锅炉热力计算讲解

合集下载

锅炉热力计算课件

锅炉热力计算课件
提高设备安全性和可靠性
通过热力计算,可以预测和评估锅炉在各种工况下 的性能表现和安全风险,及时发现和解决潜在问题 ,提高设备的安全性和可靠性。
锅炉热力计算的基本原理
能量守恒原理
能量守恒是热力计算的基本原理,即能量不能凭空产生也不能凭空消失,只能从一种形式 转化为另一种形式。在锅炉热力计算中,通过能量守恒原理可以建立各种能量平衡方程式 ,用于求解各种参数。
加强锅炉保温,减少热量散失 ,提高热效率。同时,定期维 护和检查锅炉及管道的保温层 ,确保其完好有效。
THANK YOU
感谢聆听
根据传热面积和锅炉结构,合理布置 各受热面。
根据传热面积,确定各受热面的结构尺寸
材料选择
根据受热面的工作温度、压力和腐蚀条件,选择合适的材料 。
结构尺寸设计
根据传热面积、材料属性和制造工艺,设计各受热面的结构 尺寸。
04
锅炉热力计算的实例分析
实例一:工业锅炉的热力计算
总结词
工业锅炉热力计算涉及燃料燃烧、热量传递和工质加热等过程, 需要综合考虑燃烧效率、热效率和经济性等因素。
详细描述
工业锅炉通常采用固体、液体或气体燃料,通过燃烧产生热量, 加热给水或蒸汽。热力计算的主要目的是确定锅炉各部分受热面 的传热面积、传热系数、热流量等参数,从而优化锅炉设计,提 高运行效率。
实例二:电站锅炉的热力计算
总结词
电站锅炉热力计算涉及高温、高压和高效率的工况,需要精确控制燃烧过程和蒸汽参数,以满足电网和汽轮机的 需求。
根据使用需求,确定锅炉的蒸汽量或供热量。
确定锅炉的热效率
热效率计算
根据锅炉的实际运行数据,采用合适 的公式计算热效率。
热效率标准
参考国家和行业标准,确定锅炉应达 到的热效率指标。

一、锅炉设计辅助热力计算

一、锅炉设计辅助热力计算

一、锅炉设计辅助热力计算1.炉膛宽度及深度因采用角置直流式燃烧器,炉膛采用正方形截面。

按表8-40取炉膛截面热负荷q F =2580kW/m 2,炉膛截面F=40.2578m 2,取炉膛宽度a=6.72m ,炉膛深+b=6.72m ,布置Φ60×3的水冷壁管,管间距s=64mm ,侧面墙的管数为106根,前后墙102根。

管子悬吊炉墙,管子中心和墙距e=0。

后墙水冷壁管子在折角处有叉管,直叉管垂直向上连接联箱,可以承受后墙管子和炉墙的重量,斜叉管组成凝渣管和折焰角。

凝渣管有24×3=72根管子,折焰角上有26根管子,另4根管直接与联箱相连。

侧墙水冷壁向上延伸,在折焰角区域和凝渣管区域形成附加受热面。

2.燃烧室辐射吸热量的分配燃烧室辐射吸热量中有部分由凝渣管及高温过热器吸收。

凝渣管直接吸收燃烧室的辐射热量辐射受热面是燃烧室的出口窗,凝渣管吸收的热量与凝渣管束的角系数有关。

根据凝渣管的横向相对节距σ=4.267,从图11-10中的无炉墙反射的曲线上查得单排管的角系数x=0.32。

现凝渣管有三排,总的角系数为X nz =1-(1-x )3=1-(1-0.32)3=0.6856凝渣管辐射受热面为H nz = X nz F ch =0.6856×33.767=23.151m 3由于出口窗位于燃烧室上部,热负荷较小,需要计算沿高度的热负荷不均匀系数。

