2013年北京市西城区高三二模数学理科含答案

合集下载

北京市西城区2013届高三上学期期末考试数学理题目

北京市西城区2013届高三上学期期末考试数学理题目

北京市西城区2012 — 2013学年度第一学期期末试卷高三数学(理科) 2013.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则A B =( )(A )1(0,)2(B )(1,1)-(C )1(,1)(,)2-∞-+∞ (D )(,1)(0,)-∞-+∞2.在复平面内,复数5i2i-的对应点位于( ) (A )第一象限 (B )第二象限(C )第三象限 (D )第四象限3.在极坐标系中,已知点(2,)6P π,则过点P 且平行于极轴的直线的方程是( ) (A )sin 1=ρθ (B )sin 3=ρθ (C )cos 1=ρθ(D )cos 3=ρθ4.执行如图所示的程序框图.若输出15S =, 则框图中① 处可以填入( ) (A )2k < (B )3k < (C )4k < (D )5k <5.已知函数()cos f x x b x =+,其中b 为常数.那么“0b =”是“()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件6.已知,a b 是正数,且满足224a b <+<.那么22a b +的取值范围是( ) (A )416(,)55(B )4(,16)5(C )(1,16) (D )16(,4)57.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是( )(A )25(B )26 (C )27 (D )428.将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是( ) (A )221(B )463(C )121(D )263第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k =_____.10.如图,Rt △ABC 中,90ACB ︒∠=,3AC =,4BC =.以AC 为直径的圆交AB 于点D ,则BD = ;CD =______.11.设等比数列{}n a 的各项均为正数,其前n 项和为n S .若11a =,34a =,63k S =,则k =______.12.已知椭圆 22142x y +=的两个焦点是1F ,2F ,点P 在该椭圆上.若12||||2PF PF -=,则△12PF F 的面积是______.13.已知函数π()sin(2)6f x x =+,其中π[,]6x a ∈-.当3a π=时,()f x 的值域是______;若()f x 的值域是1[,1]2-,则a 的取值范围是______.14.已知函数()f x 的定义域为R .若∃常数0c >,对x ∀∈R ,有()()f x c f x c +>-,则称函数()f x 具有性质P .给定下列三个函数:①()2xf x =; ②()sin f x x =; ③3()f x x x =-.其中,具有性质P 的函数的序号是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)在△ABC 中,已知3sin 21cos 2B B =-. (Ⅰ)求角B 的值; (Ⅱ)若2BC =,4A π=,求△ABC 的面积.16.(本小题满分14分)如图,四棱锥ABCD P -中,底面ABCD 为正方形,PD PA =,⊥PA 平面PDC ,E 为棱PD 的中点.(Ⅰ)求证:PB // 平面EAC ;(Ⅱ)求证:平面PAD ⊥平面ABCD ; (Ⅲ)求二面角B AC E --的余弦值.17.(本小题满分13分)生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下: 测试指标 [70,76) [76,82) [82,88) [88,94) [94,100]元件A 8 12 40 32 8元件B7 1840296(Ⅰ)试分别估计元件A ,元件B 为正品的概率;(Ⅱ)生产一件元件A ,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B ,若是正品可盈利50元,若是次品则亏损10元 .在(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望;(ⅱ)求生产5件元件B 所获得的利润不少于140元的概率.18.(本小题满分13分)已知函数2()xf x x b=+,其中b ∈R . (Ⅰ)求)(x f 的单调区间;(Ⅱ)设0b >.若13[,]44x ∃∈,使()1f x ≥,求b 的取值范围.19.(本小题满分14分)如图,已知抛物线24y x =的焦点为F .过点(2,0)P 的直线交抛物线于11(,)A x y ,22(,)B x y 两点,直线AF ,BF 分别与抛物线交于点M ,N .(Ⅰ)求12y y 的值;(Ⅱ)记直线MN 的斜率为1k ,直线AB 的斜率为2k .证明:12k k 为定值.20.(本小题满分13分)如图,设A 是由n n ⨯个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i j n =表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记(,)S n n 为所有这样的数表构成的集合.对于(,)A S n n ∈,记()i r A 为A 的第i 行各数之积,()j c A 为A 的第j 列各数之积.令11()()()n ni j i j l A r A c A ===+∑∑.(Ⅰ)请写出一个(4,4)A S ∈,使得()0l A =; (Ⅱ)是否存在(9,9)A S ∈,使得()0l A =?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)A S n n ∈,求()l A 的取值集合.北京市西城区2012 — 2013学年度第一学期期末高三数学(理科)参考答案及评分标准2013.1一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.B ; 3.A ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B .二、填空题:本大题共6小题,每小题5分,共30分.9.1-; 10.165,125; 11.6; 12.2; 13.1[,1]2-,[,]62ππ; 14.①③.注:10、13题第一问2分,第二问3分;14题结论完全正确才给分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分)(Ⅰ)解法一:因为3sin 21cos 2B B =-,所以 223sin cos 2sin B B B =. ………………3分因为 0B <<π, 所以 sin 0B >,从而 tan 3B =, ………………5分所以 π3B =. ………………6分解法二: 依题意得 3sin 2cos 21B B +=,所以 2sin(2)16B π+=, 即 1sin(2)62B π+=. (3)分因为 0B <<π, 所以 132666B πππ<+<, 所以 5266B ππ+=. ………………5分所以 π3B =. ………………6分(Ⅱ)解法一:因为 4A π=,π3B =, 根据正弦定理得 sin sin AC BCB A=, ………………7分所以 sin 6sin BC BAC A⋅==. (8)分因为 512C A B π=π--=, ………………9分所以 562sin sin sin()12464C πππ+==+=, ………………11分所以 △ABC 的面积133sin 22S AC BC C +=⋅=. (13)分解法二:因为 4A π=,π3B =, 根据正弦定理得 sin sin AC BCB A=, ………………7分所以 sin 6sin BC BAC A⋅==. (8)分根据余弦定理得 2222cos AC AB BC AB BC B =+-⋅⋅, (9)y zOE PCBADx 分化简为 2220AB AB --=,解得 13AB =+. (11)分所以 △ABC 的面积133sin 22S AB BC B +=⋅=. ………………13分16.(本小题满分14分)(Ⅰ)证明:连接BD 与AC 相交于点O ,连结EO .因为四边形ABCD 为正方形,所以O 为BD 中点. 因为 E 为棱PD 中点.所以 EO PB //. ………………3分 因为 ⊄PB 平面EAC ,⊂EO 平面EAC ,所以直线PB //平面EAC . ………………4分(Ⅱ)证明:因为⊥PA 平面PDC ,所以CD PA ⊥. ………………5分因为四边形ABCD 为正方形,所以CD AD ⊥,所以⊥CD 平面PAD . ………………7分所以平面PAD ⊥平面ABCD . ………………8分(Ⅲ)解法一:在平面PAD 内过D 作直线Dz AD ⊥.因为平面PAD ⊥平面ABCD ,所以Dz ⊥平面ABCD .由,,Dz DA DC 两两垂直,建立如图所示的空间直角坐标系xyz D -. …………9分设4AB =,则(0,0,0),(4,0,0),(4,4,0),(0,4,0),(2,0,2),(1,0,1)D A B C P E .所以 )1,0,3(-=EA ,)0,4,4(-=AC .yzNMOEP C BADx 设平面EAC 的法向量为=()x,y,z n ,则有0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩n n所以 ⎩⎨⎧=+-=-.044,03y x z x 取1=x ,得(1,1,3)=n . (11)分易知平面ABCD 的法向量为(0,0,1)=v . ………………12分所以 ||311|cos ,|||||11⋅==〈〉n v n v n v . ………………13分由图可知二面角B AC E --的平面角是钝角, 所以二面角B AC E --的余弦值为11113-. ………………14分解法二:取AD 中点M ,BC 中点N ,连结PM ,MN . 因为ABCD 为正方形,所以CD MN //. 由(Ⅱ)可得⊥MN 平面PAD . 因为PD PA =,所以⊥PM AD .由,,MP MA MN 两两垂直,建立如图所示 的空间直角坐标系xyz M -. ………………9分设4=AB ,则(2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,0,2),(1,0,1)A B C D P E ---.所以 )1,0,3(-=EA ,)0,4,4(-=AC .设平面EAC 的法向量为=()x,y,z n ,则有0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩n n所以 ⎩⎨⎧=+-=-.044,03y x z x 取1=x ,得=n )3,1,1(. (11)分易知平面ABCD 的法向量为=v )1,0,0(. ………………12分所以||311|cos ,|||||11⋅==〈〉n v n v n v . ………………13分由图可知二面角B AC E --的平面角是钝角, 所以二面角B AC E --的余弦值为11113-. ………………14分17.(本小题满分13分)(Ⅰ)解:元件A 为正品的概率约为4032841005++=. (1)分元件B 为正品的概率约为4029631004++=. (2)分(Ⅱ)解:(ⅰ)随机变量X 的所有取值为90,45,30,15-. ………………3分433(90)545P X ==⨯=; 133(45)5420P X ==⨯=; 411(30)545P X ==⨯=; 111(15)5420P X =-=⨯=. ………………7分所以,随机变量X 的分布列为:X 90 45 30 15- P3532015120 (8)分3311904530(15)66520520EX =⨯+⨯+⨯+-⨯=. ………………9分(ⅱ)设生产的5件元件B 中正品有n 件,则次品有5n -件. 依题意,得 5010(5)140n n --≥, 解得 196n ≥. 所以 4n =,或5n =. ………………11分设“生产5件元件B 所获得的利润不少于140元”为事件A , 则 445531381()C ()()444128P A =⨯+=.………………13分18.(本小题满分13分) (Ⅰ)解:① 当0b =时,1()f x x=. 故()f x 的单调减区间为(,0)-∞,(0,)+∞;无单调增区间. ………………1分② 当0b >时,222()()b x f x x b -'=+. (3)分令()0f x '=,得1x b =,2x b =-.()f x 和()f x '的情况如下:x(,)b -∞-b -(,)b b -b(,)b +∞()f x ' -+-()f x↘↗↘故()f x 的单调减区间为(,)b -∞-,(,)b +∞;单调增区间为(,)b b -. (5)分③ 当0b <时,()f x 的定义域为{|}D x x b =∈≠±-R .因为222()0()b x f x x b -'=<+在D 上恒成立,故()f x 的单调减区间为(,)b -∞--,(,)b b ---,(,)b -+∞;无单调增区间. (7)分(Ⅱ)解:因为0b >,13[,]44x ∈,所以 ()1f x ≥ 等价于 2b x x ≤-+,其中13[,]44x ∈. ………………9分设2()g x x x =-+,()g x 在区间13[,]44上的最大值为11()24g =.………………11分则“13[,]44x ∃∈,使得 2b x x ≤-+”等价于14b ≤. 所以,b 的取值范围是1(0,]4. ………………13分19.(本小题满分14分)(Ⅰ)解:依题意,设直线AB 的方程为2x my =+. ………………1分将其代入24y x =,消去x ,整理得 2480y my --=. ………………4分从而128y y =-. (5)分(Ⅱ)证明:设33(,)M x y ,44(,)N x y .则221234341121222234123123444444y y y y y y k x x y y k x x y y y y y y y y ----+=⨯=⨯=---+-. ………………7分设直线AM 的方程为1x ny =+,将其代入24y x =,消去x , 整理得 2440y ny --=. ………………9分所以 134y y =-. ………………10分 同理可得 244y y =-. ………………11分故112121223412444k y y y y y y k y y y y ++===--+-+. ………………13分由(Ⅰ)得 122k k =,为定值. ………………14分20.(本小题满分13分)(Ⅰ)解:答案不唯一,如图所示数表符合要求.1- 1- 1- 1- 1 1 1 1 1 1 1 1 1 1 1 1………………3分(Ⅱ)解:不存在(9,9)A S ∈,使得()0l A =. ………………4分证明如下:假设存在(9,9)A S ∈,使得()0l A =.因为(){1,1}i r A ∈-,(){1,1}j c A ∈- (19,19)i j ≤≤≤≤, 所以1()r A ,2()r A ,,9()r A ,1()c A ,2()c A ,,9()c A 这18个数中有9个1,9个1-.令129129()()()()()()M r A r A r A c A c A c A =⋅⋅⋅⋅⋅⋅⋅.一方面,由于这18个数中有9个1,9个1-,从而9(1)1M =-=-. ① 另一方面,129()()()r A r A r A ⋅⋅⋅表示数表中所有元素之积(记这81个实数之积为m );129()()()c A c A c A ⋅⋅⋅也表示m , 从而21M m ==. ②①、②相矛盾,从而不存在(9,9)A S ∈,使得()0l A =. ………………8分(Ⅲ)解:记这2n 个实数之积为p .一方面,从“行”的角度看,有12()()()n p r A r A r A =⋅⋅⋅;另一方面,从“列”的角度看,有12()()()n p c A c A c A =⋅⋅⋅.从而有1212()()()()()()n n r A r A r A c A c A c A ⋅⋅⋅=⋅⋅⋅. ③ (10)分注意到(){1,1}i r A ∈-,(){1,1}j c A ∈- (1,1)i n j n ≤≤≤≤. 下面考虑1()r A ,2()r A ,,()n r A ,1()c A ,2()c A ,,()n c A 中1-的个数:由③知,上述2n 个实数中,1-的个数一定为偶数,该偶数记为2(0)k k n ≤≤;则1的个数为22n k -,所以()(1)21(22)2(2)l A k n k n k =-⨯+⨯-=-. ………………12分对数表0A :1ij a =(,1,2,3,,)i j n =,显然0()2l A n =.将数表0A 中的11a 由1变为1-,得到数表1A ,显然1()24l A n =-. 将数表1A 中的22a 由1变为1-,得到数表2A ,显然2()28l A n =-. 依此类推,将数表1k A -中的kk a 由1变为1-,得到数表k A . 即数表k A 满足:11221(1)kk a a a k n ====-≤≤,其余1ij a =.所以 12()()()1k r A r A r A ====-,12()()()1k c A c A c A ====-.所以()2[(1)()]24k l A k n k n k =-⨯+-=-.由k 的任意性知,()l A 的取值集合为{2(2)|0,1,2,,}n k k n -=. (13)分。

