分布滞后模型(下)

合集下载

分布滞后模型的估计

分布滞后模型的估计

分布滞后模型的估计建立总量消费函数是进行宏观经济管理的重要手段。

为了从总体上考察中国居民收入与消费的关系,下表给出了中国名义支出法国内生产总值GDP、名义居民总消费CONS以及表示宏观税收的税收总额TAX、表示价格变化的居民消费价格指数CPI(1990=100),并由这些数据整理出实际支出法国内生产总值GDPC=GDP/CPI、居民实际消费总支出Y=CONS/CPI,以实际可支配收入X=(GDP-TAX)/CPI,这些数据是1978-2006的时间序列数据,即观测值是连续不同年份的数据。

中国居民总量消费支出与收入资料解:阿尔蒙多项式估计法1、首先使用互相关分析命令cross,初步判断滞后期的长度。

在命令窗口键入:cross y x,输出结果如下图所示:x与y各期滞后值的相关系数从上图中可以看出,消费总支出y与当年和前四年的实际可支配收入相关,因此,利用阿尔蒙多项式估计法估计模型时,解释变量滞后阶数为5.利用EViews软件,输入样本数据,在命令窗口键入:LS y c pdl(x,5,2)得到以下回归分析结果:估计结果:xx x x x x yt t t t t t t5432104497.010270.013208.013311.010580.005015.0192.1794-----∧+++---= t = (2.07755) (6.63411) (6.51267) (7.90985) (6.26776) (0.99479)997444.02=R,250.2471=F ,955959.0..=W D其中括号内的数为相应参数的T 检验,R2是可决系数,F 和D.W.是有关的两个检验统计量。

2、模型检验从回归估计和残差图可以看出模型的拟合程度较好。

从截距项与斜率项的t 检验值看,均大于5%显著性水平下自由度为n-2=27的临界值052.2)27(025,0 t,认为中国总量消费与支出以及与各滞后消费间线性相关性显著,并且解释变量间不存在多重共线性。

【计量经济学】第5章 第3节 几何分布滞后模型

【计量经济学】第5章 第3节 几何分布滞后模型
Yt* = t 期预期的最佳货币供应量 Xt = t 期的经济总量水平
这些例子说明,解释变量的现值决定了被解释变 量的预期值(期望达到的水平)。
(3)局部调整假定:
由于技术、制度、市场以及管理等各方面的限 制,被解释变量的预期水平在单一周期内一般不会 完全实现,而只能得到部分的调整。
局部调整假定数学表示是:
此模型称为局部调整模型(Partial adjustment model)。
(2)实际经济背景
部分调整模型首先是由 Nerlove 基于如下事实 提出的:在讨论滞后效应时,解释变量在某一时期 内的变动所引起的被解释变量值的变化,要经过相 当长一段时间才能充分表现出来。
这样,模型表达的应该是第t期解释变量观测值 与同期被解释变量期望达到的水平之间的关系。
局部调整假设认为,被解释变量的实际变化仅 仅是预期变化的一部分,即
Yt Yt1 (Yt* Yt1 )
其中, 为部分调整系数,它代表调整速度。且有
0 ≤ ≤ 1。越接近 1,表明调整到预期最佳水平
的速度越快。
(4)将局部调整模型转化为一阶自回归模型 由部分调整假设可得
Yt*
1
Yt
1
Yt 1
在建立经济计量模型时,很多情况下,库伊克 假设有一定的合理性。
(二)几何分布滞后模型
将式 j 0 j 代入原无限分布滞后模型中,得 到如下模型:
Yt 0 X t 0 X t1 0 2 X t2 0 j X t j ut
此模型就称为几何分布滞后模型,因为滞后权重 数列是以几何数列下降的。
接观测的变量化成可以直接观测的变量。
Cangan 和 Friedman 这两位经济学家提出了对
预期
X

分布滞后模型

分布滞后模型

2019/4/16
Y * t 0 1 X t t (6.3.12)
由于存在滞后现象,Yt 的实际变化(Yt—Yt-1) 只是预期变化(Y*t-1—Yt-1)的一部分,需要按预定 水平逐步进行调整,从而作出如下调整假设:
Yt Yt 1 Y * t Yt 1 (6.3.13)
式中,
t t 1 t 1
(6.3.9)
18
2019/4/16