出口窗中心的高度为h ck ,从冷灰斗中心到炉顶的总高度为H 1=18.912,根据h ck H 1 =16.0318.912=0.8476 和燃烧器中心相对高度x r =0.2038,查图15-2的2线,得h r η=0.68,凝渣管吸收的辐射吸热量为f nz Q =87.1978151.337.12568.0=⨯⨯=nz f h r H q ηkW高温过热器直接吸收炉膛辐射热量为413.907616.107.12568.0)151.23767.33(=⨯⨯=-=f h r f gr q Q ηkW水冷壁的平均辐射受热面热负荷kWQ Q B Q q f gr f nz j l s 407.120183.5311)283.288668.66844(]183.5311)413.90787.1978(53.414756[19.2623.4711)]([=⨯-=⨯+-⨯=+⨯+-=3.炉膛受热的热量分配(1)锅炉总有效吸热量 kW Q gl 35.109143=(2)炉膛总传热量 kW Q B l j 68.668441475653.4=⨯=(3)凝渣管区域传热量 kW Q B nz j 427.45119.99553.4=⨯=(4)第二级过热器传热量 kW Q B gr j 35.11172297.246653.42=⨯=(5)第一级过热器传热量 kW Q B gr j 17.1275449.281553.41=⨯=(6)省煤器需要吸收热量 kWQ B sm j 1.13948)17.12754325.11172427.451168.66844(35.109143=+++-=(7)空气预热器需要吸收的热量 kWI I B B Q B lk rk k ky j ky j 78988.14954)34.263079.3320()06.05.005.1(53.4))(5.0(00''=-⨯⨯+⨯=-∆+=α (8)排烟温度校核 kWI I I B Q B Q B I I lk sm lk rk ky j kyj sm j py gr 7.188634.26304.0234.263079.332006.099.053.478988.149541.1394818.82022000''=⨯++⨯+⨯+-=∆++∆++-=ααφ177.142=py θ℃,与假定排烟温度140℃相差2.117℃,设计合格。

第9章 锅炉热力计算

第9章 锅炉热力计算

(6) 连续排污量; (7) 过热蒸汽及再热蒸汽的调温方式,当用喷水减温时,应 给出减温水的压力和温度;当采用表面式减温器时,应给出 减温水的连接系统;不论哪种减温方式,都应给出减温器在 过热蒸汽系统中的位置; (8) 当采用煤粉燃烧方式时,应给出煤粉制备系统的计算数 据,包括:煤粉空气混合物的总量、一次空气量、为干燥燃 料而抽取的烟气量、煤粉制备系统的漏风量等; (9) 锅炉使用地的气象条件和海拔高度。 在具备了上述数据资料时,方能正确进行锅炉设计传热性 能计算。当进行设计传热性能计算时,锅炉的排烟温度、热 风温度都是指定的,或者按照设计的具体条件,根据经验或 有关推荐选用适当的数值。
校核计算:根据已有各受热面结构参数及传热面积 和热力系统的型式,在锅炉参数,燃料种类或局部 受热面积发生变化时,通过热力计算确定各个受热 面交界处的水温、汽温、烟温及空气温度的值,确 定锅炉热效率和燃料消耗量等。 校核计算的可能情形: ① 锅炉已经存在、已经要安装或已经安装好,需更 换燃料,想知道将达到何值,能否保证过热蒸汽温 度,受热面要不要修改等。 ② 接到定货后,发现燃料与设计的某型锅炉相近 (容量参数相同),需判断能否用这一型式锅炉, 在设计上要不要修改。
第9章 锅炉热力计算
9.1 锅炉热力计算的类型和方法 9.1.1 热力计算的任务和类型
热力计算
已 知 条 件 和 计 算 目 的 不 同
设计计算 校核计算
设计计算:在给定的给水温度和燃料特性的前 提下确定保证达到额定蒸发量、选定的经济指 标及给定的蒸汽参数所必需的各受热面的结构 尺寸,并为选择辅助设备和进行其它计算提供 原始资料。 设计计算是设计新锅炉采用的方法 设计一个好的锅炉,须遵循:实践—认识— 再实践—再认识。