北京2013西城高三数学一模理科试题及答案

北京2013西城高三数学一模理科试题及答案

北京市西城区2013年高三一模试卷高三数学(理科) 2013.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U=R ,集合{|02}A x x =<<,2{|10}B x x =->,那么U A B = ð(A ){|01}x x << (B ){|01}x x <≤ (C ){|12}x x << (D ){|1x2.若复数i2ia +的实部与虚部相等,则实数a = (A )1- (B )1 (C )2- (D )23.执行如图所示的程序框图.若输出y ==θ(A )π6 (B )π6- (C )π3 (D )π3-4.从甲、乙等5名志愿者中选出4名,分别从事A ,B ,C ,D 四项不同的工作,每人承担一项.若甲、乙二人均不能从事A 工作,则不同的工作分配方案共有(A )60种 (B )72种 (C )84种 (D )96种 5.某正三棱柱的三视图如图所示,其中正(主)视 图是边长为2的正方形,该正三棱柱的表面积是(A )6 (B )12(C )12+ (D )24+6.等比数列{}n a 中,10a >,则“13a a <”是“36a a <”的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件 7.已知函数22()log 2log ()f x x x c =-+,其中0c >.若对于任意的(0,)x ∈+∞,都有()1f x ≤,则c 的取值范围是(A )1(0,]4 (B )1[,)4+∞ (C )1(0,]8 (D )1[,)8+∞ 8.如图,正方体1111ABCD ABC D -中,P 为底面ABCD上的动点,1PE AC ⊥于E ,且PA PE =,则点P 的轨迹是(A )线段 (B )圆弧 (C )椭圆的一部分 (D )抛物线的一部分第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.已知曲线C 的参数方程为2cos 12sin x y =⎧⎨=+⎩αα(α为参数),则曲线C 的直角坐标方程为 .10.设等差数列{}n a 的公差不为0,其前n 项和是n S .若23S S =,0k S =,则k =______.11.如图,正六边形ABCDEF 的边长为1,则AC DB ⋅=______.12.如图,已知AB 是圆O 的直径,P 在AB 的延长线上,PC切圆O 于点C ,CD OP ⊥于D .若6CD =,10CP =, 则圆O 的半径长为______;BP =______.13.在直角坐标系xOy 中,点B 与点(1,0)A -关于原点O 对称. 点00(,)P x y 在抛物线24y x =上,且直线AP 与BP 的斜率之积等于2,则0x =______.14.记实数12,,,n x x x 中的最大数为12max{,,,}n x x x ,最小数为12min{,,,}n x x x .设△ABC 的三边边长分别为,,a b c ,且a b c ≤≤,定义△ABC 的倾斜度为max{,,}min{,a b c a t b c a b =⋅,}b c c a.(ⅰ)若△ABC 为等腰三角形,则t=______;(ⅱ)设1a =,则t 的取值范围是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()sin cos f x x a x =-的一个零点是π4.(Ⅰ)求实数a 的值;(Ⅱ)设()()()cos g x f x f x x x =⋅-+,求()g x 的单调递增区间.16.(本小题满分13分)某班有甲、乙两个学习小组,两组的人数如下:现采用分层抽样的方法(层内采用简单随机抽样)从甲、乙两组中共抽取3名同学进行学业检测. (Ⅰ)求从甲组抽取的同学中恰有1名女同学的概率;(Ⅱ)记X 为抽取的3名同学中男同学的人数,求随机变量X 的分布列和数学期望.17.(本小题满分14分)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD ,BC AB 2=,60ABC ︒∠=,AC FB ⊥.(Ⅰ)求证:⊥AC 平面FBC ;(Ⅱ)求BC 与平面EAC 所成角的正弦值;(Ⅲ)线段ED 上是否存在点Q ,使平面EAC ⊥平面QBC ? 证明你的结论. 18.(本小题满分13分)已知函数()ln f x ax x =-,()e 3ax g x x =+,其中a ∈R .(Ⅰ)求)(x f 的极值;(Ⅱ)若存在区间M ,使)(x f 和()g x 在区间M 上具有相同的单调性,求a 的取值范围.19.(本小题满分14分)如图,椭圆22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线交椭圆于A ,B 两点.当直线AB 经过椭圆的一个顶点时,其倾斜角恰为60︒. (Ⅰ)求该椭圆的离心率;(Ⅱ)设线段AB 的中点为G ,AB 的中垂线与x 轴和y 轴分别 交于,D E 两点.记△GFD 的面积为1S ,△OED (O 为原点) 的面积为2S ,求12S S 的取值范围. 20.(本小题满分13分)已知集合*12{|(,,,),,1,2,,}(2)nn i S X X x x x x i n n ==∈=≥N .对于12(,,,)n A a a a = ,12(,,,)n n B b b b S =∈ ,定义1122(,,,)n n AB b a b a b a =---; 1212(,,,)(,,,)()n n a a a a a a =∈R λλλλλ;A 与B 之间的距离为1(,)||ni i i d A B a b ==-∑.(Ⅰ)当5n =时,设5(1,2,1,2,)A a =,(2,4,2,1,3)B =.若(,)7d A B =,求5a ;(Ⅱ)(ⅰ)证明:若,,n A B C S ∈,且0∃>λ,使AB BC λ= ,则(,)(,)(,)d A B d B C d A C +=;(ⅱ)设,,n A B C S ∈,且(,)(,)(,)d A B d B C d A C +=.是否一定0∃>λ,使AB BC λ=?说明理由; (Ⅲ)记(1,1,,1)n IS =∈ .若A ,n B S ∈,且(,)(,)d I A d I B p ==,求(,)d A B 的最大值.北京市西城区2013年高三一模试卷高三数学(理科)参考答案及评分标准2013.4一、选择题:本大题共8小题,每小题5分,共40分.1. B ; 2.A ; 3.D ; 4.B ; 5.C ; 6.B ; 7.D ; 8.A . 二、填空题:本大题共6小题,每小题5分,共30分.9.22230x y y +--=; 10.5; 11.32-12.152,5; 13.1 14.1,1[1,2. 注:12、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分. 15.(本小题满分13分) (Ⅰ)解:依题意,得π()04f =, ………………1分 即ππsincos 04422a -=-=, ………………3分 解得 1a =. ………………5分 (Ⅱ)解:由(Ⅰ)得()sin cos f x x x =-. ………………6分()()()cos g x f x f x x x =⋅-+(sin cos )(sin cos )x x x x x =--- ………………7分22(cossin )x x x =- ………………8分cos2x x = ………………9分 π2sin(2)6x =+. ………………10分由 πππ2π22π262k x k -≤+≤+,得 ππππ36k x k -≤≤+,k ∈Z . ………………12分所以 ()g x 的单调递增区间为ππ[π,π]36k k -+,k ∈Z . ………………13分16.(本小题满分13分)(Ⅰ)解:依题意,甲、乙两组的学生人数之比为 (35):(22)2:1++=, ……………1分所以,从甲组抽取的学生人数为2323⨯=;从乙组抽取的学生人数为1313⨯=.………2分 设“从甲组抽取的同学中恰有1名女同学”为事件A , ………………3分则 113528C C 15()C 28P A ⋅==,故从甲组抽取的同学中恰有1名女同学的概率为1528.………5分 (Ⅱ)解:随机变量X 的所有取值为0,1,2,3. ………………6分21522184C C 5(0)C C 28P X ⋅===⋅, 111213525221218484C C C C C 25(1)C C C C 56P X ⋅⋅⋅==+=⋅⋅, 211113235221218484C C C C C 9(2)C C C C 28P X ⋅⋅⋅==+=⋅⋅, 21322184C C 3(3)C C 56P X ⋅===⋅.……………10分 所以,随机变量X 的分布列为:………………11分5259350123285628564EX =⨯+⨯+⨯+⨯=. ………………13分 17.(本小题满分14分)(Ⅰ)证明:因为BC AB 2=,60ABC ︒∠=,在△ABC 中,由余弦定理可得 BC AC 3=,所以 BC AC ⊥. ………………2分 又因为AC FB ⊥,所以⊥AC 平面FBC . ………………4分 (Ⅱ)解:因为⊥AC 平面FBC ,所以FC AC ⊥.因为FC CD ⊥,所以⊥FC 平面ABCD . ………………5分 所以,,CA CF CB 两两互相垂直,如图建立的空间直角坐标系xyz C -. ………………6分 在等腰梯形ABCD 中,可得 CB CD =. 设1BC =,所以11(0,0,0),(0,1,0),(,,0),(,,1)2222C A BDE --. 所以)1,21,23(-=CE ,)0,0,3(=CA ,)0,1,0(=CB . 设平面EAC 的法向量为=()x,y,z n ,则有0,0.CE CA ⎧⋅=⎪⎨⋅=⎪⎩n n 所以 10,20.x y z -+== 取1z =,得=n (0,2,1). ………………8分设BC 与平面EAC 所成的角为θ,则||sin |cos ,|||||CB CB CB ⋅=〈〉==θn n n 所以 BC 与平面EAC 所成角的正弦值为552. ………………9分 (Ⅲ)解:线段ED 上不存在点Q ,使平面EAC ⊥平面QBC .证明如下: ………………10分假设线段ED 上存在点Q ,设 ),21,23(t Q - )10(≤≤t ,所以),21,23(t CQ -=. 设平面QBC 的法向量为=m ),,(c b a ,则有0,0.CB CQ ⎧⋅=⎪⎨⋅=⎪⎩m m 所以0,10.2b b tc =⎧-+= 取 1=c ,得=m )1,0,32(t -. ………………12分 要使平面EAC ⊥平面QBC ,只需0=⋅n m , ………………13分 即002110⨯+⨯+⨯=, 此方程无解. 所以线段ED 上不存在点Q ,使平面EAC ⊥平面QBC . ………………14分 18.(本小题满分13分) (Ⅰ)解:()f x 的定义域为(0,)+∞, ………………1分且11()ax f x a x x-'=-=. ………………2分① 当0a ≤时,()0f x '<,故()f x 在(0,)+∞上单调递减.从而)(x f 没有极大值,也没有极小值. ………………3分② 当0a >时,令()0f x '=,得1x a=.()f x 和()f x '的情况如下:故()f x 的单调减区间为(0,)a ;单调增区间为(,)a +∞.从而)(x f 的极小值为1()1ln f a a=+;没有极大值. ………………5分(Ⅱ)解:()g x 的定义域为R ,且 ()e 3ax g x a '=+. ………………6分③ 当0a >时,显然 ()0g x '>,从而()g x 在R 上单调递增. 由(Ⅰ)得,此时()f x 在1(,)a+∞上单调递增,符合题意. ………………8分④ 当0a =时,()g x 在R 上单调递增,()f x 在(0,)+∞上单调递减,不合题意.……9分⑤ 当0a <时,令()0g x '=,得013ln()x a a=-. ()g x 和()g x '的情况如下表:当30a -≤<时,00x ≤,此时()g x 在0(,)x +∞上单调递增,由于()f x 在(0,)+∞上单调递减,不合题意. ………………11分当3a <-时,00x >,此时()g x 在0(,)x -∞上单调递减,由于()f x 在(0,)+∞上单调递减,符合题意.综上,a 的取值范围是(,3)(0,)-∞-+∞ . ………………13分 19.(本小题满分14分)(Ⅰ)解:依题意,当直线AB 经过椭圆的顶点(0,)b 时,其倾斜角为60︒. ………………1分设 (,0)F c -,则tan60bc︒=.………………2分将 b 代入 222a b c =+,解得 2a c =.………………3分 所以椭圆的离心率为 12c e a ==. ………………4分 (Ⅱ)解:由(Ⅰ),椭圆的方程可设为2222143x y c c+=. ………………5分设11(,)A x y ,22(,)B x y .依题意,直线AB 不能与,x y 轴垂直,故设直线AB 的方程为()y k x c =+,将其代入2223412x y c +=,整理得 222222(43)84120k x ck x k c c +++-=. ………………7分则 2122843ck x x k -+=+,121226(2)43cky y k x x c k +=++=+,22243(,)4343ck ck G k k -++. ………………8分因为 GD AB ⊥,所以 2223431443Dck k k ck x k +⨯=---+,2243D ck x k -=+. ………………9分 因为 △GFD ∽△OED ,所以 2222222212222243()()||434343||()43ck ck ck S GD k k k ck S OD k ---++++==-+ ………………11分 222242222242(3)(3)99999()ck ck c k c k ck c k k++===+>. ………………13分 所以12S S 的取值范围是(9,)+∞. ………………14分 20.(本小题满分13分)(Ⅰ)解:当5n =时,由51(,)||7iii d A B a b ==-=∑,得 5|12||24||12||21||3|7a -+-+-+-+-=,即 5|3|2a -=. 由 *5a ∈N ,得 51a =,或55a =. ………………3分(Ⅱ)(ⅰ)证明:设12(,,,)n A a a a = ,12(,,,)n B b b b = ,12(,,,)n C c c c = .因为 0∃>λ,使 AB BC λ=,所以 0∃>λ,使得 11221122(,,)((,,)n n n n b a b a b a c b c b c b ---=--- λ,,, 即 0∃>λ,使得 ()i i i i b a c b λ-=-,其中1,2,,i n = .所以 ii b a -与(1,2,,)i i c b i n -= 同为非负数或同为负数. ………………5分所以 11(,)(,)||||n n iiiii i d A B d B C a b b c ==+=-+-∑∑1(||||)niiiii b a c b ==-+-∑1||(,)ni i i c a d A C ==-=∑. ………………6分(ⅱ)解:设,,n A B C S ∈,且(,)(,)(,)d A B d B C d A C +=,此时不一定0∃>λ,使得AB BC λ=. ………………7分反例如下:取(1,1,1,,1)A = ,(1,2,1,1,,1)B = ,(2,2,2,1,1,,1)C ,则 (,)1d A B =,(,)2d B C =,(,)3d A C =,显然(,)(,)(,)d A B d B C d A C +=.因为(0,1,0,0,,0)AB = ,(1,0,1,0,0,,0)BC =,所以不存在>0λ,使得AB BC λ=. ………………8分(Ⅲ)解法一:因为 1(,)||niii d A B b a ==-∑,设(1,2,,)ii b a i n -= 中有()m m n ≤项为非负数,n m -项为负数.不妨设1,2,,i m = 时0i i b a -≥;1,2,,i m m n =++ 时,0i i b a -<.所以 1(,)||niii d A B b a ==-∑12121212[()()][()()]m m m m n m m n b b b a a a a a a b b b ++++=+++-+++++++-+++因为 (,)(,)d I A d I B p ==,所以11(1)(1)nniii i a b ==-=-∑∑, 整理得 11nn iii i a b ===∑∑.所以 12121(,)||2[()]niimm i d A B b a b b ba a a ==-=+++-+++∑ .……………10分因为 121212()()m n m m n b b b b b b b b b +++++=+++-+++ ()()1p n n m p m ≤+--⨯=+;又 121ma a a m m +++≥⨯= ,所以 1212(,)2[()]m m d A B b b b a a a =+++-+++ 2[()]2p m m p ≤+-=.即 (,)2d A B p ≤.…12分 对于 (1,1,,1,1)A p =+ ,(1,1,1,,1)B p =+ ,有 A ,n B S ∈,且(,)(,)d I A d I B p ==,(,)2d A B p =.综上,(,)d A B 的最大值为2p . ……………13分 解法二:首先证明如下引理:设,x y ∈R ,则有 ||||||x y x y +≤+. 证明:因为 ||||x x x -≤≤,||||y y y -≤≤,所以 (||||)||||x y x y x y -+≤+≤+,即 ||||||x y x y +≤+. 所以 11(,)|||(1)(1)|n niiiii i d A B b a b a ===-=-+-∑∑1(|1||1|)niii b a =≤-+-∑11|1||1|2nni i i i a b p ===-+-=∑∑. ……………11分上式等号成立的条件为1i a =,或1i b =,所以 (,)2d A B p ≤. ……………12分对于 (1,1,,1,1)A p =+ ,(1,1,1,,1)B p =+ ,有 A ,n B S ∈,且(,)(,)d I A d I B p ==,(,)2d A B p =.综上,(,)d A B 的最大值为2p . ……………13分。