由以上讨论可知,根据几何分布滞后模型 的假定,我们可以把无限分布滞后模型变 换为仅包含3个参数的自回归模型(见 (6.3.9))。
19
2019/4/16
(二)部分调整模型
该模型早先用来研究物资储备问题,亦称存 货调整模型。 例如,本期商品的库存量的期望值(最佳库 存量)取决于本期实际销售额。 因此,作如下的理论假设:被解释变量的希 望值(最佳值)Y*t是Xt的线性函数 20
3
2019/4/16
0 :称为短期影响乘数,它表示解释变量 X 变化一个单位
对同期被解释变量 Y 产生的影响。
1 , 2 ,... :称为延期影响乘数,因为它们是测度以前不同时期
X 变化一个单位对 Y 的滞后影响。

i
0 1 3 ... ,称为长期影响乘数,表示
二、产生滞后模型的原因
(一)心理因素 收入、GDP、 (二)技术因素 货币发行与通货膨胀、投入与产出 (三)制度因素 改造家用电器的功能、款式与厂商的利润 6
2019/4/16
三、分布滞后模型估计的问题
对分布滞后模型直接采用最小二乘法估计参数时会 遇到如下困难: 1、无法估计无限分布滞后模型; 2、没有先验准则预先确定最大滞后长度k; 3、若滞后期较长而样本较小时,将缺乏足够的自由 度进行估计和检验; 4、解释变量存在序列相关,带来多重共线性的问题。

分布滞后模型

分布滞后模型

S.E. of regression
21.88962 Akaike info criterion
Sum squared resid
7187.333 Schwarz criterion
Log likelihood
-75.52028 F-statistic
Durbin-Watson stat
1.438436 Prob(F-statistic)
8.2 有限分布滞后模型及其估计
如果有限分布滞后模型
yt a b0 xt b1xt1 ...... bk xtk ut
中的参数bi(i=0,1,2,…,k)的分布可以 近似地用一个关于i的低阶多项式表示,就可以利 用多项式减少模型中的参数。
8.2 有限分布滞后模型及其估计
8.2 有限分布滞后模型及其估计
8.2.2 有限分布滞后模型的估计方法 1.经验加权估计法 根据实际经济问题的特点及经验判断,对滞后 变量赋予一定的权数,利用这些权数构成各滞后变 量的线性组合,以形成新的变量,再应用最小二乘 法进行估计。
8.2 有限分布滞后模型及其估计
基本思路是设法减少模型中被估计的参数个数。 模型中参数的个数主要由解释变量的个数来决定, 要减少模型中被估计的参数个数,就要对解释变量 进行归并,并通过解释变量的归并,消除或削弱多 重共线性问题。
Prob. 0.0023 0.0000 818.6959 279.9181 9.120033 9.218058 2601.407 0.000000
8.2 有限分布滞后模型及其估计
Dependent Variable: Y
Method: Least Squares
Sample(adjusted): 1958 1974

分布滞后模型

分布滞后模型



7
1.有限分布滞后模型的最大滞后长度s 较难确定。其 确定往往带有主观随意性。 2.如果滞后期较长而样本较小时,就没有足够的自 由度进行统计推断。 因为,每增加一个解释变量就会失去一个自由度。 同时,滞后期每增加一期,可利用的数据就会减 少一个。 3. 时间序列资料中,大多存在序列相关问题(如Xt-1 与Xt-2)。在分布滞后模型中,这种序列相关问题就 转化为解释变量之间的多重共线性问题。
3
1、分布滞后模型 分布滞后模型形式为:
Yt 0 X t 1 X t 1 s X t s ut