锅炉本体热力计算11

锅炉本体热力计算11
qV B' Qnet,ar Vl kW / m3 ;qR B' Qnet ,ar R kW / m2
B’—每秒燃料消耗量,kg/s。
5
七、锅炉本体热力计算
6.2 对流传热面传热计算
6.2.1基本方程式
以燃烧1kg燃料为计算基础: KHt kJ / kg 传热方程式: Qcr Bj ' 热平衡方程式: 烟气侧: Qrp (I 'I "I k0 ) kJ / kg 工质侧: Q D' (i"i' ) Q kJ / kg
式中
Fbi、χi —为某一区段的炉壁面积和其相应的有效角系数; Hff —对于覆盖有耐火层的水冷壁其辐射受热面面积; Fl—炉膛周界总面积,m2; R—火床面积,m2。 0
七、锅炉本体热力计算
7.1.2炉膛传热的基本方程及炉膛黑度
火焰与炉壁之间的辐射换热量:
Qf Qhy Qby 0al H f (Th4 Tb4 ) (四次方温差公式)
炉膛系统黑度:室燃炉 层燃炉
al
al
1 1 ab (1 ah 1)
1 (1 ah )(1 ) 1 ab 1 (1 ah )(1 )
火床与炉壁面积之比: R Fbz
式中 Qhy —火焰有效辐射; Qby —炉壁有效辐射; ab —水冷壁的表面黑度,可取0.8; ah —火焰黑度。 Th —火焰的平均温度,K;T b —水冷壁表面温度,K。
3
七、锅炉本体热力计算
6.1.5火焰平均温度及水冷壁管外积灰层表面温度
4 4(1n ) "4 n 火焰平均温度:Th Tll Tl
K K
n——燃烧工况对炉膛内火焰温度场的影响。

锅炉整体热力计算和壁温计算

锅炉整体热力计算和壁温计算

一、锅炉整体热力计算1 计算方法本报告根据原苏联73年颁布的适合于大容量《电站锅炉机组热力计算标准方法》,进行了锅炉机组的热力计算和中温再热器及低温过热器出口垂直段管壁金属温度计算,计算报告中所选取的有关计算参数和计算式均出自该标准的相应章节。

对所基于的计算方法的主要内容简述如下。

锅炉的整体热力计算为一典型的校核热力计算,各个受热面及锅炉整体的热力计算均需经过反复迭代和校核过程,全部热力计算过程通过计算机FORTRAN5.0高级语言编程计算完成。

管壁温度计算分别通过EXCEL 和FORTRAN5.0完成。

1.1锅炉炉膛热力计算所采用的计算炉膛出口烟气温度的关联式为:式中,M —考虑燃烧条件的影响,与炉内火焰最高温度点的位置密切相关,因此,取决于燃烧器的布置形式,运行的方式和燃烧的煤种; T ll —燃煤的理论燃烧温度,K ; Bj —锅炉的计算燃煤量;kg/h 。

1.2锅炉对流受热面传热计算的基本方程为传热方程与热平衡方程除炉膛以外的其它受热面的热力校核计算均基于传热方程和工质及烟气侧的热量平衡方程。

计算对流受热面的传热量Q c 的传热方程式为:式中,CV B T F M T cpjj a ︒--+ψ⨯=2731)1067.5(6.031111111"11ϕϑKgKJ Bjt KH Q c /∆=H —受热面面积;⊿t —冷、热流体间的温压, 热平衡方程为:既:烟气放出的热量等于蒸汽、水或空气吸收的热量。

烟气侧放热量为:工质吸热量按下列各式分别计算。

a .屏式过热器及对流过热器,扣除来自炉膛的辐射吸热量Q fb .布置在尾部烟道中的过热器、再热器、省煤器及直流锅炉的过渡区,按下式计算:2 计算煤种与工况2.1 计算煤质表1 设计煤质数据表(应用基)2.2 计算工况本报告根据委托合同书的计算要求,分别计算了两种不同的工况。