西城高三期末理科数学含答案

西城高三期末理科数学含答案

北京市西城区2012 — 2013学年度第一学期期末试卷高三数学(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则A B =U ( )(A )1(0,)2 (B )(1,1)- (C )1(,1)(,)2-∞-+∞U (D )(,1)(0,)-∞-+∞U2.在复平面内,复数5i2i-的对应点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.在极坐标系中,已知点(2,)6P π,则过点P 且平行于极轴的直线的方程是( )(A )sin 1=ρθ (B )sin =ρθ(C )cos 1=ρθ (D )cos =ρθ4.执行如图所示的程序框图.若输出15S =, 则框图中① 处可以填入( ) (A )2k < (B )3k < (C )4k < (D )5k <5.已知函数()cos f x x b x =+,其中b 为常数.那么“0b =”是“()f x 为奇函数”的( ) (A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件 6.已知,a b 是正数,且满足224a b <+<.那么22a b +的取值范围是( )(A )416(,)55 (B )4(,16)5 (C )(1,16) (D )16(,4)57.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是( )(A )(B )(C )(D )8.将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是( )(A )221 (B )463 (C )121 (D )263二、填空题:本大题共6小题,每小题5分,共30分.9. 已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k = _____ 10.如图,Rt △ABC 中,90ACB ︒∠=,3AC =,4BC =.以AC 为直径的圆交AB 于点D ,则BD = ;CD =______.11.设等比数列{}n a 的各项均为正数,其前n 项和为n S . 若11a =,34a =,63k S =,则k =______.12.已知椭圆 22142x y +=的两个焦点是1F ,2F ,点P 在该椭圆上. 若12||||2PF PF -=,则△12PF F 的面积是______. 13.已知函数π()sin(2)6f x x =+,其中π[,]6x a ∈-.当3a π=时,()f x 的值域是______;若()f x 的值域是1[,1]2-,则a 的取值范围是______. 14.已知函数()f x 的定义域为R .若∃常数0c >,对x ∀∈R ,有()()f x c f x c +>-,则称函数()f x 具有性质P .给定下列三个函数:①()2xf x =; ②()sin f x x =; ③3()f x x x =-.其中,具有性质P 的函数的序号是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在△ABC 21cos 2B B =-. (Ⅰ)求角B 的值; (Ⅱ)若2BC =,4A π=,求△ABC 的面积.16.(本小题满分14分)如图,四棱锥ABCD P -中,底面ABCD 为正方形,PD PA =,⊥PA 平面PDC ,E 为棱PD 的中点.(Ⅰ)求证:PB EAC PAD ⊥ABCD B AC E --8282100(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望; (ⅱ)求生产5件元件B 所获得的利润不少于140元的概率. 18.(本小题满分13分)已知函数2()xf x x b=+,其中b ∈R . (Ⅰ)求)(x f 的单调区间;(Ⅱ)设0b >.若13[,]44x ∃∈,使()1f x ≥,求b 的取值范围.19.(本小题满分14分)如图,已知抛物线24y x =的焦点为F .过点(2,0)P 的直线交抛物线于11(,)A x y ,22(,)B x y 两点,直线AF ,BF 分别与抛物线交于点M ,N .(Ⅰ)求12y y 的值;(Ⅱ)记直线MN 的斜率为1k ,直线AB 的斜率为2k .证明:12k k 为定值. 20.(本小题满分13分)如图,设A 是由n n ⨯个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i j n =L 表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记(,)S n n 为所有这样的数表构成的集合.对于(,)A S n n ∈,记()i r A 为A 的第i 行各数之积,()j c A 为A 的第j 列各数之积.令11()()()n ni j i j l A r A c A ===+∑∑.(Ⅰ)请写出一个(4,4)A S ∈,使得()0l A =; (Ⅱ)是否存在(9,9)A S ∈,使得()0l A =?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)A S n n ∈,求()l A 的取值集合.北京市西城区2012 — 2013学年度第一学期期末 高三数学(理科)参考答案及评分标准一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.B ; 3.A ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B . 二、填空题:本大题共6小题,每小题5分,共30分.9.1-; 10.165,125; 11.6; 12; 13.1[,1]2-,[,]62ππ; 14.①③. 注:10、13题第一问2分,第二问3分;14题结论完全正确才给分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分. 15.(本小题满分13分)21cos 2B B =-, 所以 2cos 2sin B B B =. (3)分 因为 0B <<π, 所以 sin 0B >, 从而 tan B =,………………5分所以 π3B =. ………………6分 解法二: 依题意得2cos 21B B +=,所以 2sin(2)16B π+=,即 1sin(2)62B π+=. ………………3分因为 0B <<π, 所以 132666B πππ<+<,所以 5266B ππ+=.………………5分所以 π3B =. ………………6分(Ⅱ)解法一:因为 4A π=,π3B=, 根据正弦定理得 sin sin AC BCB A =, ……………7分 所以 sin sin BC BAC A⋅==. ………………8分因为512C A Bπ=π--=, ………………9分所以 5sin sinsin()12464C πππ==+=, ………………11分 所以 △ABC 的面积13sin 22S AC BC C =⋅=. ………………13分 解法二:因为 4A π=,π3B=, 根据正弦定理得 sin sin AC BC B A =, ……………7分 所以 sin sin BC BAC A⋅==. ………………8分根据余弦定理得 2222cos AC AB BC AB BC B =+-⋅⋅, ………………9分化简为 2220AB AB --=,解得1AB =+ ………………11分所以 △ABC 的面积1sin 2S AB BC B =⋅=. ………………13分 16.(本小题满分14分)(Ⅰ)证明:连接BD 与AC 相交于点O ,连结EO .因为四边形ABCD 为正方形,所以O 为BD 中点.因为 E 为棱PD 中点.所以 EO PB //. ………………3分 因为 ⊄PB 平面EAC ,⊂EO 平面EAC , 所以线PB EAC ⊥PA PDC CD PA ⊥ABCD CD AD ⊥CD ⊥ABCD Dz ⊥ABCD4(0,0,0),(4,0,0),(4,4,0),(0,4,0),(2,0,2),(1,0,1)D A B C PE )1,0,3(-=)0,4,4(-=EAC=()x,y,z n 0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n ⎩⎨⎧=+-=-.044,03y x z x 1=x (1,1,3)=n ABCD (0,0,1)=v |||cos ,|||||11⋅==〈〉n v n v n v B AC E --B AC E --11113-AD M BC N PM MN ABCDCDMN //⊥MN PAD PD PA =⊥PM AD ,,MP MA MN xyz M -4=AB (2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,0,2),(1,0,1)A B C D P E ---)1,0,3(-=)0,4,4(-=EAC=()x,y,z n 0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n ⎩⎨⎧=+-=-.044,03y x z x 1=x =n )3,1,1(ABCD =v )1,0,0(|||cos ,|||||11⋅==〈〉n v n v n v B AC E --B AC E --11113-4032841005++=4029631004++=X90,45,30,15-433(90)545P X ==⨯=133(45)5420P X ==⨯=411(30)545P X ==⨯=111(15)P X =-=⨯=X1904530(15)66520520EX =⨯+⨯+⨯+-⨯=n 5n -依题意,得 5010(5)140n n --≥, 解得 196n ≥.所以 4n =,或5n =. ………………11分 设“生产5件元件B 所获得的利润不少于140元”为事件A , 则 445531381()C ()()444128P A =⨯+=.………………13分18.(本小题满分13分) (Ⅰ)解:① 当0b =时,1()f x x=. 故()f x 的单调减区间为(,0)-∞,(0,)+∞;无单调增区间. ………………1分② 当0b >时,222()()b x f x x b -'=+. ………………3分令()0f x '=,得1x =2x =()f x 和()f x '的情况如下:故()f x 的单调减区间为(,-∞,)+∞;单调增区间为(.………………5分③ 当0b <时,()f x 的定义域为{|D x x =∈≠R .因为222()0()b x f x x b -'=<+在D 上恒成立,故()f x 的单调减区间为(,-∞,(,)+∞;无单调增区间.………………7分(Ⅱ)解:因为0b >,13[,]44x ∈,所以 ()1f x ≥ 等价于 2b x x ≤-+,其中13[,]44x ∈. ………………9分 设2()g x x x =-+,()g x 在区间13[,]44上的最大值为11()24g =.………………11分 则“13[,]44x ∃∈,使得 2b x x ≤-+”等价于14b ≤. 所以,b 的取值范围是1(0,]4. ………………13分 19.(本小题满分14分)(Ⅰ)解:依题意,设直线AB 的方程为2x my =+. ………………1分将其代入24y x =,消去x ,整理得 2480y my --=. ………………4分 从而128y y =-. ………………5分 (Ⅱ)证明:设33(,)M x y ,44(,)N x y .则221234341121222234123123444444y y y y y y k x x y y k x x y y y y y y y y ----+=⨯=⨯=---+-. ………………7分 设直线AM 的方程为1x ny =+,将其代入24y x =,消去x , 整理得 2440y ny --=. ………………9分所以 134y y =-. ………………10分 同理可得 244y y =-. ………………11分 故112121223412444k y y y y y yk y y y y ++===--+-+. ………………13分 由(Ⅰ)得122k k =,为定值. ………………14分 20.(本小题满分13分)(Ⅰ)解:答案不唯一,如图所示数表符合要求.………………3分 (Ⅱ)解:不存在(9,9)A S ∈,使得()0l A =. ………………4分 证明如下:假设存在(9,9)A S ∈,使得()0l A =.因为(){1,1}i r A ∈-,(){1,1}j c A ∈- (19,19)i j ≤≤≤≤,所以1()r A ,2()r A ,L ,9()r A ,1()c A ,2()c A ,L ,9()c A 这18个数中有9个1,9个1-. 令129129()()()()()()M r A r A r A c A c A c A =⋅⋅⋅⋅⋅⋅⋅L L .一方面,由于这18个数中有9个1,9个1-,从而9(1)1M =-=-. ①另一方面,129()()()r A r A r A ⋅⋅⋅L 表示数表中所有元素之积(记这81个实数之积为m );129()()()c A c A c A ⋅⋅⋅L 也表示m , 从而21M m ==. ②①、②相矛盾,从而不存在(9,9)A S ∈,使得()0l A =. ………………8分(Ⅲ)解:记这2n 个实数之积为p .一方面,从“行”的角度看,有12()()()n p r A r A r A =⋅⋅⋅L ; 另一方面,从“列”的角度看,有12()()()n p c A c A c A =⋅⋅⋅L .从而有1212()()()()()()n n r A r A r A c A c A c A ⋅⋅⋅=⋅⋅⋅L L . ③ ………………10分注意到(){1,1}i r A ∈-,(){1,1}j c A ∈- (1,1)i n j n ≤≤≤≤.下面考虑1()r A ,2()r A ,L ,()n r A ,1()c A ,2()c A ,L ,()n c A 中1-的个数:由③知,上述2n 个实数中,1-的个数一定为偶数,该偶数记为2(0)k k n ≤≤;则1的个数为22n k -, 所以()(1)21(22)2(2)l A k n k n k =-⨯+⨯-=-. ………………12分 对数表0A :1ij a =(,1,2,3,,)i j n =L ,显然0()2l A n =. 将数表0A 中的11a 由1变为1-,得到数表1A ,显然1()24l A n =-. 将数表1A 中的22a 由1变为1-,得到数表2A ,显然2()28l A n =-. 依此类推,将数表1k A -中的kk a 由1变为1-,得到数表k A . 即数表k A 满足:11221(1)kk a a a k n ====-≤≤L ,其余1ij a =. 所以 12()()()1k r A r A r A ====-L ,12()()()1k c A c A c A ====-L . 所以()2[(1)()]24k l A k n k n k =-⨯+-=-.由k 的任意性知,()l A 的取值集合为{2(2)|0,1,2,,}n k k n -=L .……………13分。

