ≌D.【答案】D【解析】解:A、,,,,,故A正确;B、,,,,故B正确;C、在和中,, ≌ ,故C正确;D、,,,故D错误;故选:D.根据全等三角形的判定与性质,可得答案.本题考查了全等三角形的判定与性质,利用全等三角形的判定与性质是解题关键,又利用了余角的性质.15.关于x的方程无解,则m的值为A. B. C. D. 5【答案】A【解析】解:去分母得:,由分式方程无解,得到,即,代入整式方程得:,解得:,故选:A.分式方程去分母转化为整式方程,由分式方程无解得到,求出x的值,代入整式方程求出m的值即可.此题考查了分式方程的解,分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.16.如图,用三角尺按下面方法操作:在已知 的两边上分别取点M、N,使,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,连接则下面的结论正确的个数是;;;垂直平分MN.A. 4B. 3C. 2D. 1【答案】B【解析】解:,,≌, ,,,垂直平分MN,故正确的是故选:B.由“HL”可证 ≌ ,可得, ,由线段垂直平分线的性质可得OP垂直平分MN.本题考查了全等三角形的判定和性质,线段垂直平分线的性质,熟练运用全等三角形的性质是本题的关键.二、填空题(本大题共3小题,共10.0分)17.若,则以a、b为边长的等腰三角形的周长是______.【答案】15【解析】解:由,得,.则以a、b为边长的等腰三角形的腰长为6,底边长为3.周长为,故答案为:15.根据非负数的和为零,可得每个非负数同时为零,可得a、b的值,根据等腰三角形的判定,可得三角形的腰,根据三角形的周长公式,可得答案.本题考查了非负数的性质,利用非负数的和为零得出每个非负数同时为零是解题关键.18.如图,点B,F,C,E在同一条直线上,,,若证明 ≌ ,还需添加一个条件是______.【答案】 或或 或【解析】解:,理由是:,,,,,在和中,≌ ,同理:添加的条件可以是 或 或.故答案为: 或或 或.求出, ,根据SAS推出两三角形全等即可.本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,答案不唯一.19.如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去记正方形ABCD的边长为,按上述方法所作的正方形的边长依次为,,,,为正整数,则______;根据以上规律求出______.【答案】【解析】解:正方形ABCD的边长为1的正方形,,是正方形ABCD的对角线,,,同理可得,,.故答案为:,.根据第一个正方形的边长为1可以求得第二个正方形的边长,以此类推可以求得正方形的边长满足一定的规律,根据此规律可以求得第n个正方形的边长.本题考查了规律型:图形的变化类,正方形的性质及勾股定理的知识,解题的关键是根据正方形的性质及勾股定理总结出正方形的边长满足的规律.三、计算题(本大题共1小题,共10.0分)20.先化简,再求值:,其中.【答案】解:原式,当时,原式.【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.四、解答题(本大题共5小题,共48.0分)21.计算:如图,在中, .作边AB的垂直平分线DE,与AB,BC分别相交于点D,E;用尺规作图,保留作图痕迹,不要求写作法;在 的条件下,连接AE,若 ,则 的度数是______.【答案】【解析】解:原式;如图,DE为所作;垂直平分AB,,,.故答案为.根据二次根式的乘除法则运算;利用基本作图作线段的垂直平分线作DE垂直平分AB即可;利用线段的垂直平分线的性质得到,则 ,然后根据三角形外角性质计算 的度数.本题考查了作图基本作图:熟练掌握基本作图作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线也考查了实数的运算.22.如图1,这是由8个同样大小的正方体组成的魔方,其体积为64.求出这个魔方的棱长;图1中阴影部分是一个正方形ABCD,求出阴影部分的边长及其面积;如图2,把正方形ABCD放到数轴上,使点A与重合,那么点B表示的数为a,请计算的值.【答案】解:这个魔方的棱长为:;每个小正方体的棱长为:;阴影部分的边长为:,阴影部分的面积为:;根据图可知,.【解析】根据正方体的体积公式求出棱长即可;求出每个小正方体的棱长,再根据勾股定理求出CD即可;求出a的值,再代入化简即可.本题考查了数轴、平方差公式、整式的化简等知识点,能灵活运用知识点进行计算是解此题的关键.23.如图,等边中,,D是AC的中点,E是BC延长线上的一点,,,垂足为F.求BD的长;求证:;求的面积.【答案】解:是等边的中线,,BD平分AC,,,由勾股定理得,;证明是等边的中线,平分 ,,又,,.,.,为底边上的中线.;,,,,,,,的面积.【解析】依据等边三角形的性质,即可得到AD的长,进而运用勾股定理得出BD的长;依据等腰三角形的性质,即可得到;先求得,再根据 ,,即可得出,进而得到的面积.本题考查了等腰三角形顶角平分线、底边上的中线和高三线合一的性质以及等边三角形每个内角为的知识的运用.24.甲、乙两个工程队计划参与一项工程建设,甲队单独施工20天完成该项工程的,这时乙队加入,两队还需同时施工16天,才能完成该项工程.若甲队单独施工,需要______天才能完成任务.若乙队单独施工,需要多少天才能完成该项工程?若甲队参与该项工程施工的时间不超过30天,则乙队至少施工多少天才能完成该项工程?【答案】60【解析】解:甲队单独施工20天完成该项工程的,甲队单独施工60天完成该项工程.故答案是:60.设乙队单独施工,需要x天才能完成该项工程,根据题意可得:解得:经检验是原方程的根.答:乙队单独施工,需要40天才能完成该项工程;设乙队参与施工y天才能完成该项工程,根据题意可得:.