计算工况一 —— 设计工况计算(100%负荷)根据表1中的设计煤质数据,各设计和运行参数均按《标准》推荐的数据选取。

锅炉本体热力计算

锅炉本体热力计算

qf

Bj 'Qf Hf
kW / m2
qV

B' Qne t,a r Vl
kW
/ m3 ;qR

B' Qne t,ar R
kW / m2 B’—每秒燃料消耗量,kg/s。
5
七、锅炉本体热力计算
6.2 对流传热面传热计算
6.2.1基本方程式
以燃烧1kg燃料为计算基础:

传热方程式: Qcr 热平衡方程式:
七、锅炉本体热力计算
7.1 锅炉传热过程及计算
7.1.1炉膛几何特性
炉膛容积Vl:由炉子火床表面至炉膛出口烟窗之间的容积。
炉膛周界面积Fl:包围炉膛容积的所有周界封闭面积的总和,包 含火床面积R、全部水冷壁面积、未有水冷壁的炉墙面积和出口 烟窗第一排水管中心线面积。
有效辐射受热面Hf : 有效角系数x:火焰投射到管壁受热面的总热量与投射到炉壁

KHt Bj'
kJ / kg
烟气侧: Qrp (I'I"Ik0)
工质侧:
Qrp
D' (i"i' ) Bj' Qf
kJ / kg
kJ / kg
炉膛出口烟窗后的对流受热面,受到的炉膛辐射热:
Qf
'
ch
q f Fch Bj '

xgs
kJ / kg
6
七、锅炉本体热力计算
6.1.6炉膛换热计算
炉膛换热无因次方程式: Bo( 1 )= 4h "l4n
al m 1 l " 1 l "
波尔茨曼准则—Bo=
B 0

锅炉计算说明

锅炉计算说明

热力计算
锅炉热力计算是锅炉设计中最重要、最复杂的计算,其功能是在指定结构尺寸、负荷、燃料和环境条件下决定各受热面的吸热分配、各边界处的流体介质状态量等,从而求出锅炉的效率、燃料消耗量等。

进行热力计算是为了保障锅炉机组的经济性及安全性,寻找改善结构的措施,并为选择辅助设备和进行空气动力计算、水动力计算、强度计算和其它可靠性计算提供原始资料。

实际设计中,经常采用校核计算的方法:各部件的受热面先加以布置,然后计算部件的吸热量,并达到一定的精确范围,这样逐个计算,最后满足总的平衡。

强度计算
在锅炉本体中,锅筒、集箱、封头、管板、炉胆和管子等元件承受着内压、外压以及附加载荷的作用力。

锅炉受压元件工作条件的特点是经常处于高压高温下,如果强度不够,就会引发一些事故。

为了防止锅炉受压元件失效,必须进行强度计算,以便能够合理的选用钢材和设计结构。

烟风阻力计算
烟风阻力与空气动力计算是根据烟气和空气流经各阻力部件时的流量、速度、温度等参数,分别计算烟气和空气通道的阻力压降,为锅炉引、送风机的选择提供参考数据。

热水锅炉水动力计算
水动力计算是为了确定水动力回路的设计合理性和可靠性,保证机组在工作状态时能正常循环。

锅炉热力计算

锅炉热力计算

锅炉热力计算锅炉热力计算是指计算燃煤、燃油、燃气等能源燃烧后产生的热量与蒸汽的转换效率,是评估锅炉工作性能和能源利用效果的重要指标。

本文将介绍锅炉热力计算的相关内容,包括热效率计算、燃料燃烧热计算、热负荷计算以及节能措施。

1. 热效率计算:热效率是衡量锅炉能源利用率的重要指标,其计算公式为:热效率 = 实际产热值 / 理论产热值 * 100%其中,实际产热值表示锅炉通过燃料燃烧释放的可利用热量,理论产热值是指锅炉燃料完全燃烧时所释放的热量。

2. 燃料燃烧热计算:锅炉燃料燃烧热量是指燃料在单位时间内释放的热量,其计算公式为:燃料燃烧热量 = 燃料消耗量 * 燃料热值其中,燃料消耗量表示单位时间内燃料的消耗量,燃料热值表示单位质量燃料所含的热量。