2013西城高三期末理科数学含答案

2013西城高三期末理科数学含答案

北京市西城区2012 — 2013学年度第一学期期末试卷高三数学(理科) 2013.1一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则A B =U ( )(A )1(0,)2(B )(1,1)- (C )1(,1)(,)2-∞-+∞U (D )(,1)(0,)-∞-+∞U2.在复平面内,复数5i2i-的对应点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.在极坐标系中,已知点(2,)6P π,则过点P 且平行于极轴的直线的方程是( )(A )sin 1=ρθ (B )sin =ρθ(C )cos 1=ρθ (D )cos =ρθ4.执行如图所示的程序框图.若输出15S =,① 处可以填入( )(A )2k < (B )3k < (C )4k <(D )5k <5.已知函数()cos f x x b x =+,其中b 为常数.那么“0b =”是“()f x 为奇函数”的( )(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件6.已知,a b 是正数,且满足224a b <+<.那么22a b +的取值范围是( ) (A )416(,)55 (B )4(,16)5 (C )(1,16) (D )16(,4)57六条棱的长度中,最大的是( )(A )(B )(C )(D )8.将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是( ) (A )221 (B )463 (C )121 (D )263二、填空题:本大题共6小题,每小题5分,共30分.9. 已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k = _____10.如图,Rt △ABC 中,90ACB ︒∠=,3AC =,4BC =.以AC 为直径的圆交AB 于点D ,则BD = ;CD =______.11.设等比数列{}n a 的各项均为正数,其前n 项和为n S . 若11a =,34a =,63k S =,则k =______.12.已知椭圆 22142x y +=的两个焦点是1F ,2F ,点P 在该椭圆上.若12||||2PF PF -=,则△12PF F 的面积是______.13.已知函数π()sin(2)6f x x =+,其中π[,]6x a ∈-.当3a π=时,()f x 的值域是______;若()f x 的值域是1[,1]2-,则a 的取值范围是______.14.已知函数()f x 的定义域为R .若∃常数0c >,对x ∀∈R ,有()()f x c f x c +>-,则称函数()f x 具有性质P .给定下列三个函数:①()2x f x =; ②()sin f x x =; ③3()f x x x =-. 其中,具有性质P 的函数的序号是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)在△ABC 21cos 2B B =-. (Ⅰ)求角B 的值;(Ⅱ)若2BC =,4A π=,求△ABC 的面积. 16.(本小题满分14分)如图,四棱锥ABCD P -中,底面ABCD 为正方形,PD PA =,⊥PA 平面PDC ,E 为棱PD 的中点.(Ⅰ)求证:PB // 平面EAC ; (Ⅱ)求证:平面PAD ⊥平面ABCD ; (Ⅲ)求二面角B AC E --的余弦值. 17.(本小题满分13分)生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:(Ⅰ)试分别估计元件A ,元件B 为正品的概率;(Ⅱ)生产一件元件A ,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B ,若是正品可盈利50元,若是次品则亏损10元 .在(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望;(ⅱ)求生产5件元件B 所获得的利润不少于140元的概率. 18.(本小题满分13分) 已知函数2()xf x x b=+,其中b ∈R . (Ⅰ)求)(x f 的单调区间;(Ⅱ)设0b >.若13[,]44x ∃∈,使()1f x ≥,求b 的取值范围. 19.(本小题满分14分)如图,已知抛物线24y x =的焦点为F .过点(2,0)P 的直线交抛物线于11(,)A x y ,22(,)B x y 两点,直线AF ,BF 分别与抛物线交于点M ,N . (Ⅰ)求12y y 的值;明:12k k 为定(Ⅱ)记直线MN 的斜率为1k ,直线AB 的斜率为2k .证值.20.(本小题满分13分)如图,设A 是由n n ⨯个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i j n =L 表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记(,)S n n 为所有这样的数表构成的集合. 对于(,)A S n n ∈,记()i r A 为A 的第i 行各数之积,()j cA为A 的第j 列各数之积.令11()()()n ni j i j l A r A c A ===+∑∑.(Ⅰ)请写出一个(4,4)A S ∈,使得()0l A =;(Ⅱ)是否存在(9,9)A S ∈,使得()0l A =?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)A S n n ∈,求()l A 的取值集合.北京市西城区2012 — 2013学年度第一学期期末高三数学(理科)参考答案及评分标准 2013.1 一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.B ; 3.A ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B . 二、填空题:本大题共6小题,每小题5分,共30分.9.1-; 10.165,125; 11.6; 12; 13.1[,1]2-,[,]62ππ; 14.①③. 注:10、13题第一问2分,第二问3分;14题结论完全正确才给分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分)21cos 2B B =-, 所以 2cos 2sin B B B =.………………3分因为0B <<π, 所以 sin 0B >, 从而 tan B =, (5)分所以 π3B =. ………………6分 解法二: 依题意得2cos 21B B +=,所以 2sin(2)16B π+=,即 1sin(2)62B π+=. ………………3分 因为 0B <<π, 所以 132666B πππ<+<,所以 5266B ππ+=.………………5分 所以 π3B =. ………………6分 (Ⅱ)解法一:因为 4A π=,π3B =, 根据正弦定理得 sin sin AC BCB A=, ……………7分所以 sinsin BC BAC A⋅==. ………………8分因为 512C A B π=π--=, ………………9分所以 5sin sinsin()1246C πππ==+=, ………………11分所以 △ABC 的面积1sin 2S AC BC C =⋅=. ………………13分解法二:因为 4A π=,π3B =, 根据正弦定理得 sin sin AC BCB A=, ……………7分所以 sin sin BC BAC A⋅==. ………………8分根据余弦定理得 2222cos AC AB BC AB BC B =+-⋅⋅, ………………9分化简为 2220AB AB --=,解得 1AB = ………………11分所以 △ABC 的面积1sin 2S AB BC B =⋅=. ………………13分 16.(本小题满分14分)(Ⅰ)证明:连接BD 与AC 相交于点O ,连结因为四边形ABCD 为正方形,所以O 为BD 因为 E 为棱PD 中点.所以 EO PB //. ………………3分 因为 ⊄PB 平面EAC ,⊂EO 平面EAC ,所以直线PB //平面EAC . ………………4分(Ⅱ)证明:因为⊥PA 平面PDC ,所以CD PA ⊥. ………………5分因为四边形ABCD 为正方形,所以CD AD ⊥,所以⊥CD 平面PAD . ………………7分所以平面PAD ⊥平面ABCD . ………………8分 (Ⅲ)解法一:在平面PAD 内过D 作直线Dz AD ⊥.因为平面PAD ⊥平面ABCD ,所以Dz ⊥平面ABCD .由,,Dz DA DC 两两垂直,建立如图所示的空间直角坐标系xyz D -. …………9分设4AB =,则(0,0,0),(4,0,0),(4,4,0),(0,4,0),(2,0,2),(1,0,1)D A B C P E .所以 )1,0,3(-=EA ,)0,4,4(-=AC .设平面EAC 的法向量为=()x,y,z n ,则有0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n 所以 ⎩⎨⎧=+-=-.044,03y x z x取1=x ,得(1,1,3)=n . ………………11分 易知平面ABCD 的法向量为(0,0,1)=v . ………………12分所以 |||cos ,|||||11⋅==〈〉n v n v n v . ………………13分 由图可知二面角B AC E --的平面角是钝角,所以二面角B AC E --的余弦值为11113-. ………………14分 解法二:取AD 中点M ,BC 中点N ,连结PM ,MN .因为ABCD 为正方形,所以CD MN //.由(Ⅱ)可得⊥MN 平面PAD . 因为PD PA =,所以⊥PM AD .由,,MP MA MN 两两垂直,建立如图所示 的空间直角坐标系xyz M -. ………………9分设4=AB ,则(2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,0,2),(1,0,1)A B C D P E ---. 所以 )1,0,3(-=,)0,4,4(-=.设平面EAC 的法向量为=()x,y,z n ,则有0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n 所以 ⎩⎨⎧=+-=-.044,03y x z x 取1=x ,得=n )3,1,1(. ………………11分 易知平面ABCD 的法向量为=v )1,0,0(. ………………12分所以|||cos ,|||||11⋅==〈〉n v n v n v . ………………13分 由图可知二面角B AC E --的平面角是钝角,所以二面角B AC E --的余弦值为11113-. ………………14分 17.(本小题满分13分)(Ⅰ)解:元件A 为正品的概率约为4032841005++=. ………………1分元件B 为正品的概率约为4029631004++=. ………………2分(Ⅱ)解:(ⅰ)随机变量X 的所有取值为90,45,30,15-. ………………3分433(90)545P X ==⨯=; 133(45)5420P X ==⨯=; 411(30)545P X ==⨯=; 111(15)5420P X =-=⨯=. ………………7分所以,随机变量X 的分布列为:………………8分 3311904530(15)66520520EX =⨯+⨯+⨯+-⨯=. ………………9分 (ⅱ)设生产的5件元件B 中正品有n 件,则次品有5n -件. 依题意,得 5010(5)140n n --≥, 解得 196n ≥. 所以 4n =,或5n =. ………………11分设“生产5件元件B 所获得的利润不少于140元”为事件A ,则 445531381()C ()()444128P A =⨯+=. ………………13分 18.(本小题满分13分)(Ⅰ)解:① 当0b =时,1()f x x=.故()f x 的单调减区间为(,0)-∞,(0,)+∞;无单调增区间. ………………1分② 当0b >时,222()()b x f x x b -'=+. ………………3分 令()0f x '=,得1x =,2x =()f x 和()f x '的情况如下:故()f x 的单调减区间为(,-∞,)+∞;单调增区间为(. ………………5分③ 当0b <时,()f x 的定义域为{|D x x =∈≠R .因为222()0()b x f x x b -'=<+在D 上恒成立, 故()f x 的单调减区间为(,-∞,(,)+∞;无单调增区间.………………7分(Ⅱ)解:因为0b >,13[,]44x ∈,所以 ()1f x ≥ 等价于 2b x x ≤-+,其中13[,]44x ∈. ………………9分 设2()g x x x =-+,()g x 在区间13[,]44上的最大值为11()24g =.………………11分 则“13[,]44x ∃∈,使得 2b x x ≤-+”等价于14b ≤.所以,b 的取值范围是1(0,]4. ………………13分 19.(本小题满分14分)(Ⅰ)解:依题意,设直线AB 的方程为2x my =+. ………………1分将其代入24y x =,消去x ,整理得 2480y my --=. ………………4分从而128y y =-. ………………5分 (Ⅱ)证明:设33(,)M x y ,44(,)N x y .则221234341121222234123123444444y y y y y y k x x y y k x x y y y y y y y y ----+=⨯=⨯=---+-. ..................7分 设直线AM 的方程为1x ny =+,将其代入24y x =,消去x , 分 整理得 2440y ny --=. (9)10分所以 134y y =-. ………………同理可得 244y y =-. ………………11分 故112121223412444k y y y y y yk y y y y ++===--+-+. ………………13分 由(Ⅰ)得122k k =,为定值. ………………14分 20.(本小题满分13分)(Ⅰ)解:答案不唯一,如图所示数表符合要求.………………3分(Ⅱ)解:不存在(9,9)A S ∈,使得()0l A =. ………………4分证明如下:假设存在(9,9)A S ∈,使得()0l A =.因为(){1,1}i r A ∈-,(){1,1}j c A ∈- (19,19)i j ≤≤≤≤,所以1()r A ,2()r A ,L ,9()r A ,1()c A ,2()c A ,L ,9()c A 这18个数中有9个1,9个1-.令129129()()()()()()M r A r A r A c A c A c A =⋅⋅⋅⋅⋅⋅⋅L L .一方面,由于这18个数中有9个1,9个1-,从而9(1)1M =-=-. ①另一方面,129()()()r A r A r A ⋅⋅⋅L 表示数表中所有元素之积(记这81个实数之积为m );129()()()c A c A c A ⋅⋅⋅L 也表示m , 从而21M m ==. ②①、②相矛盾,从而不存在(9,9)A S ∈,使得()0l A =. ………………8分 (Ⅲ)解:记这2n 个实数之积为p .一方面,从“行”的角度看,有12()()()n p r A r A r A =⋅⋅⋅L ; 另一方面,从“列”的角度看,有12()()()n p c A c A c A =⋅⋅⋅L .从而有1212()()()()()()n n r A r A r A c A c A c A ⋅⋅⋅=⋅⋅⋅L L . ③ ………………10分 注意到(){1,1}i r A ∈-,(){1,1}j c A ∈- (1,1)i n j n ≤≤≤≤.下面考虑1()r A ,2()r A ,L ,()n r A ,1()c A ,2()c A ,L ,()n c A 中1-的个数:由③知,上述2n 个实数中,1-的个数一定为偶数,该偶数记为2(0)k k n ≤≤;则1的个数为22n k -,所以()(1)21(22)2(2)l A k n k n k =-⨯+⨯-=-. ………………12分 对数表0A :1ij a =(,1,2,3,,)i j n =L ,显然0()2l A n =.将数表0A 中的11a 由1变为1-,得到数表1A ,显然1()24l A n =-. 将数表1A 中的22a 由1变为1-,得到数表2A ,显然2()28l A n =-. 依此类推,将数表1k A -中的kk a 由1变为1-,得到数表k A . 即数表k A 满足:11221(1)kk a a a k n ====-≤≤L ,其余1ij a =. 所以 12()()()1k r A r A r A ====-L ,12()()()1k c A c A c A ====-L . 所以()2[(1)()]24k l A k n k n k =-⨯+-=-.由k 的任意性知,()l A 的取值集合为{2(2)|0,1,2,,}n k k n -=L .……………13分 2020-2-8。