解得:,答:乙队至少施工20天才能完成该项工.直接利用队单独施工20天完成该项工程的,这时乙队加入,两队还需同时施工16天,进而利用总工作量为1得出等式求出答案;根据甲的工作量乙的工作量列出方程解答;直接利用甲队参与该项工程施工的时间不超过30天,得出不等式求出答案.此题主要考查了分式方程的应用以及一元一次不等式的应用,正确得出数量关系是解题关键.25.已知中,,,点D为直线BC上的一动点点D不与点B、C重合,以AD为边作,使 ,,连接CE.发现问题:如图1,当点D在边BC上时,请写出BD和CE之间的位置关系为______,并猜想BC和CE、CD之间的数量关系:______.尝试探究:如图2,当点D在边BC的延长线上且其他条件不变时,中BD和CE之间的位置关系、BC和CE、CD之间的数量关系是否成立?若成立,请证明;若不成立,请写出新的数量关系,说明理由;拓展延伸:如图3,当点D在边CB的延长线上且其他条件不变时,若,,求线段ED的长.【答案】【解析】解:如图1,,,在和中,,≌ ,, ,,即;由 可得, ≌ ,,,故答案为:,;成立,数量关系不成立,关系为.理由:如图2中,由同理可得,,即,在和中,,≌ ,, ,,,,即, ,;;如图3中,由同理可得,,,即 ,易证 ≌ ,, ,,,在中,由勾股定理得,.根据条件,,,,判定 ≌ ,即可得出BD和CE之间的关系,根据全等三角形的性质,即可得到;根据已知条件,判定 ≌ ,得出,再根据,即可得到;根据条件判定 ≌ ,得出,在中,由勾股定理得,即可解决问题;本题属于三角形综合题,主要考查了全等三角形的判定与性质以及等腰直角三角形的性质的运用,等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质解决问题的关键是掌握:两边及其夹角分别对应相等的两个三角形全等解题时注意:全等三角形的对应边相等.。
2019-2020学年河北省唐山市八年级上册期末数学试卷

2019-2020学年河北省唐山市八年级上册期末数学试卷题号一二三总分得分第I卷(选择题)一、选择题(本大题共10小题,共20.0分)1.8的立方根等于()A. −2B. 2C. −4D. 42.下列图案是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个3.ab22cd ÷−3ax4cd等于()A. 2b23x B. 32b2x C. −2b23xD. −3a2b2x8c2d24.如图,已知∠B=∠DEF,AB=DE,添加下列条件,不一定能使△ABC≌△DEF的是()A. BC=EFB. ∠A=∠DC. ∠ACB=∠DFED. AC=DF5.把分式方程2x −1=1x+1化为整式方程,正确的是()A. 2(x+1)−1=xB. 2(x+1)−x(x+1)=1C. 2(x+1)−x(x+1)=xD. 2x−x(x+1)=x6.下列运算正确的是()A. 3+√2=3√2B. (2x2)3=2x5C. 2a⋅5b=10abD. √6÷√3=27.如图,点P在∠AOB的平分线上,PC⊥OA于点C,PC=1,点Q是射线OB上的一个动点,线段PQ长度的最小值为a,下列说法正确的是()A. a=0B. a=0.5C. a=1D. a=28.直径为1个单位长度的圆从原点沿数轴以每分钟1圈的速度向右滚动(不滑动),1分钟后,圆上的一点由原点到达点O1,点O1的横坐标为()A. 0.25πB. 0.5πC. πD. 2π9.到直角三角形的三个顶点距离相等的点()A. 是该三角形三个内角平分线的交点B. 是斜边上的中点C. 在直角三角形的外部D. 在直角三角形的内部10.如图,在△ABC中,AB=AC,D为BC边上的中点,若∠BAD=35°,则∠C的度数为()A. 35°B. 55°C. 60°D. 70°第II卷(非选择题)二、填空题(本大题共10小题,共30.0分)11.1−√3的相反数是________;12.若分式√3−x有意义,则x的取值范围是.3−|x|13.如图,要测量河岸相对的两点A、B之间的距离,先从B处出发与AB成90°角方向,向前走50米到C处立一根标杆,然后方向不变继续朝前走50米到D处,在D处转90°沿DE方向再走17米,到达E处,使A、C与E在同一直线上,那么测得AB=________米.14.若x=3,则√2x−5的值是______.15. 如图所示,在△ABE 中,∠A =105°,AE 的垂直平分线MN 交BE 于点C ,且AB +BC =BE ,则∠B 的度数是______.16. 若最简二次根式√x +1与√10可以合并,则x 的值为______. 17. 如图,在△ABC 中,∠ACB =90°,AC =4,BC =3,点M在AB 上,且∠ACM =∠BAC ,则CM 的长为______.18. 已知√18−n 是正整数,则n 的最大值为______ .19. △ABC 中,AB =AC ,一腰上的中线BD 把三角形的周长分为9cm 和12cm 两部分,则此三角形的腰长是______.20. 如图,已知点M 是∠ABC 内一点,分别作出点M 关于直线AB ,BC 的对称点M 1,M 2,连接M 1M 2分别交AB 于点D ,交BC 于点E ,若M 1M 2=3cm ,则△MDE 的周长为_________cm .三、解答题(本大题共6小题,共48.0分) 21. 计算题:(1)√8+2√3−(√27−√2) (2)√23÷√223×√25(3)(3√2+2√3)(3√2−2√3)(4)3√48−4√27÷2√3.22.如图,在△ABC中,BD、CE是高,G、F分别是BC、DE的中点,连接GF、EG、DG.求证:(1)EG=DG;(2)GF⊥DE.23.为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.24.如图所示,已知:△ABC和△DCE都是等边三角形,求证:AD=BE.25.