Yt 0 X t 1 X t 1 ut
其中第一式的最大滞后长度 s是一个确定的数,因 此是有限分布滞后模型。 而第二式没有规定最大滞后长度,是无限分布滞后 模型。
称为长期乘数或总分布乘数,它表示滞后效应 对 Y 总的影响;
5
2、自回归模型 自回归模型形式为:
Yt 0 Xt 1Yt 1 2Yt 2 qYt q ut
其中,q 称为自回归模型的阶数。
6
第二节 分布滞后模型的估计
一、分布滞后模型的估计难度
直接应用最小二乘法估计分布滞后模型会遇到很 多困难。 由于无限分布滞后模型中包含无限多个参数,我 们无法用最小二乘法对其进行估计。 对于有限分布滞后模型,最小二乘法原则上是适 用的,但在具体应用时会遇到很多困难。
i 0,1,2,, s
此式称为Almon多项式变换。
多项式的阶数 m 必须小于有限分布滞后模型的最 大滞后长度 s ,否则就达不到减少参数个数的目的。 在具体应用时,m 一般取 2 或 3,不超过 4。 具体列出来就是:
0 0 1 0 2 02 m 0m 2 m 1 1 1 1 0 1 2 m 2 m s s s 0 1 2 m s

动态经济模型:自回归模型和分布滞后模型

动态经济模型:自回归模型和分布滞后模型

(海量营销管理培训资料下载)
13
一,部分调整模型 在部分调整模型中,假设行为方程决定的是因变 量的理想值(desired value)或目标值Yt* ,而不 是其实际值Yt:
Yt* =α+βXt+ut
(1)
由于Yt*不能直接观测,因而采用 "部分调整假 说" 确定之,即假定因变量的实际变动(Yt–Yt* 1 ),与其理想值和前期值之间的差异(Yt –Yt-1 ) 成正比:
(海量营销管理培训资料下载)
20
使用美国公司部门1918—1941年数据,得到如下回 归结果:
Dt = 352.3 + 0.15∏t + 0.70Dt 1
各系数在1%显著水平下都显著异于0. 从回归结果可知,(1-λ)的估计值为0.70,因而 调整系数λ的估计值为0.30,即调整速度为0.30.由 于∏t的系数是γλ的估计值,除以0.30,则得到长 期派息率(γ)的估计值为0.50.
第二种方法是采用科克变换,(2)式两端取一期 滞后,得: Yt-1 =α+βXt-1 +βλXt-2 +βλ2Xt-3 +…+ ut-1 两端乘以λ,得: λYt-1 =λα+βλXt-1+βλ2Xt-2 +βλ3Xt-3 +…+λut-1 (5) (2)-(5),得 Yt-λYt-1 =α(1-λ)+βXt + ut-λut-1
(海量营销管理培训资料下载)
10
短期乘数和长期乘数
在短期内(即期),Yt-1可以认为是固定的,X的变动 对Y的影响为β(短期乘数为β).从长期看,在忽略 扰动项的情况下,如果Xt趋向于某一均衡水平 X , 则Yt和 Yt-1也将趋向于某一均衡水平 Y ,

分布滞后模型

分布滞后模型

Yt Yt1 ut
(12.18)
Yt1 Yt2 ut1
(12.19)
Yt Y0 ut
(12.20)
E(Yt ) Y0
(12.21)
var(Yt ) var(ut ut1 u) T 2 (12.22)
Yt (Yt Yt1 ) ut
(12.23)
2-10
12.5 随机游走模型
2-15
12.6 分对数模型
2-16
12.1 动态经济模型:自回归和分布滞后模型
动态模型(dynamic models)
Yt A B0 X t B1 X t1 B2 X t2 ut
分布滞后模型(distributed lag models)
Yt 常数 0.4 X t 0.3X t1 0.2 X t2 Yt 常数 0.9X t1
2.零假设为Yt1 的系数 A3 为零,等价于时间序 列是非平稳的,称为单位根假设。
3.为了检验A3 的估计值 a3 为零,通常会使用
熟悉的t 检验。
2-8
12.4 协整时间序列
eˆt 0.2753 et1
t( ) (3.779)
r 2 0.1422
2-9
12.5 随机游走模型
随机游走模型(random walk model): 即根据变量今天的值并不能预测出变量明天的值。
2-11
图12-3 利用随机游走模型进行预测
12.6 分对数模型
分对数模型(logit model)和概率单位模型 (probit model)
逻辑分布函数(logistic distribution function)
2-12
12.6 分对数模型
2-13
12.6 分对数模型