2013西城高三期末理科数学含答案

2013西城高三期末理科数学含答案

北京市西城区2012 — 2013学年度第一学期期末试卷高三数学(理科)2013.1一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|01}Ax x R ,{|(21)(1)0}B x x x R ,则A B()(A )1(0,)2(B )(1,1)(C )1(,1)(,)2(D )(,1)(0,)2.在复平面内,复数5i 2i的对应点位于()(A )第一象限(B )第二象限(C )第三象限(D )第四象限3.在极坐标系中,已知点(2,)6P ,则过点P 且平行于极轴的直线的方程是()(A )sin 1(B )sin 3(C )cos 1(D )cos 34.执行如图所示的程序框图.若输出15S ,则框图中①处可以填入()(A )2k (B )3k (C )4k (D )5k5.已知函数()cos f x x b x ,其中b 为常数.那么“0b ”是“()f x 为奇函数”的()(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件6.已知,a b 是正数,且满足224a b .那么22ab 的取值范围是()(A )416(,)55(B )4(,16)5(C )(1,16)(D )16(,4)57.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是()(A )25(B )26(C )27(D )428.将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是()(A )221(B )463(C )121(D )263二、填空题:本大题共6小题,每小题5分,共30分.9. 已知向量(1,3)a ,(2,1)b ,(3,2)c .若向量c 与向量k a b 共线,则实数k_____10.如图,Rt △ABC 中,90ACB,3AC,4BC .以AC 为直径的圆交AB 于点D ,则BD;CD______.11.设等比数列{}n a 的各项均为正数,其前n 项和为n S .若11a ,34a ,63k S ,则k______.12.已知椭圆22142xy的两个焦点是1F ,2F ,点P 在该椭圆上.若12||||2PF PF ,则△12PF F 的面积是______.13.已知函数π()sin(2)6f x x,其中π[,]6x a .当3a 时,()f x 的值域是______;若()f x 的值域是1[,1]2,则a 的取值范围是______.14.已知函数()f x 的定义域为R .若常数0c ,对x R ,有()()f x c f x c ,则称函数()f x 具有性质P .给定下列三个函数:①()2xf x ;②()sin f x x ;③3()f x xx .其中,具有性质P 的函数的序号是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)在△ABC 中,已知3sin 21cos2B B .(Ⅰ)求角B 的值;(Ⅱ)若2BC,4A,求△ABC 的面积.16.(本小题满分14分)如图,四棱锥ABCD P 中,底面ABCD 为正方形,PD PA ,PA平面PDC ,E 为棱PD 的中点.(Ⅰ)求证:PB // 平面EAC ;(Ⅱ)求证:平面PAD 平面ABCD ;(Ⅲ)求二面角B ACE的余弦值.17.(本小题满分13分)生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:测试指标[70,76)[76,82)[82,88)[88,94)[94,100]元件A 81240328元件B71840296(Ⅰ)试分别估计元件A ,元件B 为正品的概率;(Ⅱ)生产一件元件A ,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B ,若是正品可盈利50元,若是次品则亏损10元 .在(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望;(ⅱ)求生产5件元件B 所获得的利润不少于140元的概率.18.(本小题满分13分)已知函数2()x f x xb,其中b R .(Ⅰ)求)(x f 的单调区间;(Ⅱ)设0b .若13[,]44x ,使()1f x ,求b 的取值范围.19.(本小题满分14分)如图,已知抛物线24yx 的焦点为F .过点(2,0)P 的直线交抛物线于11(,)A x y ,22(,)B x y 两点,直线AF ,BF 分别与抛物线交于点M ,N .(Ⅰ)求12y y 的值;(Ⅱ)记直线MN 的斜率为1k ,直线AB 的斜率为2k .证明:12k k 为定值.20.(本小题满分13分)如图,设A 是由n n 个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i jn 表示位于第i 行第j 列的实数,且{1,1}ija .记(,)S n n 为所有这样的数表构成的集合.对于(,)AS n n ,记()i r A 为A 的第i 行各数之积,()j c A 为A 的第j 列各数之积.令11()()()nni j i j l A r A c A .(Ⅰ)请写出一个(4,4)A S ,使得()0l A ;(Ⅱ)是否存在(9,9)AS ,使得()0l A ?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)AS n n ,求()l A 的取值集合.北京市西城区2012 — 2013学年度第一学期期末高三数学(理科)参考答案及评分标准2013.1一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.B ; 3.A ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B .二、填空题:本大题共6小题,每小题5分,共30分.9.1; 10.165,125;11.6;12.2; 13.1[,1]2,[,]62; 14.①③.注:10、13题第一问2分,第二问3分;14题结论完全正确才给分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分)(Ⅰ)解法一:因为3sin 21cos2BB ,所以223sin cos 2sin B BB .………………3分因为0B,所以sin 0B ,从而tan 3B ,………………5分所以π3B.………………6分解法二:依题意得3sin 2cos 21B B ,所以2sin(2)16B,即1sin(2)62B .………………3分因为0B,所以132666B,所以5266B.………………5分所以π3B.………………6分(Ⅱ)解法一:因为4A ,π3B,根据正弦定理得sin sin AC BC BA,……………7分所以sin 6sin BC B AC A .………………8分因为512CAB ,………………9分所以562sin sin sin()12464C ,………………11分所以△ABC 的面积133sin 22SAC BC C .………………13分解法二:因为4A,π3B,根据正弦定理得sin sin AC BC BA,……………7分所以sin 6sin BC B ACA .………………8分根据余弦定理得2222cos AC ABBCAB BC B ,………………9分化简为2220ABAB,解得13AB.………………11分yzOE PCBADx所以△ABC 的面积133sin 22SAB BC B.………………13分16.(本小题满分14分)(Ⅰ)证明:连接BD 与AC 相交于点O ,连结EO .因为四边形ABCD 为正方形,所以O 为BD 中点.因为E 为棱PD 中点.所以EO PB//.………………3分因为PB平面EAC ,EO平面EAC ,所以直线PB //平面EAC .………………4分(Ⅱ)证明:因为PA平面PDC ,所以CD PA.………………5分因为四边形ABCD 为正方形,所以CD AD,所以CD 平面PAD .………………7分所以平面PAD 平面ABCD .………………8分(Ⅲ)解法一:在平面PAD 内过D 作直线DzAD .因为平面PAD 平面ABCD ,所以Dz 平面ABCD .由,,Dz DA DC 两两垂直,建立如图所示的空间直角坐标系xyz D.…………9分设4AB ,则(0,0,0),(4,0,0),(4,4,0),(0,4,0),(2,0,2),(1,0,1)D A B C P E .所以)1,0,3(EA,)0,4,4(AC.设平面EAC 的法向量为=()x,y,z n ,则有0,0.EA ACn n 所以.044,03y x z x取1x ,得(1,1,3)n.………………11分易知平面ABCD 的法向量为(0,0,1)v.………………12分所以||311|cos ,|||||11〈〉n v n v n v .………………13分由图可知二面角B ACE 的平面角是钝角,所以二面角B ACE 的余弦值为11113.………………14分解法二:取AD 中点M ,BC 中点N ,连结PM ,MN .因为ABCD 为正方形,所以CD MN //.yzNMOEP C BADx由(Ⅱ)可得MN平面PAD .因为PD PA ,所以PMAD .由,,MP MA MN 两两垂直,建立如图所示的空间直角坐标系xyz M .………………9分设4AB ,则(2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,0,2),(1,0,1)A B C D P E .所以)1,0,3(EA,)0,4,4(AC.设平面EAC 的法向量为=()x,y,z n ,则有0,0.EA ACn n 所以.044,03y x z x 取1x,得n)3,1,1(.………………11分易知平面ABCD 的法向量为v)1,0,0(.………………12分所以||311|cos ,|||||11〈〉n v n v n v .………………13分由图可知二面角B ACE 的平面角是钝角,所以二面角B ACE 的余弦值为11113.………………14分17.(本小题满分13分)(Ⅰ)解:元件A 为正品的概率约为4032841005.………………1分元件B 为正品的概率约为4029631004.………………2分(Ⅱ)解:(ⅰ)随机变量X 的所有取值为90,45,30,15.………………3分433(90)545P X ;133(45)5420P X ;411(30)545P X;111(15)5420P X.………………7分所以,随机变量X 的分布列为: X 90453015P3532015120………………8分3311904530(15)66520520EX.………………9分(ⅱ)设生产的5件元件B 中正品有n 件,则次品有5n 件.依题意,得5010(5)140n n ,解得196n.所以4n ,或5n .………………11分设“生产5件元件B 所获得的利润不少于140元”为事件A ,则445531381()C ()()444128P A .………………13分18.(本小题满分13分)(Ⅰ)解:①当0b 时,1()f x x.故()f x 的单调减区间为(,0),(0,);无单调增区间.………………1分②当0b 时,222()()b xf x xb .………………3分令()0f x ,得1x b ,2x b .()f x 和()f x 的情况如下:x (,)b b(,)b b b(,)b ()f x 0()f x ↘↗↘故()f x 的单调减区间为(,)b ,(,)b ;单调增区间为(,)b b .………………5分③当0b 时,()f x 的定义域为{|}Dx x b R .因为222()0()b xf x xb 在D 上恒成立,故()f x 的单调减区间为(,)b ,(,)b b ,(,)b ;无单调增区间.………………7分(Ⅱ)解:因为0b ,13[,]44x,所以()1f x 等价于2b x x ,其中13[,]44x .………………9分设2()g x x x ,()g x 在区间13[,]44上的最大值为11()24g .………………11分则“13[,]44x ,使得2bxx ”等价于14b.所以,b 的取值范围是1(0,]4.………………13分19.(本小题满分14分)(Ⅰ)解:依题意,设直线AB 的方程为2xmy .………………1分将其代入24y x ,消去x ,整理得2480ymy .………………4分从而128y y .………………5分(Ⅱ)证明:设33(,)M x y ,44(,)N x y .则221234341121222234123123444444yy y y y y k x x y y k x x y y y y y y y y .………………7分设直线AM 的方程为1xny ,将其代入24yx ,消去x ,整理得2440yny .………………9分所以134y y .………………10分同理可得244y y .………………11分故112121223412444k y y y y y y k y y y y .………………13分由(Ⅰ)得122k k ,为定值.………………14分20.(本小题满分13分)(Ⅰ)解:答案不唯一,如图所示数表符合要求.1111111111111111………………3分(Ⅱ)解:不存在(9,9)AS ,使得()0l A .………………4分证明如下:假设存在(9,9)A S ,使得()0l A .因为(){1,1}i r A ,(){1,1}j c A (19,19)ij ,所以1()r A ,2()r A ,,9()r A ,1()c A ,2()c A ,,9()c A 这18个数中有9个1,9个1.令129129()()()()()()M r A r A r A c A c A c A .一方面,由于这18个数中有9个1,9个1,从而9(1)1M.①另一方面,129()()()r A r A r A 表示数表中所有元素之积(记这81个实数之积为m );129()()()c A c A c A 也表示m ,从而21Mm.②①、②相矛盾,从而不存在(9,9)A S ,使得()0l A .………………8分(Ⅲ)解:记这2n 个实数之积为p .一方面,从“行”的角度看,有12()()()n p r A r A r A ;另一方面,从“列”的角度看,有12()()()n pc A c A c A .从而有1212()()()()()()n n r A r A r A c A c A c A .③………………10分注意到(){1,1}i r A ,(){1,1}j c A (1,1)i n j n .下面考虑1()r A ,2()r A ,,()n r A ,1()c A ,2()c A ,,()n c A 中1的个数:由③知,上述2n 个实数中,1的个数一定为偶数,该偶数记为2(0)k kn ;则1的个数为22n k ,所以()(1)21(22)2(2)l A k nk nk .………………12分对数表0A :1ija (,1,2,3,,)i jn ,显然0()2l A n .将数表0A 中的11a 由1变为1,得到数表1A ,显然1()24l A n .将数表1A 中的22a 由1变为1,得到数表2A ,显然2()28l A n.依此类推,将数表1k A 中的kk a 由1变为1,得到数表k A .即数表k A 满足:11221(1)kka a a kn ,其余1ij a .所以12()()()1k r A r A r A ,12()()()1k c A c A c A .所以()2[(1)()]24k l A kn k nk .由k 的任意性知,()l A 的取值集合为{2(2)|0,1,2,,}n k kn .……………13分。