先阅读,再解答,由(√5+√3)⋅(√5−√3)=(√5)2−(√3)2=2可以看出,两个含有二次根式的代数式相乘,积可能不含有二次根式.在进行二次根式计算时,可以利用这种运算规律化去分母中的根号,例如:√3+√2=√3−√2(√3+√2)(√3−√2)=√3−√2,根据以上运算请完成下列问题:(1)√2019−√2018________√2018−√2017(填>或<);(2)利用你发现的规律计算下列式子的值:(√2+1√3+√2√4+√3⋯+√2019+√2018)(√2019+1).26.在△ABC中,∠C=90°,点D、E分别是边BC、AC上的点,点P是一动点,连接PD、PE,∠PDB=∠1,∠PEA=∠2,∠DPE=∠α.(1)如图1所示,若点P在线段AB上,且∠α=60°,则∠1+∠2=______°(答案直接填在题中横线上);(2)如图2所示,若点P在边AB上运动,则∠α、∠1、∠2之间的关系为有何数量关系;猜想结论并说明理由;(3)如图3所示,若点P运动到边AB的延长线上,则∠α、∠1、∠2之间有何数量关系?请先补全图形,再猜想并直接写出结论(不需说明理由.)答案和解析1.【答案】B【解析】解:∵23=8,∴8的立方根是2.故选:B.根据立方根的定义求解即可.本题考查了对立方根的定义,熟练掌握立方根的定义是解题的关键.2.【答案】B【解析】【分析】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个是轴对称图形,也是中心对称图形;第二个是轴对称图形,不是中心对称图形;第三个不是轴对称图形,也不是中心对称图形;第四个是轴对称图形,也是中心对称图形.故选:B.3.【答案】C【解析】解:原式=−ab22cd ⋅4cd 3ax=−2ab23ax=−2b23x.故选C.先判断分式的商的符号,再将除法转化为乘法解答.本题考查了分式的乘除法,将除法转化为乘法是解题的关键.4.【答案】D【解析】【分析】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠DFE,利用AAS可得△ABC≌△DEF;∠B=∠DEF,AB=DE,AC=DF,不能判定△ABC≌△DEF.故选D.5.【答案】C【解析】【分析】本题主要考查的是分式方程的解法,根据方程两边同时乘以最简公分母即可.【解答】解:2x −1=1x+1,方程两边乘以x(x+1)得:2(x+1)−x(x+1)=x.故选C.6.【答案】C【解析】解:A、3与√2不能合并,所以A选项错误;B、原式=8x6,所以B选项错误;C、原式=10ab,所以C选项正确;D、原式=√6÷3=√2,所以D选项错误.故选C.根据二次根式的加减法对A进行判断;根据积的乘方对B进行判断;根据单项式的乘法对C进行判断;根据二次根式的除法法则对D进行判断.本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7.【答案】C【解析】[分析]根据垂线段最短可得PQ⊥OB时,PQ最短,再根据角平分线上的点到角的两边的距离相等可得此时PC=PQ,从而得解.本题考查了角平分线上的点到角的两边的距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.[详解]解:当PQ⊥OB时,PQ的值最小,∵OP平分∠AOB,PC⊥OA,∴PC=PQ,∵PC=1,∴PQ的最小值为1.故选C.8.【答案】C【解析】【分析】本题主要考查了实数与数轴之间的对应关系,解题需注意:确定点O′的符号后,点O′所表示的数是距离原点的距离.直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【解答】解:因为圆的周长为π⋅d=1×π=π,所以圆从原点沿数轴向右滚动一周OO′=π,所以点O1的横坐标为π,故选C.9.【答案】B【解析】【分析】本题主要考查的是直角三角形斜边上的中线的有关知识,直接利用直角三角形斜边上的中线等于斜边的一半可以得到,到直角三角形的三个顶点距离相等的点是斜边上的中点.【解答】解:∵直角三角形斜边上的中线等于斜边的一半,∴到直角三角形的三个顶点距离相等的点是斜边上的中点.故选B.10.【答案】B【解析】【分析】本题考查的是等腰三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键.由等腰三角形的三线合一性质可知∠BAC=70°,再由三角形内角和定理和等腰三角形两底角相等的性质即可得出结论.【解答】解:AB=AC,D为BC中点,∴AD是∠BAC的平分线,∠B=∠C,∵∠BAD=35°,∴∠BAC=2∠BAD=70°,(180°−70°)=55°.∴∠C=12故选B.11.【答案】√3−1【解析】【分析】本题主要考查了相反数的定义,直接根据相反数的定义可得答案.【解答】解:1−√3的相反数是√3−1,故答案为√3−1.12.【答案】x<3且x≠−3【解析】【分析】本题考查了二次根式有意义的条件以及分式有意义的条件.根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据题意得:{3−x ≥03−|x |≠0, 解得:x <3且x ≠−3,故答案为x <3且x ≠−3.13.【答案】17【解析】【分析】此题考查了全等三角形的应用,掌握全等三角形的判定与性质是关键,根据题意得到∠B =∠D =90°,BC =DC =50米,∠ACB =∠ECD ,得到△ACB≌△ECD ,即可得到AB =ED =17米.【解答】解:根据题意得,∠B =∠D =90°,BC =DC =50米,∵∠ACB =∠ECD ,∴△ACB≌△ECD ,∴AB =ED =17米,故答案为17.14.【答案】1【解析】【分析】本题主要考查的是算术平方根的定义,求得2x −5的值是解题的关键.