3. 热负荷计算:热负荷是指锅炉需要提供的热量,其计算公式为:热负荷 = 热负荷系数 * 热效率 * 燃料燃烧热量其中,热负荷系数是根据工程需要和所用能源类型进行确定的。

4. 节能措施:为提高锅炉的能源利用效果,可以采取一些节能措施,如下:- 锅炉热效率提高:通过改进燃烧系统、优化锅炉结构等方式,提高锅炉的热效率。

- 锅炉余热利用:利用锅炉排放废气、废烟等余热,进行蒸汽、热水等能量的回收与再利用。

- 锅炉运行优化:采用智能控制系统,通过合理的调节和运行参数优化,降低能源消耗。

- 锅炉设备更新:更换老化设备、选用新型高效节能设备,提高整个系统的能源利用效率。

总之,锅炉热力计算是评估锅炉工作性能和能源利用效果的重要指标。

通过热效率计算、燃料燃烧热计算和热负荷计算,可以评估锅炉的能源利用效率,并采取相关措施提高其节能效果。

在实际应用中,还需根据具体情况进行参数调整和优化,以达到最佳的节能效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1/12
高温烟气和管壁间的辐射换热
根据传热学基本公式,高温烟气每小时传给辐射受热面的热量可
用下列公式计算:
Qf a 0 ( xi Fi )(Th4y
Tb4 )