2013年北京高三(二模)数学(理)分类汇编系列三解析版11概率与统计

2013年北京高三(二模)数学(理)分类汇编系列三解析版11概率与统计

【解析分类汇编系列三:北京2013(二模)数学理】11:概率与统计一、选择题1 .(2013北京东城高三二模数学理科)如图是某班50位学生期中考试数学成绩的频率分布直方图,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100] ,则图中x 的值等于 ( )A .0.754B .0.048C .0.018D .0.012【答案】C 成绩在[)8090,的矩形的面积为10.0061030.01100.0541010.720.18-⨯⨯-⨯-⨯=-=,所以100.18x =,解得0.018x =,选C.2 .(2013北京丰台二模数学理科)已知变量,x y 具有线性相关关系,测得(,)x y 的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为ˆ 1.4yx a =+,则a 的值是_______. 【答案】0.9样本数据的平均数1(123) 1.54x =++=,1(1245)34y =+++=,即回归直线过点(1.5,3),代入回归直线得3 1.4 1.5a =⨯+,解得0.9a =。

3(2013北京西城区二模数学理科试题右图是甲,乙两组各6据的茎叶图.记甲,乙两组数据的平均数依次为x 甲和x 乙, 则 x 甲______x 乙. (填入:“>”,“=”,或“<”) 【答案】>由茎叶图,甲班平均身高为1160(57101279)16031636++++--=+=,乙班平均身高为1160(12341210)16021626+++++-=+=,所以x 甲>x 乙。

4.(2013北京丰台二模数学理科)在平面区域01,01x y ≤≤⎧⎨≤≤⎩内任取一点(,)P x y ,若(,)x y 满足2x y b +≤的概率大于14,则b 的取值范围是 ( )A .(,2)-∞B .(0,2)C .(1,3)D .(1,)+∞【答案】D其构成的区域D 如图所示的边长为1的正方形,面积为S 1=1,满足2x y b +≤所表示的平面区域是以原点为直角坐标顶点,以b 为直角边长的直角三角形,其面积为221224b b S b =⨯⨯=,所以在区域D 内随机取一个点,则此点满足2x y b +≤的概率22414b bP ==,由题意令2144b >,解得1b >,选D .5 .(2013北京海淀二模数学理科)如图,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若撒在图形Ω内和正方形内的豆子数分别为,m n ,则图形Ω面积的估计值为( )A .ma nB .na mC .2ma n D .2na m【答案】C设图形Ω面积的为S ,则由实验结果得2S m a n=,解2maS n =,所以选C.6.(2013北京昌平二模数学理科)在区间[]0,π上随机取一个数x,则事件“1tan cos 2x x ≥g ”发生的概率为 ( )A .13B .12C .23D .34【答案】C 由1tan cos 2x x ≥g 得1sin 2x ≥,解得566x ππ≤≤,所以事件“1tan cos 2x x ≥g ”发生的概率为52663πππ-=,选C. 二、填空题7 .(2013北京朝阳二模数学理科试题)将一个质点随机投放在关于,x y 的不等式组3419,1,1x y x y +≤⎧⎪≥⎨⎪≥⎩所构成的三角形区域内,则该质点到此三角形的三个顶点的距离均不小于1的概率是_______.【答案】112π-画出关于,x y 的不等式组3419,1,1x y x y +≤⎧⎪≥⎨⎪≥⎩所构成的三角形区域,如图.。

北京市西城区2013届高三上学期期末考试数学理科试题

北京市西城区2013届高三上学期期末考试数学理科试题

北京市西城区2012 — 2013学年度第一学期期末试卷高三数学(理科) 2013.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则A B =( )(A )1(0,)2(B )(1,1)-(C )1(,1)(,)2-∞-+∞(D )(,1)(0,)-∞-+∞ 【答案】D【KS5U 解析】1{|(21)(1)0}{1}2B x x x x x x =-+>=><-或,所以{01}A B x xx =><-或,即(,1)(0,)-∞-+∞,选D.2.在复平面内,复数5i2i-的对应点位于( ) (A )第一象限(B )第二象限(C )第三象限(D )第四象限 【答案】B【KS5U 解析】55(2)5(2)122(2)(2)5i i i i i i i i i ++===-+-+-,,对应的点的坐标为(1,2)-,所以在第二象限,选B.3.在极坐标系中,已知点(2,)6P π,则过点P 且平行于极轴的直线的方程是( )(A )sin 1=ρθ(B )sin =ρθC )cos 1=ρθ(D )cos ρθ 【答案】A【KS5U 解析】先将极坐标化成直角坐标表示,(2,)6P π 转化为点cos 2cossin 2sin166x y ππρθρθ======,即),过点且平行于x 轴的直线为1y =,在化为极坐标 为sin 1=ρθ,选A.4.执行如图所示的程序框图.若输出15S =, 则框图中① 处可以填入( (A )2k <(B )3k <(C )4k <(D )5k < 【答案】C【KS5U 解析】第一次循环,满足条件,112,2S k =+==;第二次循环,满足条件,2226,3S k =+==;第三次循环,满足条件,26315,4S k =+==;第四次循环,不满足条件,输出15S =,此时4k =,所以条件应为4k <,选C.5.已知函数()cos f x x b x =+,其中b 为常数.那么“0b =”是“()f x 为奇函数”的( ) (A )充分而不必要条件(B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】C【KS5U 解析】若0b =,则()c o s f x x b x x =+=为奇函数。