将x =3代入,然后利用算术平方根的性质解答即可.【解答】解:当x =3时,√2x−5=√6−5=√1=1.故答案为1.15.【答案】50°【解析】【分析】此题考查了线段垂直平分线的性质、等腰三角形的性质以及三角形内角和定理.首先连接AC,由AE的垂直平分线MN交BE于点C,可得AC=EC,又由AB+BC=BE,易证得AB=AC,然后由等腰三角形的性质与三角形内角和定理,求得180°−4∠E+∠E=105°,继而求得答案.【解答】解:连接AC,∵MN是AE的垂直平分线,∴AC=EC,∴∠CAE=∠E,∵AB+BC=BE,BC+EC=BE,∴AB=EC=AC,∴∠B=∠ACB,∵∠ACB=∠CAE+∠E=2∠E,∴∠B=2∠E,∴∠BAC=180°−∠B−∠ACB=180°−4∠E,∵∠BAE=∠BAC+∠CAE=180°−4∠E+∠E=105°,解得:∠E=25°,∴∠B=2∠E=50°.故答案为50°.16.【答案】9【解析】【分析】本题考查的是同类二次根式,最简二次根式,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,这几个二次根式叫做同类二次根式.根据同类二次根式的概念列方程,解方程即可.【解答】解:∵最简二次根式√x+1与√10可以合并,∴二次根式√x+1与√10是同类二次根式,∴x+1=10,解得,x=9,故答案为9.17.【答案】52【解析】解:∵∠ACB=90°,AC=4,BC=3,∴AB=√AC2+BC2=5,∵∠ACM=∠BAC,∴MC=MA,∵∠A+∠B=90°,∠MCA+∠MCB=90°,∠ACM=∠BAC,∴∠MCB=∠B,∴MB=MC,∴MC=12AB=52,故答案为:52.根据勾股定理求出AB,根据直角三角形的性质得到MC=MB=MA,计算即可.本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.18.【答案】17【解析】解:∵18−n≥0,∴n≤18,∵√18−n是正整数,∴n的最大值是17,故答案为:17.根据二次根式的定义,即可解答.本题考查了二次根式的定义,解决本题的关键是熟记二次根式的定义.19.【答案】8cm或6cm【解析】解:根据题意画出图形,如图,设等腰三角形的腰长AB=AC=2x,BC=y,∵BD是腰上的中线,∴AD=DC=x,若AB+AD的长为12,则2x+x=12,解得x=4cm,则x+y=9,即4+y=9,解得y=5cm;若AB+AD的长为9,则2x+x=9,解得x=3cm,则x+y=12,即3+y=12,解得y=9cm;所以等腰三角形的腰长为8cm或6cm.故答案为:8cm或6cm.等腰三角形一腰上的中线将它的周长分为9厘米和12厘米两部分,但已知没有明确等腰三角形被中线分成的两部分的长,哪个是9cm,哪个是12cm,因此,有两种情况,需要分类讨论.本题考查了等腰三角形的性质及三角形三边关系;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错;利用三角形三边关系判断能否组成三角形是正确解答本题的关键.20.【答案】3【解析】【分析】本题考查了轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.根据对称轴的意义,可以求出EM=EM2,DM1=DM,M1M2=3cm,可以求出△MDE 的周长.【解答】解:∵点M关于直线AB,BC的对称点M1,M2,∴EM=EM2,DM1=DM,∴△MDE的周长=DE+EM+DM=M1M2=3(cm),∴△MDE的周长=3cm.故答案为3.21.【答案】解:(1)原式=2√2+2√3−3√3+√2=3√2−√3;(2)原式=√23×38×25=√1010;(3)原式=(3√2)2−(2√3)2=18−12=6;(4)原式=12√3−12√3÷2√3=12√3−6.【解析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)根据二次根式的乘除法则运算;(3)利用平方差公式计算;(4)先把各二次根式化为最简二次根式,然后进行二次根式的除法运算.本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.【答案】证明:(1)∵BD、CE是高,点G是BC的中点,∴GE=12BC,GD=12BC,∴GE=GD;(2)由(1)可知GE=GD,∴△GED是等腰三角形,∵F是DE的中点,∴GF⊥DE.【解析】(1)利用直角三角形斜边上的中线等于斜边的一半进行证明;(2)由(1)知DG=EG=12BC,再根据等腰三角形三线合一的证明即可.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并作出辅助线构造出等腰三角形是解题的关键.23.【答案】解:设其他班步行的平均速度为x米/分,则九(1)班步行的平均速度为1.25x米/分,依题意,得:4000x −40001.25x=10,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴1.25x=100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.【解析】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.设其他班步行的平均速度为x米/分,则九(1)班步行的平均速度为1.25x米/分,根据时间=路程÷速度结合九(1)班比其他班提前10分钟到达,即可得出关于x的分式方程,解之经检验后即可得出结论.24.【答案】证明:∵△ABC和△DCE都是等边三角形,∴∠ACB=∠ECD=60°,CA=CB,CD=CE,∴∠ACD=∠ECB,在△ACD和△BCE中,{CA=CB∠ACD=∠BCE CD=CE,∴△ACD≌△BCE,∴AD=BE.