a 0 ( xi Fi )Th4y
(1
Tb4 Th4y
), kW
式中:a 为炉膛黑度;Fi 为布置水冷壁的炉墙面积,m2 ,xi为 水
2/3
工质质量流速ρω与 烟气速度Wy的选择
工质质量流速ρ ω 太低,工质的传热能力下降,受热面管壁温度升 高;ρ ω 太高,工质的流动阻力大,电耗大
通常要求过热器系统的总阻力应不大于过热器出口压力的10%;再热 系统的总阻力应不大于再热蒸汽进口压力的10%;省煤器中水的阻力应 不大于汽包压力的10%。推荐值见表12-5
锅炉热力计算分为设计计算和校核计算 设计计算 给定锅炉容量、参数和燃料特性 确定炉膛尺寸和各部件的受热面积;燃料消耗量;锅炉效率; 各受热面交界处介质的参数;各受热面吸热量和介质速度等 常用于新锅炉的设计。在额定负荷下进行
1/2
热力计算方法
校核计算 已知锅炉结构和尺寸、锅炉负荷和燃料特性 确定各受热面交界处介质参数、锅炉热效率、燃料消耗量等 用于考核锅炉在非设计负荷或燃用非设计燃料时热力特性及 经济指标;由于计算参数多与炉膛结构有关,故设计计算也常 采用校核计算方法 锅炉校核热力计算应在锅炉结构计算的基础上进行 对锅炉机组作校核计算时,烟气的中间温度和内部介质温度 包括排烟温度、热空气温度,甚至过热蒸汽温度均是未知数, 故需先假定,然后用逐步逼近法去确定
2/2
炉膛出口烟气温度的选择
炉膛出口烟气温度 为凝渣管或屏式过热器前的烟温 根据锅炉受热面的辐射和对流传热的最佳比值(辐射受热 面和对流受热面的金属耗量及总成本最小), 应为1250℃ 为防止对流受热面的结渣。则一般应取 <(ST-100)℃ 当没有可靠的灰熔点资料时,不应超过1050℃ 当 炉 膛出口 处 布置 着屏 式 受热 面时 , 一般 取 1100 ~ 1200℃ 对于易结渣的燃料, 应保持在1000~1050℃ 的水平
冷壁的角系数(14-28),查图14-3;Thy、Tb 分别为火焰平均温度 与辐射受热面上灰污层表面温度;(1–Tb4 /Thy4)为因受热面管壁 污染而使其吸热量降低的程度,用污染系数ζ (14-31)表示
ζ 与燃料性质、燃烧工况、水冷壁结构等因素有关,推荐值见表 14-2。当炉膛出口烟窗布置屏式水冷壁时,考虑炉膛与屏之间的热 交换,ζ = ζ 0β 。β 与燃料种类和屏区烟温有关。可查图14-4
3/3
炉内传热计算模型
炉内传热计算目的 确定炉膛出口烟气温度和炉膛的辐射传热量, 以便进行对流受热面的换热计算及锅炉热平衡校核。 为应用传热学基本原理分析炉内辐射传热,简化计算,需作以下假设
把传热过程和燃烧过程分开,在必须计及燃烧工况影响时,引入经 验系数予以考虑
炉内传热只考虑辐射换热,略去约占总换热量5%的对流换热 炉内的各物理量(温度、黑度和热负荷等)认为是均匀的 与水冷壁相切的平面是火焰的辐射面,也是水冷壁接受火焰辐射的 面积,称为水冷壁面积 这样,炉内火焰与四周炉壁之间的辐射换热可简化为两个互相平行 的无限大平面间的辐射换热来考虑
Q a 0 F Th4y , kW(14 10)
3/12
炉内烟气放热量
假设1Kg计算燃料在炉内完全燃烧产生的有效热量Q 全部用于加 热燃烧产物而不与炉壁发生热交换时,燃烧产物所能达到的最高温 度称为绝热燃烧温度或理论燃烧温度,用Ta 表示,Ia= Q
燃料燃烧过程中,将热量传给水冷壁,离开炉膛时烟气冷却到T ,
煤粉锅炉热力计算
热力计算方法与应用
热力计算方法 主要设计参数的选择 炉膛传热计算 对流受热面计算 锅炉校核热力计算程序 F220/100-W锅炉校核热力计算说明
1/1
热力计算方法
锅炉机组的热力计算从燃料的燃烧和热平衡计算开始,然后 按烟气流向对锅炉机组的各个受热面(炉膛、屏式过热器、对 流过热器及尾部受热面等)进行计算
1/3
排烟温度与热空气温度的选择
最佳排烟温度 py 为燃料费用和尾部受热面金属费用总和最少时 所对应的排烟温度,同时还与锅炉的给水温度、燃料的性质等因素 有关。推荐值见表12-3
py 低,排烟热损失小,锅炉热效率高,节约燃料;但由于尾部受 热面的传热温压降低,金属耗量增多
热空气温度trk 主要取决于燃料的性质 着火性能好和水分低的燃料,可以采用较低trk;着火性能差或水 分较多的燃料,一般要求采用较高值。此外, trk值还与制粉系统的 干燥剂种类、锅炉的排渣方式等有关。推荐值见表12-4
锅炉各部分水冷壁的角系数x不同,水冷壁污染情况ζ 也不 同,故对整个炉墙,应采用平均热有效系数,即
i Fi F (14 35)
式中 F= F1 + F2 +...,为炉膛总炉墙面积, m2。
将式(14-35)代入上式,即可得到炉内高温烟气(火焰)和水 冷壁之间的辐射热交换公式
烟气流速Wy 过低,受热面面积增加,积灰加重,同时影响传热; Wy 过高,飞灰磨损加重
当≤7000C时,飞灰颗粒变硬,磨损问题相对突出,这时,应按磨损 条件确定横向冲刷受热面的极限烟速
对于一般的煤为9~10 m/ s;对于灰多和灰分磨蚀性较强的燃料为 7~8 m/ s;对于灰少和磨蚀性较弱的煤为10~12 m/s
对应的烟气焓为 I ,若以 T 作为定性温度,则烟气在炉内的放热
量可用下式计算 Qf(Ta T), kW(14 6)
显然,水冷壁污染越严重,Tb 越大,管壁灰污层反方向辐射越 强,水冷壁吸收辐射热能力下降,这时,污染系数ζ 是减小的。不 同受热面污染情况不同,ζ 也不同
2/12
高温烟气和管壁间的辐射换热
上式可改写为: Q f a 0 ( i x i Fi )Th4y , kW 令 i i xi,称之为炉墙的热有效系数(14-30)
相关文档
最新文档