北京西城区2013届高三上学期期末考试数学(理科)试题

北京西城区2013届高三上学期期末考试数学(理科)试题

北京市西城区2012 — 2013学年度第一学期期末试卷高三数学(理科) 2013.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则A B = ( ) (A )1(0,)2(B )(1,1)-(C )1(,1)(,)2-∞-+∞(D )(,1)(0,)-∞-+∞2.在复平面内,复数5i 2i-的对应点位于( )(A )第一象限(B )第二象限(C )第三象限(D )第四象限3.在极坐标系中,已知点(2,)6P π,则过点P 且平行于极轴的直线的方程是( )(A )sin 1=ρθ(B )sin =ρθ(C )cos 1=ρθ(D )cos =ρθ4.执行如图所示的程序框图.若输出15S =, 则框图中① 处可以填入( ) (A )2k < (B )3k < (C )4k < (D )5k <5.已知函数()cos f x x b x =+,其中b 为常数.那么“0b =”是“()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件6.已知,a b 是正数,且满足224a b <+<.那么22a b +的取值范围是( )(A )416(,)55(B )4(,16)5(C )(1,16) (D )16(,4)57.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是( )(A )(B )(C )(D )8.将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是( ) (A )221(B )463(C )121(D )263第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k = _____.10.如图,R t △A B C 中,90ACB ︒∠=,3A C =,4B C =.以A C 为直径的圆交AB 于点D ,则 BD = ;C D =______.11.设等比数列{}n a 的各项均为正数,其前n 项和为n S .若11a =,34a =,63k S =,则k =______. 12.已知椭圆22142xy+=的两个焦点是1F ,2F ,点P 在该椭圆上.若12||||2PF PF -=,则△12P F F 的面积是______. 13.已知函数π()sin(2)6f x x =+,其中π[,]6x a ∈-.当3a π=时,()f x 的值域是______;若()f x 的值域是1[,1]2-,则a 的取值范围是______.14.已知函数()f x 的定义域为R .若∃常数0c >,对x ∀∈R ,有()()f x c f x c +>-,则称函数()f x 具有性质P .给定下列三个函数:①()2xf x =; ②()sin f x x =; ③3()f x x x =-.其中,具有性质P 的函数的序号是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在△ABC 21cos 2B B =-. (Ⅰ)求角B 的值; (Ⅱ)若2B C =,4A π=,求△ABC 的面积.16.(本小题满分14分)如图,四棱锥ABCD P -中,底面ABCD 为正方形,PD PA =,⊥PA 平面PDC ,E 为棱PD 的中点.(Ⅰ)求证:PB // 平面EAC ;(Ⅱ)求证:平面P A D ⊥平面A B C D ; (Ⅲ)求二面角B AC E --的余弦值.17.(本小题满分13分)生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:(Ⅰ)试分别估计元件A ,元件B 为正品的概率;(Ⅱ)生产一件元件A ,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B ,若是正品可盈利50元,若是次品则亏损10元 .在(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望; (ⅱ)求生产5件元件B 所获得的利润不少于140元的概率. 18.(本小题满分13分)已知函数2()x f x x b=+,其中b ∈R .(Ⅰ)求)(x f 的单调区间;(Ⅱ)设0b >.若13[,]44x ∃∈,使()1f x ≥,求b 的取值范围.19.(本小题满分14分)如图,已知抛物线24y x =的焦点为F .过点(2,0)P 的直线交抛物线于11(,)A x y ,22(,)B x y 两点,直线A F ,BF 分别与抛物线交于点M ,N .(Ⅰ)求12y y 的值;(Ⅱ)记直线M N 的斜率为1k ,直线AB 的斜率为2k .证明:12k k 为定值.20.(本小题满分13分)如图,设A 是由n n ⨯个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i j n = 表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记(,)S n n 为所有这样的数表构成的集合.对于(,)A S n n ∈,记()i r A 为A 的第i 行各数之积,()j c A 为A 的第j 列各数之积.令11()()()nniji j l A r A cA ===+∑∑.(Ⅰ)请写出一个(4,4)A S ∈,使得()0l A =; (Ⅱ)是否存在(9,9)A S ∈,使得()0l A =?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)A S n n ∈,求()l A 的取值集合.北京市西城区2012 — 2013学年度第一学期期末高三数学(理科)参考答案及评分标准2013.1一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.B ; 3.A ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B .二、填空题:本大题共6小题,每小题5分,共30分.9.1-; 10.165,125; 11.6;12 13.1[,1]2-,[,]62ππ; 14.①③. 注:10、13题第一问2分,第二问3分;14题结论完全正确才给分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解法一21cos 2B B =-, 所以 2cos 2sin B B B =.……………3分因为 0B <<π, 所以 sin 0B >, 从而 tan B =5分所以 π3B =. ………………6分解法二: 依题意得2cos 21B B +=,所以 2sin(2)16B π+=,即 1sin(2)62B π+=. (3)分因为 0B <<π, 所以 132666B πππ<+<,所以 5266B ππ+=.…………5分所以 π3B =. ………………6分(Ⅱ)解法一:因为 4A π=,π3B =,根据正弦定理得sin sin A C B C BA=, ………7分所以 sin sin B C B A C A⋅==. ………………8分因为 512C A B π=π--=, ………………9分所以 5sin sin sin()12464C πππ+==+=, ………………11分所以 △ABC 的面积13sin 22S AC BC C +=⋅=.………………13分解法二:因为 4A π=,π3B =,根据正弦定理得 sin sin A C B C B A=, ………………7分所以 sin sin B C B A C A⋅==. ………………8分根据余弦定理得 2222cos AC AB BC AB BC B =+-⋅⋅, ………………9分 化简为 2220AB AB --=,解得 1AB =+………………11分所以 △ABC 的面积1sin 22S AB BC B =⋅=………………13分16.(本小题满分14分)(Ⅰ)证明:连接BD 与AC 相交于点O ,连结EO .因为四边形ABCD 为正方形,所以O 为BD 中点.因为 E 为棱PD 中点.所以 EO PB //. …………3分 因为 ⊄PB 平面EAC ,⊂EO 平面EAC , 所以直线PB //平面EAC . ………………4分(Ⅱ)证明:因为⊥PA 平面PDC ,所以CD PA ⊥. ………………5分因为四边形ABCD 为正方形,所以CD AD ⊥, 所以⊥CD 平面PAD . ……7分所以平面PAD ⊥平面ABCD . ………………8分(Ⅲ)解法一:在平面PAD 内过D 作直线D z AD ⊥.因为平面PAD ⊥平面ABCD ,所以D z ⊥平面ABCD .由,,Dz DA DC 两两垂直,建立如图所示的空间直角坐标系xyz D -. …………9分 设4A B =,则(0,0,0),(4,0,0),(4,4,0),(0,4,0),(2,0,2),(1,0,1)D A B C P E .所以 )1,0,3(-=EA ,)0,4,4(-=AC .设平面EAC 的法向量为=()x,y,z n ,则有0,0.E A A C ⎧⋅=⎪⎨⋅=⎪⎩n n所以 ⎩⎨⎧=+-=-.044,03y x z x 取1=x ,得(1,1,3)=n . ………………11分易知平面ABCD 的法向量为(0,0,1)=v . ………………12分所以 |||cos ,|||||11⋅==〈〉n v n v n v . ………………13分由图可知二面角B AC E --的平面角是钝角, 所以二面角B AC E --的余弦值为11113-. ………………14分解法二:取AD 中点M ,BC 中点N ,连结PM ,MN . 因为ABCD 为正方形,所以CD MN //. 由(Ⅱ)可得⊥MN 平面PAD . 因为PD PA =,所以⊥PM AD . 由,,MP MA MN 两两垂直,建立如图所示的空间直角坐标系xyz M -. ………………9分设4=AB ,则(2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,0,2),(1,0,1)A B C D P E ---.所以 )1,0,3(-=EA ,)0,4,4(-=AC .设平面EAC 的法向量为=()x,y,z n ,则有0,0.E A A C ⎧⋅=⎪⎨⋅=⎪⎩ n n所以 ⎩⎨⎧=+-=-.044,03y x z x 取1=x ,得=n )3,1,1(. ………………11分易知平面ABCD 的法向量为=v )1,0,0(. ………………12分所以|||cos ,|||||11⋅==〈〉n v n v n v . ………………13分由图可知二面角B AC E --的平面角是钝角, 所以二面角B AC E --的余弦值为11113-. ………………14分17.(本小题满分13分)(Ⅰ)解:元件A 为正品的概率约为4032841005++=. ………………1分 元件B 为正品的概率约为4029631004++=. ………………2分(Ⅱ)解:(ⅰ)随机变量X 的所有取值为90,45,30,15-. ………………3分433(90)545P X ==⨯=; 133(45)5420P X ==⨯=;411(30)545P X ==⨯=; 111(15)5420P X =-=⨯=. ………………7分所以,随机变量X 的分布列为:………………8分3311904530(15)66520520E X =⨯+⨯+⨯+-⨯=. ………………9分(ⅱ)设生产的5件元件B 中正品有n 件,则次品有5n -件. 依题意,得 5010(5)140n n --≥, 解得 196n ≥. 所以 4n =,或5n =.………11分设“生产5件元件B 所获得的利润不少于140元”为事件A , 则 445531381()C ()()444128P A =⨯+=. ………………13分18.(本小题满分13分) (Ⅰ)解:① 当0b =时,1()f x x=. 故()f x 的单调减区间为(,0)-∞,(0,)+∞;无单调增区间. (1)分② 当0b >时,222()()b xf x x b -'=+. ………………3分令()0f x '=,得1x =2x =()f x 和()f x '的情况如下:故()f x 的单调减区间为(,-∞,)+∞;单调增区间为(.………………5分③ 当0b <时,()f x 的定义域为{|D x x =∈≠R .因为222()0()b xf x x b -'=<+在D 上恒成立,故()f x 的单调减区间为(,-∞,(,)+∞;无单调增区间.………………7分(Ⅱ)解:因为0b >,13[,]44x ∈,所以 ()1f x ≥ 等价于 2b x x ≤-+,其中13[,]44x ∈.……9分设2()g x x x =-+,()g x 在区间13[,]44上的最大值为11()24g =.………………11分则“13[,]44x ∃∈,使得 2b x x ≤-+”等价于14b ≤.所以,b 的取值范围是1(0,]4. ………………13分19.(本小题满分14分)(Ⅰ)解:依题意,设直线AB 的方程为2x my =+. ………………1分将其代入24y x =,消去x ,整理得 2480y my --=. ………………4分 从而128y y =-.………………5分(Ⅱ)证明:设33(,)M x y ,44(,)N x y .则221234341121222234123123444444y y y y y y k x x y y k x x y y y y y y y y ----+=⨯=⨯=---+-. ………………7分设直线A M 的方程为1x ny =+,将其代入24y x =,消去x ,整理得 2440y ny --=. ………………9分所以 134y y =-. ………………10分 同理可得 244y y =-. ………………11分 故112121223412444k y y y y y y k y y y y ++===--+-+. ………………13分由(Ⅰ)得 122k k =,为定值. ………………14分20.(本小题满分13分)(Ⅰ)解:答案不唯一,如图所示数表符合要求.………………3分 (Ⅱ)解:不存在(9,9)A S ∈,使得()0l A =. ………………4分 证明如下:假设存在(9,9)A S ∈,使得()0l A =.因为(){1,1}i r A ∈-,(){1,1}j c A ∈- (19,19)i j ≤≤≤≤,所以1()r A ,2()r A , ,9()r A ,1()c A ,2()c A , ,9()c A 这18个数中有9个1,9个1-. 令129129()()()()()()M r A r A r A c A c A c A =⋅⋅⋅⋅⋅⋅⋅ .一方面,由于这18个数中有9个1,9个1-,从而9(1)1M =-=-. ①另一方面,129()()()r A r A r A ⋅⋅⋅ 表示数表中所有元素之积(记这81个实数之积为m );129()()()c A c A c A ⋅⋅⋅ 也表示m , 从而21M m ==. ②①、②相矛盾,从而不存在(9,9)A S ∈,使得()0l A =. ………………8分(Ⅲ)解:记这2n 个实数之积为p .一方面,从“行”的角度看,有12()()()n p r A r A r A =⋅⋅⋅ ; 另一方面,从“列”的角度看,有12()()()n p c A c A c A =⋅⋅⋅ .从而有1212()()()()()()n n r A r A r A c A c A c A ⋅⋅⋅=⋅⋅⋅ . ③ ………………10分注意到(){1,1}i r A ∈-,(){1,1}j c A ∈- (1,1)i n j n ≤≤≤≤.下面考虑1()r A ,2()r A , ,()n r A ,1()c A ,2()c A , ,()n c A 中1-的个数:由③知,上述2n 个实数中,1-的个数一定为偶数,该偶数记为2(0)k k n ≤≤;则1的个数为22n k -, 所以()(1)21(22)2(2)l A k n k n k =-⨯+⨯-=-. ………………12分 对数表0A :1ij a =(,1,2,3,,)i j n = ,显然0()2l A n =.将数表0A 中的11a 由1变为1-,得到数表1A ,显然1()24l A n =-. 将数表1A 中的22a 由1变为1-,得到数表2A ,显然2()28l A n =-. 依此类推,将数表1k A -中的kk a 由1变为1-,得到数表k A . 即数表k A 满足:11221(1)kk a a a k n ====-≤≤ ,其余1ij a =. 所以 12()()()1k r A r A r A ====- ,12()()()1k c A c A c A ====- . 所以()2[(1)()]24k l A k n k n k =-⨯+-=-.由k 的任意性知,()l A 的取值集合为{2(2)|0,1,2,,}n k k n -= .……………13分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年北京市西城区高三二模数学理科含答案北京市西城区2013年高三二模试卷高三数学(理科) 2013.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集{0,1,2,3,4}U =,集合{0,1,2,3}A =,{2,3,4}B =,那么()UA B =I ð(A ){0,1} (B ){2,3} (C ){0,1,4} (D ){0,1,2,3,4}2.在复平面内,复数1z 的对应点是1(1,1)Z ,2z 的对应点是2(1,1)Z -,则12z z ⋅=(A )1 (B )2 (C )i - (D )i3.在极坐标系中,圆心为(1,)2π,且过极点的圆的方程是 (A )(B)(C )(D )2sin =ρθ 2sin =-ρθ 2cos =ρθ 2cos =-ρθ4.