【解析】本题考查的是全等三角形的判定和性质、等边三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.根据等边三角形的性质得到∠ACB=∠ECD=60°,CA=CB,CD=CE,证明△ACD≌△BCE,根据全等三角形的性质解答.25.【答案】解:(1)<;(2)原式=(√2−1+√3−√2+2−√3+⋯+√2019−√2018)(√2019+1)=(√2019−1)(√2019+1)=2019−1=2018.【解析】【分析】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.(1)通过比较√2019−√2018的倒数和√2018−√2017的倒数进行判断;(2)先分母有理化,然后合并后利用平方差公式计算.【解答】解:(1)∵2019−2018=√2019+√2018,2018−2017=√2018+√2017,∵√2019+√2018>√2018+√2017,∴2019−2018>2018−2017,∴√2019−√2018<√2018−√2017.故答案为<;(2)见答案.26.【答案】解:(1)150;(2)∠DPE的邻补角为180°−∠α,∠C的邻补角为90°,∵∠1与∠2是四边形DPEC的外角,∴由四边形外角和可知:∠1+∠2+90°+(180°−∠α)=360°,∴∠1+∠2=90°+∠α;(3)如图3所示,∠2=90°+∠α+∠1.【解析】【分析】本题考查四边形的外角和,涉及三角形的外角性质,综合程度较高,需要学生灵活运用所学知识.·(1)∠DPE的邻补角为120°,∠C的邻补角为90°,由四边形的外角和可知:∠1+∠2= 360°−120°−90°=150°;(2)∠DPE的邻补角为180°−∠α,∠C的邻补角为90°,由四边形的外角和可知:∠1+∠2+ 90°+(180°−∠α)=360°,化简即可得出答案;(3)根据题意画出图形可知,∠CFE是△DPF的外角,根据外角性质可知,∠CFE=∠DPE+∠PDB;另一方面,∠PEA是△CFE的外角,根据外角性质可知,∠PEA=∠C+∠CFE,根据以上两个等式即可得出∠α、∠1、∠2之间的数量关系.解:(1)∠DPE的邻补角为120°,∠C的邻补角为90°,由四边形的外角和可知:∠1+∠2= 360°−120°−90°=150°,故答案为150;(2)见答案;(3)理由如下:设PE交BC于点F,∴∠CFE=∠DPE+∠PDB=∠α+∠1,∵∠PEA=∠C+∠CFE,∴∠2=90°+∠α+∠1,故答案为∠2=90°+∠α+∠1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年河北省唐山市迁安市八年级(上)期末数学模拟试卷一、选择题:(本大题共16个小题每小题2分,共32分在题给出的四个选项中只有一项是符合题目要求)1.下列图形中,是轴对称图形的是()A.B.C.D.2.下列图形中,不具有稳定性的是()A.B.C.D.3.点(﹣1,2)关于x轴对称的点的坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,﹣2)D.(2,﹣1)4.在中,分式的个数为()A.1B.2C.3D.45.下列运算正确的是()A.a2•a3=a6B.(a2)﹣3=C.(ab3)4=ab12D.(﹣3a4)3=﹣27a126.纳米(mm)是非常小的长度单位,1nm=10﹣9m,较小的病毒直径仅为18﹣22纳米,18nm用科学记数法可表示为()A.0.18×10﹣7m B.0.18×10﹣11mC.1.8×10﹣8m D.1.8×10﹣10m7.如图,AC与BD相交于点O,AB∥CD,AB=CD,则图中的全等三角形共有()A.1对B.2对C.3对D.4对8.大拖拉机n天耕地a公顷,小拖拉机m天耕地b公顷,大拖拉机的作效率是小拖拉机工作效率的()A.B.C.D.9.下列整数中,与最接近的是()A.2B.3C.4D.510.下列命题中的逆命题一定成立的有()①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;④若a>b,则a2>b2.A.①②③④B.①④C.②④D.②11.式子有意义,则实数a的取值范围是()A.a≥﹣1B.a≠2C.a≥﹣1且a≠2D.a>212.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为()A.18cm B.22cm C.24cm D.26cm13.如果a2+2a﹣1=0,那么代数式(a﹣)•的值是()A.﹣3B.﹣1C.1D.314.如图,在△ABC和△CDE中,已知AC=CD,AC⊥CD,∠B=∠E=90°,则下列结论不正确的是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠215.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.516.如图,用三角尺按下面方法操作:在已知∠AOB的两边上分别取点M、N,使OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,连接MN.则下面的结论正确的个数是()①PM=PN;②MP=OP;③∠AOP=∠BOP;④OP垂直平分MN.A.4B.3C.2D.1二、填空题(本大题共3小题,共10分;17-18题每小题3分,19题每空2分)17.若(a﹣3)2+|b﹣6|=0,则以a、b为边长的等腰三角形的周长是.18.如图,点B,F,C,E在同一条直线上,BF=CE,AB∥DE,若证明△ABC≌△DEF,还需添加一个条件是.19.如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去.