计量经济学分布滞后模型

计量经济学分布滞后模型


中国电力工业基本建设投资与发电量 年度 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 基本建设投资 X 发电量 (亿元) (亿千瓦时) 161.6 4495 210.88 4973 249.73 5452 267.85 5848 334.55 6212 377.75 6775 489.69 7539 675.13 8395 1033.42 9218 1124.15 10070
多项式次数可以依据经济理论和实际经验 加以确定,一般取m=2~3。
阿尔蒙估计的EViews软件实现 在EViews软件的LS命令中使用 PDL项,其 命令格式为: LS Y C PDL(X,k,m,d) 其中,k为滞后期长度,m为多项式次数,d是 对分布滞后特征进行控制的参数。 在LS命令中使用PDL项,应注意以下几点:
事实上许多滞后变量模型都可以转化为自回归模型自回归模型是经济生活中更常见的模自pectation模型在某些实际问题中因变量y并不取决于解释变量的当前实际值x例如例如家庭本期消费水平取决于本期收入的预期值
一、滞后变量模型
则新的线性组合变量为:
W 1t 1 1 1 1 X t X t 1 X t 2 X t 3 2 4 6 8
• 矩型: 即认为权数是相等的,X的逐期滞后值对 值Y的影响相同。
如滞后期为3,指定相等权数为1/4,则新 的线性组合变量为:
1 1 1 1 W 2 t X t X t 1 X t 2 X t 3 4 4 4 4
• 产生滞后效应的原因
1. 心理因素:人们的心理定势,行为方式 滞后于经济形势的变化,如中彩票的人不可能 很快改变其生活方式。
2. 技术原因 :如当年的产出在某种程度上 依赖于过去若干期内投资形成的固定资产。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分布滞后模型案例:电力投资与发电量的关系分析
+
1.电力投资与发电量的关系
2.滞后关系如何体现
分布滞后模型案例分析思路
第一步:收集数据第二步:模型估计第三步:经济含义解释
案例分析思路
第一步:收集数据
本文考虑电力建设投资与发电量的关系,样本范围为1975-1995的时间序列数据。

电力投资、发电量:《中国统计年鉴》
相关文献:《中国知网》
/
输入Eviews 命令:cross y x
根据y 与x 各滞后期的相关系数,初步确定滞后期长度为4到6期;
输入Eviews 命令:LS y c PDL(x,p,2),其中p 依次取4-8,各期检验指标如下:
确定滞后期长度
第二步:模型估计
p=6=6时,拟合优度最大,AIC 、SC 值最小,最终确定滞后期为6.
i t i X i PDL -=∑+=6
02)1(02阿尔蒙多项式模型估计LS yc PDL(x,6,2)
以阿尔蒙多项式
降维
6个滞后期X(-1) ,X(-2) ,…,X(-6
+
估计命令:Eviews→presentation
估计方程
y = 3319.46 + 0.3228*x
+ 1.7769*x(-1) + 2.6898*x(-2) + 3.0613*x(-3)+ 2.8916*x(-4) + 2.1805*x(-5) + 0.9281*x(-6)阿尔蒙多项式法分布滞后模型估计结果:
个单位。

发电量约增加期值每增加一个单位,3228.0变动一个单位,由于
,表示长期乘数:x 8510.130=∑=s
i i β个单位。

的平均值变动滞后效应8510.13y ,资,表示电力基本建设投短期乘数:3228.00=β当第三步:经济含义解释
经济含义:
各滞后期的系数显著为正,表明电力投资存在滞后性,投资对发电的绩效在后续时期逐渐
显现;
各滞后期的系数呈“先增后减”
的倒V型;
电力建设对发电量的影响呈现周期性的变化,周期为6,第3期
为波峰;
阿尔蒙法对比OLS
阿尔蒙多项式估计:
y = 3319.46 + 0.3228*x
+ 1.7769*x(-1) + 2.6898*x(-2) + 3.0613*x(-3) + 2.8916*x(-4) + 2.1805*x(-5) + 0.9281*x(-6)
滞后6期的OLS估计:
y= 3361.84+8.4213*x
-11.4312*x(-1)+15.1390*x(-2)+4.7151*x(-3)
-14.6913*x(-4) +26.9252*x(-5)-25.4101*x(-6) OLS估计式系数正负交替,阿尔蒙法系数呈倒V 型,结果更符合预期、更稳健;。

相关文档
最新文档