如图所示的程序框图表示求算式“235917⨯⨯⨯⨯” 之值,则判断框内可以填入 (A )10k ≤ (B )16k ≤ (C )22k ≤ (D )34k ≤5.设122a =,133b =,3log 2c =,则(A )b a c << (B )a b c << (C )c b a << (D )c a b <<6.对于直线m ,n 和平面α,β,使m ⊥α成立的一个充分条件是 (A )m n ⊥,n ∥α(B )m ∥β,⊥βα(C )m ⊥β,n ⊥β,n ⊥α (D )m n ⊥,n ⊥β,⊥βα7.已知正六边形ABCDEF 的边长是2,一条抛物线恰好经过该六边形的四个顶点,则抛物线的焦点到准线的距离是 (A 3(B 3(C 3(D )38.已知函数()[]f x x x =-,其中[]x 表示不超过实数x 的最大整数.若关于x 的方程()f x kx k =+有三个不同的实根,则实数k 的取值范围是(A )111[1,)(,]243--U (B )111(1,][,)243--U (C )111[,)(,1]342--U (D )111(,][,1)342--U第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.右图是甲,乙两组各6名同学身高(单位:cm )数据的茎叶图.记甲,乙两组数据的平均数依次为甲和x 乙,则 x 甲______x 乙. (填入:“>”,“=”,或“<”)10.5(21)x -的展开式中3x 项的系数是______.(用数字作答)11.在△ABC 中,2BC =,7AC =,3B π=,则AB =______;△ABC 的面积是______.12.如图,AB 是半圆O 的直径,P 在AB 的延长线上,PD与半圆O 相切于点C ,AD PD ⊥.若4PC =,2PB =,则CD =______.13.在等差数列{}na 中,25a=,1412a a+=,则n a =______;设*21()1nn bn a =∈-N ,则数列{}nb 的前n 项和nS =______.14.已知正数,,a b c 满足a b ab +=,a b c abc ++=,则c 的取值范围是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)如图,在直角坐标系xOy 中,角α的顶点是原点,始边与x 轴正半轴重合,终边交单位圆于点A ,且,)62ππ∈(α.将角α的终边按逆时针方向旋转3π,交单位圆于点B .记),(),,(2211y x B y x A .(Ⅰ)若311=x,求2x ;(Ⅱ)分别过,A B 作x 轴的垂线,垂足依次为,C D .记△AOC的面积为1S ,△BOD 的面积为2S .若122SS =,求角α的值.16.(本小题满分13分)某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励.(Ⅰ)求1名顾客摸球3次停止摸奖的概率; (Ⅱ)记X 为1名顾客摸奖获得的奖金数额,求随机变量X 的分布列和数学期望.17.(本小题满分14分)如图1,四棱锥ABCD P -中,⊥PD 底面ABCD ,面ABCD是直角梯形,M 为侧棱PD 上一点.该四棱锥的俯视图和侧(左)视图如图2所示.(Ⅰ)证明:⊥BC 平面PBD ; (Ⅱ)证明:AM ∥平面PBC ;(Ⅲ)线段CD 上是否存在点N ,使AM 与BN 所成角的余弦值为43?若存在,找到所有符合要求的点N ,并求CN 的长;若不存在,说明理由.18.(本小题满分13分)如图,椭圆22:1(01)y C x m m+=<<的左顶点为A ,M 是椭圆C 上异于点A 的任意一点,点P 与点A 关于点M 对称.(Ⅰ)若点P 的坐标为943(,55,求m 的值;(Ⅱ)若椭圆C 上存在点M ,使得OP OM ⊥,求m 的取值范围.19.(本小题满分14分)已知函数322()2(2)13f x xx a x =-+-+,其中a ∈R .(Ⅰ)若2a =,求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)求()f x 在区间[2,3]上的最大值和最小值.20.(本小题满分13分)已知集合1212{(,,,)|,,,nn nSx x x x x x =L L 是正整数1,2,3,,n L 的一个排列}(2)n ≥,函数1,0,()1,0.x g x x >⎧=⎨-<⎩对于12(,,)nna a a S ∈…,定义:121()()(),{2,3,,}i i i i i b g a a g a a g a a i n -=-+-++-∈L L ,10b =,称ib 为ia 的满意指数.排列12,,,nb b b L 为排列12,,,na a a L 的生成列;排列12,,,na a a L 为排列12,,,nb b b L 的母列.(Ⅰ)当6n =时,写出排列3,5,1,4,6,2的生成列及排列0,1,2,3,4,3--的母列; (Ⅱ)证明:若12,,,na a a L 和12,,,na a a '''L 为nS 中两个不同排列,则它们的生成列也不同;(Ⅲ)对于nS 中的排列12,,,na a a L ,定义变换τ:将排列12,,,na a a L 从左至右第一个满意指数为负数的项调至首项,其它各项顺序不变,得到一个新的排列.证明:一定可以经过有限次变换τ将排列12,,,na a a L 变换为各项满意指数均为非负数的排列.北京市西城区2013年高三二模试卷高三数学(理科)参考答案及评分标准2013.5一、选择题:本大题共8小题,每小题5分,共40分.1.C ; 2.B ; 3.A ; 4.C ; 5.D ; 6.C ; 7.B ; 8.B .二、填空题:本大题共6小题,每小题5分,共30分.9.>;10.80;11.3,332;12.125;13.21n+,4(1)nn+;14.4(1,]3.注:11、13题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:由三角函数定义,得1cosx=α,2cos()3xπ=+α.………………2分因为,)62ππ∈(α,1cos3=α,所以222sin1cos3=-=αα. (3)分所以213126 cos()cos3226xπ-=+==αα-α.………………5分(Ⅱ)解:依题意得 1sin y =α,2sin()3yπ=+α.所以111111cos sin sin 2224S x y ==⋅=ααα,………………7分2221112||[cos()]sin()sin(2)223343S x y πππ==-+⋅+=-+ααα.……………9分 依题意得2sin 22sin(2)3π=-+αα,整理得cos20=α.………………11分因为 62ππ<<α, 所以 23π<<πα, 所以22π=α,即4π=α. ………………13分16.(本小题满分13分)(Ⅰ)解:设“1名顾客摸球3次停止摸奖”为事件A, ………………1分则2334A 1()A 4P A ==,故1名顾客摸球3次停止摸奖的概率为14. ………………4分(Ⅱ)解:随机变量X 的所有取值为0,5,10,15,20. (5)分1(0)4P X ==,2224A 1(5)A 6P X ===,222344A 11(10)A A 6P X ==+=,122234C A 1(15)A 6P X ⋅===,3344A 1(20)A 4P X ===.………………10分所以,随机变量X 的分布列为:X5101520P1416161614………………11分11111051015201046664EX =⨯+⨯+⨯+⨯+⨯=.………………13分17.(本小题满分14分) 【方法一】(Ⅰ)证明:由俯视图可得,222BDBC CD +=,所以BDBC ⊥. ………………1分又因为 ⊥PD 平面ABCD ,所以 PD BC ⊥, ………………3分所以⊥BC 平面PBD.………………4分(Ⅱ)证明:取PC 上一点Q ,使:1:4PQ PC =,连结MQ ,BQ. ………………5分由左视图知 4:1:=PD PM ,所以MQ∥CD ,14MQ CD=. ………………6分 在△BCD 中,易得60CDB ︒∠=,所以30ADB ︒∠=.又2=BD , 所以1AB =, 3AD =又因为AB∥CD ,CD AB 41=,所以 AB∥MQ ,AB MQ=.所以四边形ABQM 为平行四边形,所以AM∥BQ. ………………8分因为 ⊄AM 平面PBC ,BQ ⊂平面PBC , 所以直线AM∥平面PBC. ………………9分(Ⅲ)解:线段CD 上存在点N ,使AM 与BN 所成角的余弦值为43.证明如下:………10分因为 ⊥PD 平面ABCD ,DC DA ⊥,建立如图所示的空间直角坐标系xyz D -.所以 )3,0,0(),0,4,0(),0,1,3(),0,0,3(),0,0,0(M C B A D . 设)0,,0(t N ,其中40≤≤t . ………………11分所以)3,0,3(-=AM ,)0,1,3(--=t BN .要使AM 与BN 所成角的余弦值为43,则有||3||||AM BN AM BN ⋅=u u u u r u u u r u u u u r u u u r , ………………12分所以43)1(332|3|2=-+⋅t ,解得 0=t 或2,均适合40≤≤t . ………………13分故点N 位于D 点处,此时4CN =;或CD 中点处,此时2CN =,有AM与BN所成角的余弦值为43.………………14分【方法二】(Ⅰ)证明:因为⊥PD 平面ABCD ,DC DA ⊥,建立如图所示的空间直角坐标系xyz D -.在△BCD 中,易得60CDB ︒∠=,所以30ADB ︒∠=,因为 2=BD , 所以1AB =,3AD =由俯视图和左视图可得:)4,0,0(),3,0,0(),0,4,0(),0,1,3(),0,0,3(),0,0,0(P M C B A D . 所以)0,3,3(-=BC ,)0,1,3(=DB .因为001333=⋅+⋅+⋅-=⋅,所以BDBC ⊥. ………………2分 又因为⊥PD 平面ABCD,所以 PDBC ⊥, ………………3分 所以⊥BC 平面PBD.………………4分(Ⅱ)证明:设平面PBC 的法向量为=()x,y,z n ,则有0,0.PC BC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n 因为)0,3,3(-=BC ,)4,4,0(-=PC ,所以440,330.y z x y -=⎧⎪⎨-+=⎪⎩ 取1=y ,得=n )1,1,3(. ………………6分 因为 )3,0,3(-=AM ,所以⋅=n 03101)3(3=⋅+⋅+-⋅.………………8分因为 ⊄AM 平面PBC , 所以直线AM∥平面PBC. ………………9分(Ⅲ)解:线段CD 上存在点N ,使AM 与BN 所成角的余弦值为43.证明如下:………10分设)0,,0(t N ,其中40≤≤t . ………………11分所以 )3,0,3(-=AM ,)0,1,3(--=t BN .要使AM 与BN 所成角的余弦值为43,则有43||||=⋅BN AM BN AM , ………………12分所以43)1(332|3|2=-+⋅t ,解得0=t 或2,均适合40≤≤t . ………………13分故点N 位于D 点处,此时4CN =;或CD 中点处,此时2CN =,有AM与BN所成角的余弦值为43.………………14分18.(本小题满分13分)(Ⅰ)解:依题意,M 是线段AP 的中点,因为(1,0)A -,943(,55P , 所以 点M 的坐标为23(,55.………………2分 由点M 在椭圆C 上, 所以41212525m+=,………………4分解得47m =.………………5分 (Ⅱ)解:设0(,)M x y ,则2201y x m +=,且011x-<<.① ………………6分因为 M是线段AP 的中点,所以00(21,2)P x y +.………………7分因为 OP OM⊥,所以2000(21)20x x y ++=.② ………………8分由 ①,② 消去y ,整理得20020222x x m x +=-. ………………10分所以0011316242(2)82m x x =+≤-++-+, ………………12分当且仅当 023x =- 所以m的取值范围是13(0,]2. ………………13分19.(本小题满分14分) (Ⅰ)解:()f x 的定义域为R, 且2()242f x x x a'=-+-. ………………2分当2a =时,1(1)3f =-,(1)2f '=-, 所以曲线()y f x =在点(1,(1))f 处的切线方程为12(1)3y x +=--,即6350x y +-=.………………4分 (Ⅱ)解:方程()0f x '=的判别式为8a =∆.(ⅰ)当0a ≤时,()0f x '≥,所以()f x 在区间(2,3)上单调递增,所以()f x 在区间[2,3] 上的最小值是7(2)23f a =-;最大值是(3)73f a=-. ………………6分(ⅱ)当0a >时,令()0f x '=,得1212a x =-,或2212a x =+.()f x 和()f x '的情况如下:x1(,)x -∞1x 12(,)x x2x 2(,)x +∞()f x ' +0 -0 +()f x↗↘↗ 故()f x 的单调增区间为2(,1a -∞,2(1)a+∞;单调减区间为22(1)a a +.………………8分① 当02a <≤时,22x≤,此时()f x 在区间(2,3)上单调递增,所以()f x 在区间[2,3]上的最小值是7(2)23f a =-;最大值是(3)73f a=-. ………………10分② 当28a <<时,1223x x <<<,此时()f x 在区间2(2,)x 上单调递减,在区间2(,3)x 上单调递增,所以()f x 在区间[2,3]上的最小值是252()3a af x a =--. ………………11分因为 14(3)(2)3f f a -=-, 所以 当1423a <≤时,()f x 在区间[2,3]上的最大值是(3)73f a=-;当1483a <<时,()f x 在区间[2,3]上的最大值是7(2)23f a =-. ………………12分③ 当8a ≥时,1223x x <<≤,此时()f x 在区间(2,3)上单调递减,所以()f x 在区间[2,3]上的最小值是(3)73f a =-;最大值是7(2)23f a =-.………………14分综上,当2a ≤时,()f x 在区间[2,3]上的最小值是723a -,最大值是73a -;当1423a <≤时,()f x 在区间[2,3]上的最小值是5233aa --73a -;当1483a <<时,()f x 在区间[2,3]上的最小值是523a a a --723a -; 当8a ≥时,()f x 在区间[2,3]上的最小值是73a -,最大值是723a -.20.(本小题满分13分)(Ⅰ)解:当6n =时,排列3,5,1,4,6,2的生成列为0,1,2,1,4,3--; ………………2分排列0,1,2,3,4,3--的母列为3,2,4,1,6,5. ………………3分(Ⅱ)证明:设12,,,na a a L 的生成列是12,,,nb b b L ;12,,,na a a '''L 的生成列是与12,,,nb b b '''L .从右往左数,设排列12,,,na a a L 与12,,,na a a '''L 第一个不同的项为ka 与ka ',即:nnaa '=,11n naa --'=,L ,11k kaa ++'=,kkaa '≠.显然n nb b '=,11n nbb --'=,L ,11k kbb ++'=,下面证明:k kb b '≠. ………………5分由满意指数的定义知,ia 的满意指数为排列12,,,na a a L 中前1i -项中比ia 小的项的个数减去比ia 大的项的个数.由于排列12,,,na a a L 的前k 项各不相同,设这k 项中有l项比ka 小,则有1k l --项比ka 大,从而(1)21k b l k l l k =---=-+.同理,设排列12,,,na a a '''L 中有l '项比ka '小,则有1k l '--项比ka '大,从而21kb l k ''=-+.因为12,,,k a a a L 与12,,,ka a a '''L 是k 个不同数的两个不同排列,且kkaa '≠, 所以l l '≠, 从而k kb b '≠.所以排列12,,,na a a L 和12,,,n a a a '''L 的生成列也不同. ………………8分(Ⅲ)证明:设排列12,,,na a a L 的生成列为12,,,nb b b L ,且ka 为12,,,na a a L 中从左至右第一个满意指数为负数的项,所以1210,0,,0,1k k b b b b -≥≥≥≤-L . (9)分进行一次变换τ后,排列12,,,na a a L 变换为1211,,,,,,k k k na a a a a a -+L L ,设该排列的生成列为12,,,nb b b '''L .所以1212()()n n b b b b b b '''+++-+++L L121121[()()()][()()()]k k k k k k k k g a a g a a g a a g a a g a a g a a --=-+-++---+-++-L L1212[()()()]k k k k g a a g a a g a a -=--+-++-L22k b =-≥.………………11分因此,经过一次变换τ后,整个排列的各项满意指数之和将至少增加2.因为ia 的满意指数1ib i ≤-,其中1,2,3,,i n =L ,所以,整个排列的各项满意指数之和不超过(1)123(1)2n nn -++++-=L ,即整个排列的各项满意指数之和为有限数,所以经过有限次变换 后,一定会使各项的满意指数均为非负数.………………13分。

相关文档
最新文档