记正方形ABCD的边长为a1=1,按上述方法所作的正方形的边长依次为a2,a3,a4,……,a n(n为正整数),则a4=;根据以上规律求出a n=.三、解答题(本大题共6个小题,共58分,解答应写出文字说明、证明过程或演算步骤)20.(8分)(1)计算:×﹣÷﹣﹣(+1)2(2)如图,在△ABC中,∠A>∠B.①作边AB的垂直平分线DE,与AB,BC分别相交于点D,E;(用尺规作图,保留作图痕迹,不要求写作法);②在①的条件下,连接AE,若∠B=50°,则∠AEC的度数是.21.(8分)如图1,这是由8个同样大小的正方体组成的魔方,其体积为64.(1)求出这个魔方的棱长;(2)图1中阴影部分是一个正方形ABCD,求出阴影部分的边长及其面积;(3)如图2,把正方形ABCD放到数轴上,使点A与﹣1重合,那么点B表示的数为a,请计算(a﹣1)(a+1)﹣|2﹣a|的值.22.(10分)先化简,再求值:(﹣)÷,其中x=﹣2+2(π﹣3)0.23.(10分)如图,等边△ABC中,AB=6,D是AC的中点,E是BC延长线上的一点,CE=CD,DF⊥BE,垂足为F.(1)求BD的长;(2)求证:BF=EF;(3)求△BDE的面积.24.(10分)甲、乙两个工程队计划参与一项工程建设,甲队单独施工20天完成该项工程的,这时乙队加入,两队还需同时施工16天,才能完成该项工程.(1)若甲队单独施工,需要天才能完成任务.(2)若乙队单独施工,需要多少天才能完成该项工程?(3)若甲队参与该项工程施工的时间不超过30天,则乙队至少施工多少天才能完成该项工程?25.(12分)已知△ABC中,∠BAC=90°,AB=AC,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边作△ADE,使∠DAE=90°,AD=AE,连接CE.发现问题:如图1,当点D在边BC上时,(1)请写出BD和CE之间的位置关系为,并猜想BC和CE、CD之间的数量关系:.尝试探究:(2)如图2,当点D在边BC的延长线上且其他条件不变时,(1)中BD和CE之间的位置关系、BC和CE、CD之间的数量关系是否成立?若成立,请证明;若不成立,请写出新的数量关系,说明理由;拓展延伸:(3)如图3,当点D在边CB的延长线上且其他条件不变时,若BC=6,CE=2,求线段ED的长.2018-2019学年河北省唐山市迁安市八年级(上)期末数学模拟试卷参考答案与试题解析一、选择题:(本大题共16个小题每小题2分,共32分在题给出的四个选项中只有一项是符合题目要求)1.【分析】依据算术平方根的定义求解即可.【解答】解:∵52=25,∴25的算术平方根是5.故选:A.【点评】本题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键.2.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、不是轴对称图形,也不是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【分析】分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.【解答】解:∵=,∴分子与分母同时除以a+1,可得,故选:B.【点评】本题主要考查了分式的基本性质,处理分式中的恒等变形问题:分式的约分、通分都是利用分式的基本性质变形的.4.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52≠62,不能构成直角三角形,故不符合题意;B、12+12=()2,能构成直角三角形,故符合题意;C、22+32≠42,不能构成直角三角形,故不符合题意;D、12+()2≠32,不能构成直角三角形,故不符合题意故选:B.【点评】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,熟记定理是解决问题的关键.5.【分析】利用近似数的精确度得到a的范围即可判断.【解答】解:近似数1.20是由a四舍五入得到的,那么a的取值范围是1.195≤a<1.205.故选:C.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.6.【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断;需注意的是∠A>60°的反面有多种情况,应一一否定.【解答】解:∠A与60°的大小关系有∠A>60°,∠A=60°,∠A<60°三种情况,因而∠A >60°的反面是∠A≤60°.因此用反证法证明“∠A>60°”时,应先假设∠A≤60°.故选:D.【点评】本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.7.【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:∵,故选项A正确,∵不能合并,故选项B错误,∵=8,故选项C错误,∵,故选项D错误,故选:A.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.8.【分析】要求到三个小区的距离相等,首先思考到A小区、C小区距离相等,根据线段垂直平分线定理的逆定理知满足条件的点在线段AC的垂直平分线上,同理到B小区、C小区的距离相等的点在线段BC的垂直平分线上,于是到三个小区的距离相等的点应是其交点,答案可得.【解答】解:A,B,C表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在AC,BC两边垂直平分线的交点处.故选:C.【点评】本题主要考查线段的垂直平分线定理的逆定理:到一条线段的两端距离相等的点在这条线段的垂直平分线上;此题是一道实际应用题,做题时,可分别考虑,先满足到两个小区的距离相等,再满足到另两个小区的距离相等,交点即可得到.9.【分析】由于6.25<7<9,则2.5<<3,于是可判断与最接近的整数为3.【解答】解:∵6.25<7<9,∴2.5<<3,∴与最接近的整数是3.故选:B.【点评】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.10.【分析】求出各命题的逆命题,判断真假即可.【解答】解:①对顶角相等,逆命题为:相等的角为对顶角,不成立;②同位角相等,两直线平行,逆命题为:两直线平行,同位角相等,成立;③若a=b,则|a|=|b|,逆命题为:若|a|=|b|,则a=b,不成立;④若a>b,则a2>b2,逆命题为:若a2>b2,则a>b,不成立.下列命题中的逆命题一定成立的有:②故选:D.【点评】此题考查了命题与定理,熟练掌握逆命题的求法是解本题的关键.11.【分析】直接利用二次根式的定义结合分式有意义的条件分析得出答案.【解答】解:式子有意义,则a+1≥0,且a﹣2≠0,解得:a≥﹣1且a≠2.故选:C.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.12.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,然后求出△ABD 的周长=AB+BC,再求出AC的长,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵AE=4cm,∴AC=2AE=2×4=8cm,∴△ABC的周长=AB+BC+AC=14+8=22cm.故选:B.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,求出△ABD的周长=AB+BC是解题的关键.13.【分析】根据分式的减法和乘法可以化简题目中的式子,然后对a2+2a﹣1=0变形即可解答本题.【解答】解:(a﹣)•===a(a+2)=a2+2a,∵a2+2a﹣1=0,∴a2+2a=1,∴原式=1,故选:C.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.14.【分析】根据全等三角形的判定与性质,可得答案.【解答】解:A、∵AC⊥CD,∴∠ACD=90°,∴∠1+∠2=90°.∵∠1+∠A=90°,∴∠A=∠2.∵∠2+∠D=90°,∴∠A+∠D=90°,故A正确;B、∵AC⊥CD,∴∠ACD=90°,∴∠1+∠2=90°.∵∠1+∠A=90°,∴∠A=∠2,故B正确;C、在△ABC和△CED中,,∴△ABC≌△CED(AAS),故C正确;D、∵AC⊥CD,∴∠ACD=90°,∴∠1+∠2=90°,故D错误;故选:D.【点评】本题考查了全等三角形的判定与性质,利用全等三角形的判定与性质是解题关键,又利用了余角的性质.15.【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母得:3x﹣2=2x+2+m,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m,解得:m=﹣5,故选:A.【点评】此题考查了分式方程的解,分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.16.【分析】由“HL”可证△OMP≌△ONP,可得PM=PN,∠AOP=∠BOP,由线段垂直平分线的性质可得OP垂直平分MN.【解答】解:∵OM=ON,OP=OP,∴Rt△OMP≌Rt△ONP(HL)∴PM=PN,∠AOP=∠BOP,∵OM=ON,PM=PN,∴OP垂直平分MN,故正确的是①③④故选:B.【点评】本题考查了全等三角形的判定和性质,线段垂直平分线的性质,熟练运用全等三角形的性质是本题的关键.二、填空题(本大题共3小题,共10分;17-18题每小题3分,19题每空2分)17.【分析】根据非负数的和为零,可得每个非负数同时为零,可得a、b的值,根据等腰三角形的判定,可得三角形的腰,根据三角形的周长公式,可得答案.【解答】解:由(a﹣3)2+|b﹣6|=0,得a﹣3=0,b﹣6=0.则以a、b为边长的等腰三角形的腰长为6,底边长为3.∴周长为6+6+3=15,故答案为:15.【点评】本题考查了非负数的性质,利用非负数的和为零得出每个非负数同时为零是解题关键.18.【分析】求出BC=EF,∠ABC=∠DEF,根据SAS推出两三角形全等即可.【解答】解:AB=DE,理由是:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,∵AB∥DE,∴∠ABC=∠DEF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),同理:添加的条件可以是∠A=∠D或∠ACB=∠DFE或AC∥DF.故答案为:∠A=∠D或AB=ED或∠ACB=∠DFE或AC∥DF.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,答案不唯一.19.【分析】根据第一个正方形的边长为1可以求得第二个正方形的边长,以此类推可以求得正方形的边长满足一定的规律,根据此规律可以求得第n个正方形的边长.【解答】解:∵正方形ABCD的边长为1的正方形,∴a1=1=()0,∵AC是正方形ABCD的对角线,∴AC=,∴a2==,同理可得a3==2=()2,a4==2=()3,…∴a n=()n﹣1.故答案为:()3,()n﹣1.【点评】本题考查了规律型:图形的变化类,正方形的性质及勾股定理的知识,解题的关键是根据正方形的性质及勾股定理总结出正方形的边长满足的规律.三、解答题(本大题共6个小题,共58分,解答应写出文字说明、证明过程或演算步骤)20.【分析】(1)根据二次根式的乘除法则运算;(2)①利用基本作图(作线段的垂直平分线)作DE垂直平分AB即可;②利用线段的垂直平分线的性质得到EA=EB,则∠EAB=∠B=50°,然后根据三角形外角性质计算∠AEC的度数.【解答】解:(1)原式=﹣﹣2﹣(3+2+1)=6﹣3﹣2﹣4﹣2=﹣3﹣2;(2)①如图,DE为所作;②∵DE垂直平分AB,∴EA=EB,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.故答案为100°.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了实数的运算.21.【分析】(1)根据正方体的体积公式求出棱长即可;(2)求出每个小正方体的棱长,再根据勾股定理求出CD即可;(3)求出a的值,再代入化简即可.【解答】解:(1)这个魔方的棱长为:=4;(2)每个小正方体的棱长为:4÷2=2;阴影部分的边长为:CD==2,阴影部分的面积为:CD2=(2)2=8;(3)根据图可知a=2﹣1,(a﹣1)(a+1)﹣|2﹣a|=(2﹣1﹣1)×(2﹣1+1)﹣|2﹣(2﹣1)|=(2﹣2)×2﹣|3﹣2|=8﹣4﹣3+2=5﹣2.【点评】本题考查了数轴、平方差公式、整式的化简等知识点,能灵活运用知识点进行计算是解此题的关键.22.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=[﹣]÷=•=,当x=2﹣+2=+2时,原式=2.【点评】此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.23.【分析】(1)依据等边三角形的性质,即可得到AD的长,进而运用勾股定理得出BD的长;(2)依据等腰三角形的性质,即可得到BF=EF;(3)先求得BE=BC+CE=9,再根据∠DBE=30°,DB=3,即可得出DF=DB=,进而得到△BDE的面积.【解答】解:(1)∵BD是等边△ABC的中线,∴BD⊥AC,BD平分AC,∵AB=6,∴AD=3,∴由勾股定理得,BD==3;(2)证明∵BD是等边△ABC的中线,∴BD平分∠ABC,∴∠DBE=∠ABC=30°,又∵CE=CD,∴∠E=∠CDE,∠E=∠ACB=30°.∴∠DBE=∠E,∴DB=DE.∵DF⊥BE,∴DF为底边上的中线.∴BF=EF;(3)∵AD=CD,CE=CD,∴CE=CD=3,∴BE=BC+CE=9,∵∠DBE=30°,DB=3,∴DF=DB=×3=,∴△BDE的面积=BE•DF=×9×=.【点评】本题考查了等腰三角形顶角平分线、底边上的中线和高三线合一的性质以及等边三角形每个内角为60°的知识的运用.24.【分析】(1)直接利用队单独施工20天完成该项工程的,这时乙队加入,两队还需同时施工16天,进而利用总工作量为1得出等式求出答案;(2)根据甲的工作量+乙的工作量=1列出方程解答;(3)直接利用甲队参与该项工程施工的时间不超过30天,得出不等式求出答案.【解答】解:(1)∵甲队单独施工20天完成该项工程的,∴甲队单独施工60天完成该项工程.故答案是:60.(2)设乙队单独施工,需要x天才能完成该项工程,根据题意可得:+16×(+)=1解得:x=40经检验x=40是原方程的根.答:乙队单独施工,需要40天才能完成该项工程;(3)设乙队参与施工y天才能完成该项工程,根据题意可得:×30+y×≥1.解得:y≥20,答:乙队至少施工20天才能完成该项工.【点评】此题主要考查了分式方程的应用以及一元一次不等式的应用,正确得出数量关系是解题关键.25.【分析】(1)根据条件AB=AC,∠BAC=90°,AD=AE,∠DAE=90°,判定△ABD≌△ACE (SAS),即可得出BD和CE之间的关系,根据全等三角形的性质,即可得到CE+CD=BC;(2)根据已知条件,判定△ABD≌△ACE(SAS),得出BD=CE,再根据BD=BC+CD,即可得到CE=BC+CD;(3)根据条件判定△ABD≌△ACE(SAS),得出BD=CE,在Rt△DCE中,由勾股定理得DE2=DC2+CE2=82+22=68,即可解决问题;【解答】解:(1)如图1,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∠B=∠ACE=45°,∴∠BCE=45°+45°=90°,即BD⊥CE;由①可得,△ABD≌△ACE,∴BD=CE,∴BC=BD+CD=CE+CD,故答案为:BD⊥CE,BC=CD+CE;(2)BD⊥CE成立,数量关系不成立,关系为BC=CE﹣CD.理由:如图2中,由(1)同理可得,∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD即∠BAD=∠CAE,∴在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∠ACE=∠ABC,∵AB=AC,∴∠ABC=∠ACB=45°,∴BD=BC+CD,即CE=BC+CD,∠ACE+∠ACB=90°,∴BC=CE﹣CD;BD⊥CE;(3)如图3中,由(1)同理可得,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠BAD=∠EAC,易证△ABD≌△ACE(SAS),∴BD=CE=2,∠ACE=∠ABD=135°,∴CD=BC+BD=BC+CE=8,∵∠ACB=45°∴∠DCE=90°,在Rt△DCE中,由勾股定理得DE2=DC2+CE2=82+22=68,∴DE=2.【点评】本题属于三角形综合题,主要考查了全等三角形的判定与性质以及等腰直角三角形的性质的运用,等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.解决问题的关键是掌握:两边及其夹角分别对应相等的两个三角形全等.解题时注意:全等三角形的对应边相等.。